In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI

Q1 Kevin C. Chan a,b,d,e,g,h,i,⁎⁎, Shu-Juan Fan a,b,1, Russell W. Chan a,b, Joe S. Cheng a,b, Iris Y. Zhou a,b, Ed X. Wu a,c,**

⁎⁎ Correspondence to: K.C. Chan, Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Tel.: +1 412 624 1237; fax: +1 412 383 6799.

** Correspondence to: E.X. Wu, Laboratory of Biomedical Imaging and Signal Processing, Departments of Electrical and Electronic Engineering, Anatomy and Medicine, The University of Hong Kong, Hong Kong SAR, China. Tel.: +852 2819 9713; fax: +852 2819 9711.

E-mail addresses: chanwwe@pitt.edu (K.C. Chan), ewu@eee.hku.hk (E.X. Wu).

1 These authors contributed equally to this manuscript.

ARTICLE INFO

Article history:
Accepted 23 December 2013
Available online xxxx

Keywords:
Manganese-enhanced MRI
Resting-state functional connectivity
Retinal projection
Cortico-cortical connection
Cortico-subcortical connection
Visuotopic brain mapping

ABSTRACT

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinal. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmaceutical interventions and genetic modifications in future studies.

© 2013 Published by Elsevier Inc.

69

Please cite this article as: Chan, K.C., et al., In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroimage.2013.12.056
dorsal LGN receive corticothalamic feedback projections from the ipsilateral primary visual cortex (V1) (Jurgens et al., 2012; Sanderson et al., 1991; Sherman and Guillery, 2002). The visual cortex receives subcortically-cortical and cortico-cortical projections and sends out cortico-cortical and cortico-subcortical projections intra- and inter-hemispherically in a layer-specific manner (Alonso and Swadlow, 2005; Coogan and Burkalter, 1993; Martinez-Garcia et al., 1994). In particular, callosal cells are densely located in the transition zone of the primary/secondary visual cortex (V1/V2) (Olavarria and Van Sluyters, 1983), and project axons to a narrow area in the contralateral hemisphere (Innocenti et al., 1995; Mizuno et al., 2007). The topographic layout of the retina is also represented in the SC, LGN, visual callosal fibers and each cortical visual area (Coleman et al., 2009; Cusick and Lund, 1981; Montero, 1993; Olavarria et al., 2008). To date, limited tools have been available for in vivo, high-resolution mapping of neuroarchitecture in the visual brains globally and longitudinally (Antonini et al., 1999; Greenberg et al., 2008; Wang et al., 2007). There are also ongoing debates among neuroscientists on whether functional brain connectivity directly reflects structural brain connectivity (Damoiseaux and Greicius, 2009; Dawson et al., 2013; Greicius et al., 2009; Herrmundstald et al., 2013; Honey et al., 2009). Mn²⁺ has been increasingly used as a positive T1-weighted contrast agent for in vivo neuronal tract tracing (Canals et al., 2008; Chan et al., 2007, 2008c, 2011a,b; c; Liang et al., 2011; Pautler, 2004; Pautler et al., 1998; Soria et al., 2008; Tucciareno et al., 2009), detection of neuroanatomy, pathophysiology and neuropharmacological changes (Aoki et al., 2004; Chan et al., 2008a; Jelencu et al., 2013; Silva et al., 2008; Yang and Wu, 2008; Yang et al., 2008) and functional brain mapping at lamina levels (Bissig and Berkowitz, 2011; Chan et al., 2011c; Lin and Kovetsy, 1997; Watanabe et al., 2004; Yu et al., 2005). However, transsynaptic illumination of the visual cortex via intravitreal Mn²⁺ injection has been shown to be of limited sensitivity (Lindsey et al., 2007). There is also limited information about the mechanisms of physiological transport within cortico-cortical and cortico-subcortical networks in the visual brain. In this study, we explored the capability of Mn-enhanced MRI (MEMRI) via 3 different routes of Mn²⁺ administration for in vivo assessments of retinal, callosal, transsynaptic, corticothalamic, corticocollateral and intracortical horizontal connections in normally and visually deprived adult rat brains. In addition, resting-state functional connectivity MRI (RSfMRI) using blood oxygen level dependent contrast was performed to evaluate the intrinsic functional networks in the corresponding anatomical visual brain connections traced by MEMRI, and to determine the structural–functional relationships within rat visual brain network. Our results demonstrated the sensitivity of MEMRI and RSfMRI for assessing the neuroarchitecture, neurophysiology and structural–functional relationships of the visual brains in vivo, and may possess great potentials for studying the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications.

