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Abstract

This article describes a hybrid algorithm (PSO TS) that uses Particle Swarm Optimization (PSO)
and Tabu Search (TS) to solve the Maximum Diversity Problem (MDP). The MDP is a problem in
the area of combinatorial optimization which aims to select a preset number of elements of a given
set such that the sum of the differences between the selected elements is the highest possible. The
PSO approach simulates the behavior of a flock of birds in flight with its random movement locally,
but also globally determined, to find the local maximum. The use of PSO TS achieves the great
majority of the best results for known instances testing according to literature and improved the
known solution in six cases, thus demonstrating to be competitive with the best algorithms in terms
of quality of the solutions.

1 Introduction

The maximum diversity problem (MDP) is a combinatorial optimization problem that can be defined
as follows. Given a set N = {1, . . . , n}, a diversity measure (e.g., Euclidean distance) dij , i, j ∈ N ,
and an integer m < |N |, the objective is to determine a subset M ⊂ N , with |M | = m, so as to
maximize its diversity. This problem is NP-hard [12] and, as pointed out in [22], it is also known in
the literature under different names such as maximum dispersion, MAX-AVG dispersion, edge-weighted
clique, remote-clique, maximum edge-weighted sub- graph and dense k-subgraph. MDP applications can
be found in the pharmaceutical industry [1], in computational biology [19] and, according to the Martı̀
[14], in the location of facilities, in the protection of biological diversity, the formulation of admission
policies, the formation of committees, the composition of medical crews, and so on.

A number of metaheuristic algorithms were proposed to solve the MDP. Among them we can cite:
greedy randomized adaptive search procedure (GRASP) [10, 16, 18], tabu search (TS) [2, 3, 7, 15, 20],
iterated local search (ILS) [8], iterated greedy (IG) [13], scatter search (SS) [9], variable neighborhood
search (VNS) [2], [4], simulated annealing (SA) [1] and memetic algorithm (MA) [21]. The reader is
referred to [14] for a detailed comparison between various heuristics and metaheuristics for the problem.

This paper presents a hybrid metaheuristic algorithm that combines particle swarm optimization
(PSO) with tabu search (TS) to solve the MDP. Extensive computational experiments were carried out in
benchmark instances from the literature and the results obtained show that the proposed metaheuristic is
capable of finding highly competitive results.

2 PSO TS for MDP

Our hybrid metaheuristic algorithm (PSO TS) combines a version of the meta-heuristic particle swarm
optimization and tabu search to refine the solutions. First, we create q particles of size m, where
Nr PG% particles - being at least one particle - are created by a greedy algorithm and, in the remaining
particles, the elements are chosen randomly. The greedy heuristics are described in Section 2.1 and the
choice of the value of the constant q is shown in Section 2.3.
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After the creation of the parts, they are ordered according to their maximum diversity and the
Nr Ch TS In best particles will serve as starting solutions for a Tabu Search algorithm. If there is im-
provement in maximum diversity, the returned TS solution replaced the particle and GBest and PBest
are updated.

At each iteration k of PSO, the particle moves through the multidimensional space according to
Equation (1).

Xk+1
id = Xk

id + V k+1
id (1)

As presente above, Xk
id is the position of the element i in the dimension d of the particle in the

multidimensional space in the k-th iteration and V k
id denotes the velocity of displacement of the element

i in the dimension d of the particle in the k-th iteration, and is calculated by Equation (2),

V k+1
id = w ∗ V k

id + c1 ∗ Cr ∗ (P k
id −Xk

id) + c2 ∗ (1− Cr) ∗ (P k
gd −Xk

id) (2)

where w is a variable that defines the inertial weight that will be applied to the velocity of the particle
and the value is chosen through equation w = 0.9 − ((0.9 − 0.1)/k) ∗ q. This equation, based on
Coelho Filho [6], causes the value of w - between [0.1, ..., 0.9] - to be close to the maximum in the initial
iterations and close to the minimum in the final iterations. This causes the particle to move faster at the
beginning of processing and to ”escape” from optimal locations;