Materials and methods

Animal preparation

Adult Sprague–Dawley rats (N = 46; 200–250 g; Charles River Lab, USA) were divided into 4 groups. In Group 1 (n = 4), a fractionated dose of Mn²⁺ at 3 μL and 50 mM each was injected intravitreally into the left eye everyday for a total of 3 days; in Group 2 (n = 6), Mn²⁺ was injected unilaterally into the left LGN at 30 nL and 100 mM; in Group 3 (n = 29), Mn²⁺ was injected intracortically to the primary/secondary visual cortex (V1/V2) transtemporal zone (TZ) of the right hemisphere at 100 nL and 100 mM (Group 3a; n = 7) or 500 mM (Group 3b; n = 12; Group 3c; n = 10) at about 6.5 mm posterior and 5.5 mm lateral to Bregma. In addition, 5 rats in Group 3c received left eye enucleation at 1 week before Mn²⁺ injection to eliminate visual input from the left eye to the visual cortex. For Group 1, MEMRI was performed before, and at 1, 2 and 3 days after initial Mn²⁺ intravitreal injection. For Groups 2 and 3a, MEMRI was performed at 1 h, 8 h and 1 day after Mn²⁺ administration. For Group 3b, MEMRI was performed 24 h before (n = 12), and at 8 h (n = 5), 24 h (n = 12) and 48 h (n = 3) after Mn²⁺ injection. For Group 3c, MEMRI was performed at 8 and 24 h after Mn²⁺ administration. In addition, 7 rats were untreated and underwent RSfMRI (Group 4a: n = 4; Group 4b: n = 3). Three days after RSfMRI, Mn²⁺ (100 nL, 100 mM) was injected into the visual cortex of 3 rats (Group 4b). MEMRI was acquired 24 h after injection.

MRI protocols

All MRI measurements were acquired utilizing a 7 T Bruker scanner with a maximum gradient of 360 mT/m (70/16 PharmaScan, Bruker Biospin GmbH, Germany), a 72 mm birdcage transmit-only RF coil and an actively decoupled receive-only quadrature surface coil. Under inhaled isoflurane anesthesia (3% induction and 1.5–2% maintenance), animals were kept warm under circulating water at 37 °C. Continuous monitoring of the respiratory rate, heart rate, oxygenation saturation and rectal temperature was performed and maintained within normal physiological ranges. Scout T2-weighted (T2W) images were first acquired in three planes with a rapid acquisition with relaxation enhancement (RARE) pulse sequence to position the subsequent MR images along standard anatomical orientations in a reproducible manner. For Groups 1 to 3a, 2D T1-weighted (T1W) spin-echo RARE pulse sequence was acquired with repetition time/echo time (TR/TE) = 475/8.8 ms, field of view/slice thickness (FOV/th) = 32 × 32 mm²/0.8 mm, matrix resolution (MTX) = 256 × 256, acquired resolution = 125 × 125 μm². The number of slices = 10, RARE factor = 4 and acquisition time = 15 min. For Groups 3b, 3c and 4b, modified driven equilibrium Fourier transform (MДЕFT) imaging sequence was employed for characterizing Mn²⁺ enhancement with TR = 4000 ms, echo TR/TE = 12/4 ms, inversion time (TI) = 1100 ms, number of segments = 4, number of averages = 8, FOV = 32 × 32 mm², MTX = 256 × 256 (Groups 3b and 3c) or 64 × 64 (Group 4b), slice thickness = 0.5 mm (Groups 3b and 3c) or 1 mm (Group 4b), number of slices = 28 (Groups 3b and 3c) and 16 (Group 4b) and acquisition time = 60 min. For RSfMRI, a single-shot gradient echo-planar-imaging (EPI) sequence was used with TR/TE = 1000/18 ms, FOV = 32 × 32 mm², MTX = 64 × 64, ten 0.8-mm (Group 4a) or 1-mm (Group 4b) thick contiguous slices and 420 (Group 4a) or 400 (Group 4b) repetitions. It resulted in about 7 min of scan time for each RSfMRI database and 3–6 datasets were acquired for each animal. RARE T2W images were acquired under the same spatial dimensions with TR/TE = 4200/36 ms, 256 × 256 matrix as an anatomic reference for MДЕFT and EPI data.

Data analysis

For Groups 1 to 3a, T1W signal intensities (SI) in the SC, LGN, V1, V1/V2 transition zone of each hemisphere, and in the splenium of corpus callosum (CC) were measured using Image v1.43u1 (Wayne Rasband, NIH, USA) based on the anatomical landmarks in rat brain atlas (Paxinos and Watson, 2007a), and were normalized to the surrounding muscles. Mn²⁺ enhancement was quantified by calculating the ratio between the left and right visual components in Groups 1 and 2, and the rate of signal increases at Hour 8 and Day 1 compared to Hour 1 in Group 3a. Values at each time point were compared to the first time point using two-tailed paired t-tests.

To depict interhemispheric Mn²⁺ transport along the corpus callosum, MДЕFT images from normal animals were normalized by background noise level and reconstructed three-dimensionally using AMIRA 5.2.2 (Visage Imaging Inc.) in Group 3b. For semi-quantitative analysis of the left contrateral enhancement patterns at both 8 h and
24 h, regions of interest (ROIs) were manually delineated in five consecutive MDEFT slices containing most prominent left hemisphere enhancement near the V1/V2 transition zone by referencing to a rat brain atlas (Paxinos and Watson, 2005). ROIs were defined as a stripe along the cortical depth direction over the most enhanced pixels or medially-laterally along the cortical surface direction. Signal intensity profiles of these ROIs were plotted using ImageJ, averaged among five slices in each animal and normalized to the right parietal cortex. T1W SI of the left V1/V2 transition zone, corpus callosum and right LGN was also normalized by those of the right cortex for statistical comparisons between normal and monocularly enucleated rats. Normalized mean signal intensities of these ROIs were compared using one-way analysis of variance (ANOVA) with Bonferroni’s multiple comparisons test. Data are shown as mean ± standard deviation unless otherwise specified. Results were considered significant when p < 0.05.

For each RScfMRI dataset in Group 4a, all images were first corrected for slice timing differences using SPMS and then realigned to the mean image of the series using 2D rigid-body transformation with AIR v5.2.5 (Roger Woods, UCLA, USA). A voxel-wise linear detrending with least-square estimation was performed temporally to eliminate the baseline drift caused by physiological noises and system instability. In-plane smoothing was done using a Gaussian kernel with full width at half maximum of 1 × 1 mm². Temporally band-pass filter (0.005–0.1 Hz) was applied to all voxels to extract the low frequency fluctuations. Seed-based analysis was performed on the following functional brain areas, including monocular V1 (V1M), binocular V1 (V1B), V1/V2 transition zone (V1/V2), medial secondary visual cortex (V2M), lateral secondary visual cortex (V2L), superficial layers of SC (sSC), deep layers of SC (dSC), dorsal LGN (dLGN), ventral LGN (vLGN), primary sensorimotor cortex (S1) and auditory cortex (AC). A 4-voxel region centered at each functional area as defined in the rat brain atlas (Paxinos and Watson, 2007b) was chosen as the seed. For each functional brain area, two seeds located symmetrically in the left and right hemispheres were used respectively. Cross correlation coefficient (ccc) was calculated between average time course of the seed and every other voxel time course.

For comparisons between RScfMRI and MEMRI in the same animals in Group 4b, all MEMRI images were co-registered using T2-weighted images as a reference. A 4 × 4 seed voxel was placed near the injection site and its signal intensity was used to normalize the T1-weighted MDEFT images. An ROI was defined to cover the contralateral left visual cortex as in Fig. 7 based on rat brain atlas (Paxinos and Watson, 2007a). Signal intensities of the voxels within the ROI were extracted for quantitation in the visual cortex. All RScfMRI data were compensated for slice timing, detrended, realigned as well as temporally low-pass filtered to obtain low frequency fluctuations as in Group 4a. Subsequently, inter-animal co-registration was performed using their respective T2-weighted image as a reference. Correlation coefficient maps were obtained using seed based analysis with a 4 × 4 seed voxel on the V1/V2 border and the somatosensory cortex each. The correlation coefficients in the ROI were extracted for quantitation in the visual cortex, and were plotted against normalized MEMRI signal intensities in the same ROI in a voxel-by-voxel basis.