Cr is chosen through the equation Cr = y ∗ Cr ∗ (1− Cr), described by Chuang [5], instead of r1
and r2 of the original equation of the PSO. Initially, Cr is randomly chosen from [0, ..., 1]. The variable
y = 4 was used, which causes the equation to have a chaotic behavior but generates most numbers in the
vicinity of 0 or 1;

Algorithm 1: PSO TS
input : a Mnxn matrix (dij) a given cardinality m ≤ n
output: the best solution found Gb∗

1 P ← {x1, ..., xmax(1,int(m∗Nr PG/100))} ← create greedy()/*Section 2.1*/ ;
2 P ← {xmax(1,int(m∗Nr PG/100))+1, ..., xq} ← create random();
3 Pb∗ ← {x1, ..., xq} ← P = {x1, ..., xq};
4 Gb∗ ← argmax{f(xi)|i = {1, ..., q};
5 while k < Kmax do
6 Nr Ch = Nr Ch TS;
7 if k = 0 then
8 Nr Ch = Nr Ch TS In×m/100;
9 end

10 order P = {x1, ..., xq} (descending by maximum diversity);
11 for i← 0 to Nr Ch do
12 P (i) = TS(P (i)) /* Section 2.2 */ ;
13 update Gb∗ e Pb∗(s);
14 if time > t then
15 return Gb∗
16 end
17 end
18 for i← 0 to q − 1 do
19 move P [i] /* Eq. (1) */ ;
20 update Gb∗ e Pb∗(i);
21 end
22 end
23 return Gb∗.
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c1 and c2 are constants that define the velocity towards the PBest and GBest (cognitive factor and
social factor), respectively.

Xk
id is the current position of the particle in the k-th iteration;

P k
id (PBest) is the best position ever visited by the particle up to the k-th iteration and P k

gd (GBest)
is the best position ever visited by either of the particles until the k-th iteration.

Eventually, the new position of the i element of the particle occurs outside the vector space. In
this case, the element is not moved. There are also situations in which the new position of the element
coincides with the position of another element of the same particle. it happens the same with this element,
it is not moved.

At each iteration the particles move to the new position and the maximum diversity is calculated. If
there is improvement in diversity locally (highest maximum diversity already reached by the particle),
PBest is updated. Also, if there is improvement in GBest, it is updated.

At the end of each iteration, the particles are sorted according to their diversity. A tabu search is
initialized Nr Ch TS times, having the Nr Ch TS best particles of the round as a starting solution.
The tabu search procedure is described in details in Section 2.2. At the end of TS, GBest and PBest
are updated.

Finally, the algorithm stops when it reaches a number ofKmax of iterations or reaches the maximum
processing time t. The last GBest found is the solution to the problem. The pseudocode of the PSO TS
algorithm is shown in Algorithm 1.

2.1 Constructive Algorithms

Two construction methods were used to create the initial particles: a greedy method and a random
method.

The greedy heuristic creates a particle (valid solution) according to the following steps:
(1) randomly chooses an element of the N instance to be part of the U solution;
(2) creates a vector S containing elements that are not yet part of U ;
(3) stores in S the value that each elementN/U would contribute by being part of the partial solution,

according to equation Si =
∑

j∈∪ dij ;
(4) adds the first element found with the largest contribution in the vector S to the partial solution U

and excludes this element from the vector;
(5) The vector S is updated to the equation step (3), as well as the maximum partial solution diversity;
(6) returns to step (4) until a valid solution with m elements is generated.
(7) The particle itself is defined as PBest. The choice of the first element being random makes the

algorithm non-deterministic and allows the generation of more than one particle with different elements.
Nevertheless, in the random heuristics, obviously, all the particles are generated in a random way.

After all the particles are created, the GBest is set. .

2.2 Tabu Search (TS)

In the tabu search procedure the technique described by Wang [21] was applied, which proved efficient
in improving the quality of a solution. The TS consists in a constrained swap operator to exchange a
variable having the value of 0. More formally, given a feasible solution x = {x1, ..., xn}, let U and Z
respectively denote the set of variables with the value of 1 and 0 in x. Given solution x, the neighborhood
N(x) of x consists of all the solutions obtained by swapping two variables xi ∈ ∪ and xj ∈ Z.

The Tabu Search uses a mechanism that rapidly determines the gain of the exchange movement,
similar to the used by Aringhieri [3] where a vector 4 is employed to record the objective variation of
moving a variable xi from its current subsetU/Z into the other subsetZ/U . This vector can be initialized
according to Equation (3) and the move gain of interchanging two variables xi ∈ U and xj ∈ Z can be
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calculated using the formula δij = 4i +4j − dij .

∆i =


∑
j∈∪
−dij(xi ∈ U)∑

j∈∪
dij(xi ∈ Z)

(3)

Once a move is performed, we just need to update a subset of move gains affected by the move.
Specifically, the following abbreviated calculation can be performed to update 4 upon swapping vari-
ables xi and xj according to Equation (4).

4k =


−4i + dij(k=i)
−4j + dij(k=j)

4k + dik + djk(k # { i,j},xk ∈ U)
4k − dik + djk(k # { i,j},xk ∈ Z)

(4)

To restrict the analysis for the motions that produce high quality results for each specific operation,
the successive filter candidate list strategy of Glover [11] was employed. For the swap move, it is
necessary to move the variable xi from U to Z and move the variable xj from Z to U . Therefore, pick
for each component operation the top cls variables (cls is a parameter and called the candidate list size)
in terms of their 4 values recorded in a non-increasing order to construct the candidate lists UCL and
ZCL. For the swap moves, only the variables of UCL and ZCL are involved. The candidate list size of
each component operation was defined cls = min(

√
m,
√
n−m).

The Tabu Search incorporates a short-term memory, known as the Tabu List of Glover [11]. Each
time two variables xi and xj are swapped, two random integers are taken from an interval tt = [15, 25]
to prevent any move involving either xi or xj from being selected for a tt number of iterations.

To accompany this rule, a simple aspiration criterion is applied, that permits a move to be selected
in spite of being tabu if it leads to a solution better than the best solution found so far. The tabu search
procedure terminates when the best solution cannot be improved within 6m number of iterations.

2.3 Parameters

For the execution of the algorithm, some constants must be previously defined. Values were tested with
q = .15, .20, .25, .5 and 1, Nr PG = 1%, 10%, 40%, 70%, 80% and 90%, c1 =.8, 1 and 1.2, c2 = 1.2,
1.4 and 1.8, Nr Ch TS= 4, 5, 6, 7, 8 and 9 and Nr Ch TS In= 0%, 20%, 40% and 60%.

The parameters were chosen in an empirical way, based on the results of the tests performed, ana-
lyzing the best solutions and average solutions found. Table 1. shows the values of the constants, where
q×m = initial particle number,Nr PG = percentage of particles created in a greedy manner,Kmax×m
= maximum number of PSO iterations, c1 and c2 = positive acceleration constants,Nr Ch TS = number
of calls to TS at each iteration of the PSO and Nr Ch TS In = Percentage of initial particles that will
be subjected to Tabu Search.