Results

In vivo MEMRI for visuotopic brain mapping

Intravitreal, fractionated MEMRI of retinal and transsynaptic connections

In normal adult brains in Group 1, fractionated, intravitreal Mn²⁺ injection resulted in significant Mn enhancements in contralateral SC (open arrows) and LGN (arrowheads) by 45–60% at 1–3 days after initial Mn²⁺ injection, and in contralateral V1 (closed arrows) by about 10% at 2–3 days after initial Mn²⁺ injection (Fig. 1A). Contralateral SC appeared to enhance slightly more than contralateral LGN at all times after initial Mn²⁺ injection.

Subcortical, single-dose MEMRI of thalamo-cortical connections

Direct, single-dose Mn²⁺ injection to LGN (arrowheads) in Group 2 resulted in Mn enhancement by 13–21% in ipsilateral V1 (arrows), and 8–11% in ipsilateral SC at 8–24 h after Mn²⁺ injection (Fig. 1B). Mn enhancement in the LGN remained significantly higher than ipsilateral V1 and SC throughout the experimental period.

Intracortical, single-dose MEMRI of callosal, cortico-subcortical and intracortical horizontal connections

Intracortical, single-dose Mn²⁺ injection to the visual cortex in Group 3a resulted in Mn enhancement by 17–25% in contralateral V1/V2 transition zone (closed arrows), 32–34% in corpus callosum (open arrows), 53–65% in ipsilateral dorsal LGN (dashed arrows) and 15–26% in ipsilateral SC (arrowheads) at Hours 8–24 using RARE T1 sequence (Fig. 1C). Notably, layer-specific enhancement could be observed across the contralateral V1/V2 transition zone (Figs. 1C and 2). Some intracortical horizontal connections were also observed as a bi-laminar stripe in the ipsilateral right hemisphere (Fig. 2). When comparing between different routes of Mn²⁺ injection, topographic Mn enhancement could be differentiated, with intravitreal Mn²⁺ injection and subcortical Mn²⁺ injection enhancing more medially at the visual cortex subdivisions V1M and V1B compared to intracortical Mn²⁺ injection, which enhanced predominantly near the V1/V2 border (Fig. 2). Intracortical Mn²⁺ injection also showed more localized Mn enhancement at dorsal LGN via cortico-subcortical Mn²⁺ transport than intravitreal Mn²⁺ injection via retino-thalamic Mn²⁺ transport (Figs. 1 and 3).

To investigate the interhemispheric connections more comprehensively across different MRI parameter settings, we employed MDEFT sequence at a longer acquisition time, thinner slices, and a higher Mn²⁺ dosage before, and at 8 h, 1 day and 2 days after Mn²⁺ injection to the right visual cortex in Group 3b (Figs. 3 to 5). Before MnCl₂ injection, the corpus callosum consistently showed lower signal intensity than the surrounding white matter. At 8 h after injection, the corpus callosum was significantly enhanced and was seen brighter than the surrounding white matter. At 1 day and later after injection, the corpus callosum gradually became less distinguished from the surrounding white matter (Figs. 3A and B, arrowheads). In the left hemisphere contralateral to the injection site, significant Mn enhancement was observed at the V1/V2 transition zone at all three time points after injection in all rats (Fig. 3A, right panel, short arrows). Such enhancement exhibited first as a narrow stripe at Hour 8. It then expanded medially-laterally with increased signal intensity and exhibited a prominent bi-laminar pattern at Hour 24 (Fig. 3A, right panel, long arrows). At Hour 48, it further expanded medially-laterally with decreased signal intensity. The three-dimensionally reconstructed MDEFT images clearly depicted the Mn²⁺ transport pathway via corpus callosum (Figs. 4B and E, white arrowheads). The Mn²⁺ transport pathway originated from the injected right hemisphere as a thick band, first going rostrally along the visual callosal projection into the ipsilateral hemisphere, then caudally after crossing the midline (Fig. 4B, inset) and finally reaching V1/V2 border (Fig. 4B, red arrowhead). Such enhancement pattern maintained at 24 h after injection (Figs. 4D to F). Temporally, the enhancement in the left V1/V2 transition zone preferably spread more medially-laterally (Figs. 4B & E, red arrowhead) than anterior-posteriorly (Figs. 4C & F) while the ipsilateral enhancement in the right hemisphere exhibited a relatively isotropic expansion, but with slightly faster layer-specific Mn²⁺ transport along intracortical horizontal connections.