Instances q Nr PG Kmax c1 c2 Nr Ch TS Nr Ch TS In

SOM-b 1 80 % 1 1.00 1.40 7 0
MDG-a .20 80 % 1 1.00 1.40 8 0
MDG-c .20 60 % 4 1.00 1.40 6 20

Table 1: Values defined for the constants

3 Computational experiments

In order to verify the efficiency of the proposed algorithm, we used the medium-sized SOM-b instances,
created by [17], which contains a population of size n = 100, n = 200, n = 300, n = 400 and n = 500,

Barcelona, July 4-7, 2017



MIC/MAEB 2017 A hybrid algorithm based on PSO and TS for the Maximum Diversity Problem–5

and tested solutions with sizes of m = 10%n, 20%n, 30%n e 40%n. The metaheuristic PSO TS was
executed 10 times with a maximum time of 1s. The best known solutions (BKS) were taken from [8]. For
the large instances, were used the 20 MDG-a instances created by [7] and 30 executions were performed
for a time limit of 16s and the 20 MDG-c instances, similar to those used by [15], and 10 executions
were performed for a time limit of 480s. For the maximum diversity, the greatest diversity (#Best) and
the average diversity (#Avg) were analysed.

The algorithm was implemented using the C++ programming language, gcc compiler - compiled
with the gcc -O2 option - and Linux OS Ubuntu V. 4.2.0-35. For the tests, a computer with Intel i7 950
@ 3.07GHz processor with 4 cores, 8 GB Mem, HD 2 TB Gb was used. Only 1 processor core was used.

Table 2 shows the average results obtained for the medium-sized instances SOM-b. In this table,
column 1 indicates the instance used; column 2, the size of this instance; column 3, the amount of
m elements of the particle (solution); column 4, the best solution (maximum diversity) known in the
literature (BKS); column 5, the average solution found in the 10 tests and columns 6, 7 and 8 shows,
respectively, the minimum, average and maximum processing time until you find the solution.

We can observe that in all the tested instances and in 100% of the 10 tests executed in each one
of them, the algorithm PSO TS found the best solution known in the literature, that is, a null standard
deviation. The maximum time to find the BKS ranged from 0.00 to 0.52s, depending on the n and m
instance value. The average time to find the best solution known in all instances in all runs was 0.08s.

Instances n m BKS
PSO TS

Average
Time (seconds)

Min Avg Max
SOM-b 1 100 10 333 333 0.00 0.00 0.00
SOM-b 2 100 20 1195 1195 0.00 0.00 0.00
SOM-b 3 100 30 2457 2457 0.00 0.00 0.00
SOM-b 4 100 40 4142 4142 0.00 0.00 0.01
SOM-b 5 200 20 1247 1247 0.00 0.02 0.08
SOM-b 6 200 40 4450 4450 0.00 0.02 0.05
SOM-b 7 200 60 9437 9437 0.00 0.01 0.01
SOM-b 8 200 80 16225 16225 0.01 0.01 0.02
SOM-b 9 300 30 2694 2694 0.00 0.04 0.12
SOM-b 10 300 60 9689 9689 0.01 0.10 0.29
SOM-b 11 300 90 20743 20743 0.01 0.06 0.19
SOM-b 12 300 120 35881 35881 0.04 0.09 0.15
SOM-b 13 400 40 4658 4658 0.02 0.09 0.15
SOM-b 14 400 80 16956 16956 0.02 0.14 0.37
SOM-b 15 400 120 36317 36317 0.05 0.10 0.23
SOM-b 16 400 160 62487 62484 0.09 0.23 0.31
SOM-b 17 500 50 7141 7141 0.04 0.26 0.52
SOM-b 18 500 100 26258 26258 0.03 0.12 0.31
SOM-b 19 500 150 56572 56572 0.06 0.08 0.16
SOM-b 20 500 200 97344 97344 0.11 0.26 0.52
Average 0.02 0.08 0.17

Table 2: Results of SOM-b instances (Time < 1s)

Compared with state-of-the-art algorithms using the SOM-b instances cited in [14], where they use a
longer processing time - 10s or 20s on an Intel Core2 Quad Q8300 2.5GHz processor, the PSO TS found
better or equal average results.

In Table 3 we have the results found for the large MDG-a instances, where the columns indicate,
respectively, the instance used; the best solution known in the literature; the best solution found; the
GAP (BKS-#Best); the GAP (BKS-#Avg.) and the coefficient of variation, which corresponds to the
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standard deviation divided by the mean, between the 30 runs.
We can observe that in only one instance the algorithm did not found the best known solution and

the GAP was only 2 units and in the average of the solutions the GAP was 36.6. The average coefficient
of variation between the solutions, obtained by the ratio between standard deviation and the mean, was
0.00027, which demonstrates the robustness of the algorithm.

Instances BKS

PSO TS
Solution GAP

CV#Best #Avg. #Best #Avg.
MDG-a 21 114271 114271 114237.6 0 33 0.00018
MDG-a 22 114327 114327 114298.8 0 28 0.00047
MDG-a 23 114195 114195 114157.4 0 38 0.00029
MDG-a 24 114093 114091 114042.7 2 50 0.00022
MDG-a 25 114196 114196 114108.1 0 88 0.00035
MDG-a 26 114265 114265 114232.0 0 33 0.00016
MDG-a 27 114361 114361 114351.9 0 9 0.00016
MDG-a 28 114327 114327 114280.0 0 47 0.00054
MDG-a 29 114199 114199 114169.6 0 29 0.00018
MDG-a 30 114229 114229 114193.6 0 35 0.00024
MDG-a 31 114214 114214 114160.4 0 54 0.00025
MDG-a 32 114214 114214 114151.8 0 62 0.00034
MDG-a 33 114233 114233 114189.9 0 43 0.00028
MDG-a 34 114216 114216 114181.9 0 34 0.00033
MDG-a 35 114240 114240 114229.1 0 11 0.00013
MDG-a 36 114335 114335 114313.3 0 22 0.00025
MDG-a 37 114255 114255 114218.5 0 37 0.00029
MDG-a 38 114408 114408 114398.6 0 9 0.00015
MDG-a 39 114201 114201 114183.7 0 17 0.00031
MDG-a 40 114349 114349 114297.5 0 52 0.00038
Average 0.1 36.6 0.00027

Table 3: Results of MDG-a instances (Time ≤ 16s)

The results of the MDG-a instances were compared with the state-of-the-art algorithms, that were
reported in [21] where the algorithms were run for 17s on a Xeon E5440 with 2.83 GHz CPU and 8 GB
RAM or equivalent machines.

To determine the stopping time of our algorithm, we used the CPU Benchmarks - Single Thread Per-
formance 1 which indicated that our computer has a factor 1.036 faster than those used in benchmarking
[21]. Thus, we set the time limit for 16s for the MDG-a instances.

Observing the graph of Table 1, we can see that the PSO TS has obtained better results in all instances
than the ITS [15], VNS [4], TIG [13] and LTS EDA [20] algorithms, comparing the best solutions found
and the average of the solutions. In comparison with the TS-MA [21] algorithm, we obtained slightly
lower results regarding the quality of the solutions. We believe that this is due to the characteristics of
the metaheiristic PSO, which requires a longer processing time to converge to the optimal solutions.

For the analysis of the MDG-c instances, also considered large instances, 10 executions were per-
formed and a maximum processing time of 480 seconds was used. In Table 4 we have the results found
for these instances, where the columns indicate, respectively, the instance used; the best solution known
in the literature; the best solution found in the tests; the average solution found; the GAP of the best solu-
tion and the GAP of the average solution in relation to the best known solution. The GAP was calculated
according to the equation GAP =

((
#Best
Soluc

)
− 1
)
× 100, where #Best is the best solution found in the

1http://www.cpubenchmark.net/singleThread.html
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Figure 1: Comparison among PSO TS and other state-of-the-art algorithms (MDG-a instances)

literature and Soluc is the analyzed solution. Negative GAPs represent better results. The best solutions
known in the literature were taken from [14].

As we can see, the PSO TS has found a better solution known in four instances and mainly improved
the known results for six cases. In two cases, even its average quality was better than the previously
known results reported in the literature.