The stripe-like bi-laminar Mn²⁺ enhancement pattern in the contralateral left V1/V2 transition zone was analyzed semi-quantitatively in five animals at 8 h and 24 h after injection in normal adult rats (Figs. 3B and 5) by plotting the pixel-by-pixel signal intensity along cortical depth direction (Fig. 5A) medially-laterally along the cortical surface (Fig. 5B). The cortex was divided into six layers based on published MRI and histological results (Bissig and Berkowitz, 2009; Failor et al., 2010). The enhancement peaked in layers II/III and V at both Hours 8 and 24, with layer IV being more distinguishable from surrounding white matter.

layers at Hour 24. Medial-laterally, Mn enhancement was confined within 1 mm from the V1/V2 border at Hour 8, peaked at V1/V2 border, and gradually decreased from the V1/V2 border in similar spatial profiles bilaterally. At Hour 24 such enhancement increased further and expanded beyond 1 mm from the V1/V2 border medial-laterally.

Intra- and inter-hemispheric Mn2+ transport between normal and monocularly enucleated rats

Comparing the cortico-cortical and cortico-subcortical Mn2+ transport between normal (Group 3b) and monocularly enucleated rats (Group 3c), as shown in Fig. 5C, no statistical difference was observed in corpus callosum and right LGN enhancement between two groups after intracortical Mn2+ injection to right visual cortex, while the left V1/V2 transition zone was significantly less enhanced in the monocularly enucleated rats than normal rats by about 18.5%. Figs. 5Aa and 5b showed a global decrease in Mn2+ enhancement at the contralateral left V1/V2 transition zone both across cortical depth and along medial-lateral directions in the monocularly enucleated rats compared to normal rats.

Resting state functional connectivity MRI of visual brain network

In the cross-correlation coefficient (ccc) map of spontaneous low frequency fluctuations between different brain regions among
Fig. 3. Spatiotemporal evolution of Mn transport upon intracortical Mn²⁺ injection to visual cortex. (A) Typical modified driven equilibrium Fourier transform (MDEFT) images acquired at 24 h before (Pre), and at 8 h, 1 day and 2 days after intracortical Mn²⁺ injection to the right visual cortex. Corpus callosum (left column, arrowheads) showed lower signal intensity than surrounding white matter before Mn²⁺ injection, and robust Mn enhancement at 8 h and later after injection. The contralateral left visual cortex appeared to enhance as a narrow stripe (right column, enclosed by short arrows) with a bi-laminar pattern (right column, long arrows) at 8 h after Mn²⁺ injection. Such enhancement pattern widened medial-laterally at Day 1 and faded out slightly at Day 2. Bi-laminar Mn enhancement was also observed in the intracortical horizontal connections in the right hemisphere ipsilateral to injection site (dashed arrows). Hypointensity was observed at the injection core (right column, white colored “*”) which was likely caused by severe local magnetic field distortion from the highly concentrated Mn²⁺. (B) Eight consecutive color-coded MDEFT images from Bregma = −4.0 mm to −8.0 mm, showing prominent transcallosal Mn enhancement in the left hemisphere (closed arrows) and corpus callosum (arrowheads) 8 h (left column) and 1 day (right column) after intracortical Mn²⁺ injection into the right visual cortex (open arrow).

Fig. 4. MDEFT images overlaid on the standard rat brain atlas at Bregma = −6.0 mm (A, D), and reconstructed 3D MDEFT color images showing the coronal view of the transcallosal Mn²⁺ transport pathway via the splenium of corpus callosum (B, E; white arrowheads; looking from posterior to anterior directions) and the spread of Mn²⁺ enhancement from 8 h (top row) to 1 day (bottom row) after intracortical Mn²⁺ injection in both coronal (B, E; looking from the left to right directions). Green lines in panels A and D represent the V1/V2 border. Red arrowheads in panels B and E, and black lines in panels C and F show the medial–lateral spread of the contralateral hemisphere enhancement over time. The inset in panel B illustrates the Mn²⁺ transport pathway viewing from the cranial base in ventral to dorsal directions. V1M: monocular primary visual cortex; V1B: binocular primary visual cortex; V2L: lateral secondary visual cortex; LGN: lateral geniculate nucleus; SC: superior colliculus; CT: cortico-thalamic connections.

Please cite this article as: Chan, K.C., et al., In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroimage.2013.12.056
Group 4a animals in Fig. 6, intrahemispheric cortical connectivity [e.g. corticocortical (LvsL) network] appeared to be in general stronger than interhemispheric cortical connectivity [e.g. corticocortical (LvsR) network] (p < 0.05), whereas corticocortical connectivity appeared to be in general stronger than cortico-subcortical connectivity intra- and inter-hemispherically (p < 0.05). Comparing among interhemispheric cortico-cortical network, V1/V2 transition zone in one hemisphere possessed the highest mean correlation coefficient with the contralateral V1/V2 transition zone relative to other visual cortical nuclei measured in the contralateral hemisphere. At the same time, high functional connectivity was observed bilaterally between homotopic visual cortical regions where there was little or no direct structural connectivity as shown in MEMRI. Comparing among cortico-subcortical network, the functional connectivity between visual cortex and superficial layers of SC was apparently stronger than the less direct visual anatomical network in visual cortex vs deep layers of SC (p < 0.05). The primary somatosensory cortex (S1) appeared to have a stronger correlation with the visual cortex.

Fig. 5. Quantitative evaluation of the spatiotemporal distributions of transcallosal Mn transport (A–C) and corticothalamic Mn transport (C) at 8 (A and B) and 24 h (A–C) after intracortical Mn²⁺ injection to the right visual cortex. (A) Layer-specific Mn enhancement profile across cortical depth at the left V1/V2 transition zone (yellow in inset), and (B) Mn enhancement profile along medial–lateral direction in the left V1/V2 transition zone (yellow in inset) in normal rats (left) and visually deprived rats after monocular enucleation (ME) of the left eye (right). In both normal and ME rats, Mn enhancement appeared to peak at layers II, III and V near the left V1/V2 border in (A) at both 8 and 24 h after Mn²⁺ injection (p < 0.05 between layers). Medially–laterally, Mn enhancement was confined within 1 mm from the left V1/V2 border at 8 h and spread out thereafter (B) (p < 0.01 between 0 and 1 mm from the left V1/V2 border; p < 0.05 between Hour 8 and Hour 24). A global decrease in Mn²⁺ enhancement at the left V1/V2 transition zone was also observed both across cortical depth and along medial–lateral directions in the ME rats compared to normal rats. No statistical difference was observed in corpus callosum and LGN enhancement between normal and ME rats, while the left V1/V2 transition zone was significantly less enhanced in the latter group by about 18.5% on average (C) (**p < 0.01). Data are shown as mean ± standard error of mean.

Please cite this article as: Chan, K.C., et al., In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroimage.2013.12.056
brain network compared to the primary auditory cortex (Aud1) in the same hemisphere (p < 0.05). In Fig. 7, voxel-by-voxel comparisons between RSfMRI and MEMRI in the left visual cortex of rats from Group 4b, indicated the strong positive correlation between functional connectivity using the right V1/V2 as a seed voxel and the normalized signal intensities in MEMRI upon Mn injection into the right visual cortex. Strengths of intra- and inter-hemispheric resting-state functional connectivity appeared to couple with structural connectivity revealed by MEMRI in the visual brain network. These structural and functional visuotopic brain mapping techniques may help determine the developmental, pathophysiological and neuroplastic mechanisms in the developing and impaired living visual brains globally and longitudinally in a single setting in future studies.

Discussion

The results of this study showed that MEMRI and RSfMRI were sensitive for assessing the neuroarchitecture, neurophysiology and structural–functional relationships of the visual brains in vivo. MEMRI allowed layer-specific and topographic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections in the visual system. Loss of visual input upon left eye enucleation appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport. Strengths of intra- and inter-hemispheric resting-state functional connectivity appeared to couple with structural connectivity revealed by MEMRI in the visual brain network. These structural and functional visuotopic brain mapping techniques may help determine the developmental, pathophysiological and neuroplastic mechanisms in the developing and impaired living visual brains globally and longitudinally in a single setting in future studies.