The results obtained in the MDG-c instances were compared with state-of-the-art algorithms, which
were reported in [14] and executed for a processing time of 600 seconds on an Intel Core 2 Quad CPU Q
8300 with 6 GB of RAM. To determine the stopping time of our algorithm, we used the CPU Benchmarks
(Single Thread Performance) which indicated that our computer has a factor 1,246 faster than those used
in the tests by [14]. Then, we determine the stop time as 480 seconds for the MDG-c instances.

GRASP A VNS G SS ITS B VNS PSO TS
0

0.5

1

1.5

2 1.97

0.37 0.35 0.33

0.13
0.03

Figure 2: Comparison among PSO TS and other state-of-the-art algorithms (MDG-c instances)

The graph of Figura 2 shows the comparison between the GAP of the best solution known in the
literature and the average of the solutions found in the PSO TS with the results of the different meta-
heuristics. We can observe that the PSO TS algorithm obtained better results than all the algorithms
compared: GRASP D2+I LS [7], ITS [15], B VNS [4], A VNS [2] and G SS [9].
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Instncia #Best

PSO TS
Soluo GAP %

Melhor Mdia (1) (2)
MDG-c 1 24924685 24926344 24918989 -0.0067 0.0229
MDG-c 2 24909199 24912546 24903365 -0.0134 0.0234
MDG-c 3 24900820 24896090 24890210 0.0190 0.0426
MDG-c 4 24904964 24909710 24900660 -0.0191 0.0173
MDG-c 5 24899703 24895704 24890870 0.0161 0.0355
MDG-c 6 43465087 43444251 43436138 0.0480 0.0666
MDG-c 7 43477267 43477267 43466250 0.0000 0.0253
MDG-c 8 43458007 43462452 43458214 -0.0102 -0.0005
MDG-c 9 43448137 43448137 43444905 0.0000 0.0074
MDG-c 10 43476251 43465561 43460248 0.0246 0.0368
MDG-c 11 67009114 67021132 67015085 -0.0179 -0.0089
MDG-c 12 67021888 67014170 66999552 0.0115 0.0333
MDG-c 13 67024373 67016057 67011065 0.0124 0.0199
MDG-c 14 67024804 67027878 67022870 -0.0046 0.0029
MDG-c 15 67056334 67056334 67050797 0.0000 0.0083
MDG-c 16 95637733 95637733 95633768 0.0000 0.0041
MDG-c 17 95645826 95569412 95556782 0.0800 0.0932
MDG-c 18 95629207 95532141 95518634 0.1016 0.1158
MDG-c 19 95633549 95594864 95590270 0.0405 0.0453
MDG-c 20 95643586 95580853 95573081 0.0656 0.0738
Average 0.017 0.033

Table 4: Results of MDG-c instances (Time ≤ 480s)

4 Conclusions

In this paper, we propose a new approach to solve the problem of maximum diversity based on meta-
heuristic particle swarm optimization along with tabu search. For the generation of the initial particles,
a greedy and random construction heuristic was implemented.

The method, called PSO TS, is simple in its implementation and the results demonstrate that the
algorithm achieves excellent performance, obtaining, in most tested instances, the best solutions found
in the literature and in MDG-c instances, the algorithm improved the known solution in six cases.

The PSO TS was quite robust in relation to the average quality behavior of the obtained solutions,
with a null coefficient of variation for the medium-sized instances. In large instances MDG-a, the co-
efficient of variation was 0, 00027 and only 0, 00012 for the MDG-c instances. In summary, a null
mathematical variability.

As future steps, in order to improve the average quality of the solutions and, mainly, to reduce
the processing time, we have as main suggestions a study of the adjustment of parameters used in the
algorithm seeking to improve the performance, the exploration of new neighborhood structures for the
particles, where the PBest is chosen from the best neighbor and the development of parallel approaches
to the PSO TS to solve the large instances.
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