In *vivo* MEMRI of retinal, subcortico-cortical and transsynaptic connections

Upon intravitreal Mn2+ injection, Mn2+ ions were taken up by the retinal ganglion cells, underwent anterograde axonal transport along the optic nerve and tract, and accumulated at the axonal terminals in the contralateral SC and LGN of the adult rat brain (Pautler et al., 1998; Watanabe et al., 2004). In the current study, contralateral SC appeared to enhance slightly more than contralateral LGN at all times after initial Mn2+ injection. This apparently agreed with the fact that axons from retina project to the contralateral SC more than the LGN in the visual brain network.

Fig. 6. Resting-state functional connectivity MRI of visual brain network. As seen in the cross-correlation coefficient (ccc) map of spontaneous low frequency fluctuations between different brain regions along horizontal and vertical axes, intrahemispheric cortical connectivity [e.g. corticocortical (LvsL) network above bold horizontal line] (p < 0.05) appeared to be in general stronger than interhemispheric cortical connectivity [e.g. corticocortical (LvsR) network above bold horizontal line], whereas corticocortical connectivity appeared to be in general stronger than cortico-subcortical connectivity intra- and inter-hemispherically (p < 0.05). Comparing among interhemispheric cortico-cortical network, V1/V2 transition zone in one hemisphere possessed the highest mean correlation coefficient with contralateral V1/V2 transition zone relative to other cortical nuclei measured in the contralateral hemisphere. This appeared to be consistent with MEMRI observations in previous figures, showing more direct transcallosal anatomical connections to contralateral V1/V2 transition zone upon intracortical Mn2+ injection to ipsilateral V1/V2 transition zone. Comparing among cortico-subcortical network, those with more direct anatomical visual connections traced by MEMRI [e.g. visual cortex vs superficial layers of superior colliculus (sSC)] also showed stronger functional connectivity than the less direct anatomical network [e.g. visual cortex vs deep layers of superior colliculus (dSC)] (p < 0.05). Primary somatosensory cortex (S1) appeared to have a stronger correlation with the visual brain network compared to primary auditory cortex (Aud1) in the same hemisphere (p < 0.05); V1M: monocular primary visual cortex; V1B: binocular primary visual cortex; V1/V2: V1/V2 transition zone; V2M: medial secondary visual cortex; V2L: lateral secondary visual cortex.)

intracortical horizontal connections faster than the general diffusion of Mn2+ ions were administered into the right V1/V2 border, they were transcallosally transported to the left hemisphere, and were collectively accumulated in the V1/V2 transition zone. The most prominent enhancement was observed in layers II/III and V, which was in agreement with histological tracing studies (Alonso and Swadlow, 2005; Coogan and Burghaller, 1993; Dreher et al., 1990; Inoue et al., 2011; Martinez-Garcia et al., 1994). Temporally, Mn enhancement was initially confined within approximately 1 mm from the left V1/V2 border at Hour 8. It then enhanced further and spread more medially-laterally from the V1/V2 border in similar spatial profiles as in Hour 8. The laminar-specific enhancement in the right ipsilateral cortical layer and medial to injection site in Figs. 2 and 3 also suggested that bilateral Mn transport occurred along intracortical horizontal connections faster than the general diffusion of Mn from the injection site. The above results indicated that MEMRI can serve as an effective tool for tracing anatomical intra- and interhemispheric connections similar to histological tracing techniques but in the whole living visual brains without depth limitations. Future studies may also use MEMRI at a lower Mn2+ injection dose and volume to trace localized axonal projections in a more precise manner.

In vivo MEMRI of cortico-subcortical connections

The dorsal LGN (dLGN) serves as the primary conduit of retinal information to the visual cortex in the mammal brains. In addition to retinal input, dLGN receives a large feedback corticothalamic projection locally from layer VI of the visual cortex, which provides a powerful substrate for modulating retinogeniculate signal transmission (Jurgens et al., 2012; Sherman and Guillery, 2002). The Mn accumulation appeared to slow down from Hours 8 to 24 in the ipsilateral LGN and the corpus callosum. On the other hand, the contralateral V1/V2 and ipsilateral SC, whose connections to the injection site at ipsilateral V1/V2 were more distant than ipsilateral LGN and SC, continued to enhance steadily at Hour 24.

Mn2+ has been estimated to be taken up by the retinal ganglion cells and subsequently transported along retinocollicular projections at a rate of about 2.8 mm/h in rats (Watanabe et al., 2004). In this study, the interhemispheric distance between the injection site in the right hemisphere and the left V1/V2 transition zone was around 11 mm (Paxinos and Watson, 2005). Therefore, one might expect that Mn2+ might reach the contralateral V1/V2 transition zone starting at about Hour 4, and even earlier for subcortical visual nuclei assuming similar transport rate as in the retinocollicular pathway. Mn enhancements at both Hours 8 and 24 might therefore reflect the integrity of neuronal Mn2+ uptake in right Mn2+ injected hemisphere, the transcallosal or cortico-subcortical Mn2+ transport and the activity-driven Mn2+ accumulation in the visual target nuclei over time. Axonal transport of Mn2+ can be anterograde (Bilgen, 2006; Pautler et al., 1998), retrograde (Matsuda et al., 2010) or mixed (Pautler et al., 2003). The callosal cells in the two hemispheres could be interlinked by independent axonal projections to the contralateral hemisphere (Innocenti, 1986; Innocenti et al., 1995; Karayannis et al., 2007). The SC and LGN also

Fig. 7. (A) Mean manganese-enhanced T1-weighted MR image (MEMRI) of the left hemisphere at 1 day after Mn injection to the right visual cortex, and (B) the corresponding cross-correlation coefficient (ccc) color map of resting-state functional connectivity MRI (RSfcMRI) overlaid on the T2-weighted image upon seed voxel placement in the right V1/V2 transition zone. (C) Scatter plots of resting-state functional connectivity against normalized manganese-enhanced T1-weighted signal intensities in the left visual cortex covered by the same yellow regions-of-interest in (A) and (B). Voxel-by-voxel comparisons between RSfcMRI and MEMRI in the left visual cortex indicated the strong positive correlation between structural and functional connectivity using the right V1/V2 but not the right S1 as the seed voxel.
send and receive axonal projections to and from the visual cortex. Although it is not clear in this study whether both active anterograde and retrograde Mn$^{2+}$ transport was involved in the Mn enhancement, recent studies estimated that the bulk rate of active anterograde transport along the rat visual pathway was approximately 2–3 times faster than active retrograde transport (Abbott et al., 2013). It has also been shown ex vivo that injection of retrograde tracer horseradish peroxidase into V1/V2 transition zone would result in more widespread labeling of neurons in primary and secondary cortices in the contralateral hemisphere (Miller and Vogt, 1984b), rather than the current MEMRI observation of localized V1/V2 enhancement in the contralateral hemisphere. It is therefore speculated that the current MEMRI observations of enhanced cortico-cortical and cortico-subcortical connections within the experimental period reflected axonal projections predominantly undergoing active anterograde transport. Future studies may employ high temporal resolution MEMRI and specific anterograde or retrograde axonal transport inhibitors to determine the contribution from active anterograde and retrograde transport by callosal cells, relay cells, excitatory pyramids or inhibitory interneurons in the visual brain.

Intra- and inter-hemispheric Mn$^{2+}$ transfer upon total loss of monocular visual input

Upon neonatal binocular enucleation, our recent study using unilateral intracortical Mn$^{2+}$ injection to the visual cortex of adult rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, suggestive of an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness (Chang et al., 2012). In the current study, upon left eye enucleation to adult rats, no apparent increase in the projection volume was observed in MEMRI at the V1/V2 transition zone (Fig. 5). This appeared to be consistent with previous histological studies showing age-dependent neuroplastic enlargement of the visual callosal projection to the primary visual cortex contralateral to the remaining eye in monocularly enucleated rats (Pieterasanta et al., 2012; Wree et al., 1986), whereby enucleation performed later than postnatal day 10 could not alter the overall spatial configuration of callosal neurons along the V1/V2 border (Rothblat and Hayes, 1982) and thus the similar Mn-projected volume at V1/V2 in normal and ME rats in this study. At the same time, left eye enucleation to adult rats for 1 week in this study could result in the contralateral right visual cortex largely deprived of visual input with little to no functional recovery (Van Brussel et al., 2011). Structural plasticity might also occur in the visual cortex upon visual input loss (Pan et al., 2007). In a previous study upon complete retinal lesion in mice, a lasting reduction in the number of inhibitory cell spines and boutons which form glutamatergic synapses was observed in the visual cortex, presumably causing a loss of glutamatergic input to these cells in conjunction with a decrease in the cells’ synaptic output (Keck et al., 2011). Mn-enhanced MRI intensity has been suggested to reflect glutamate and calcium activities in the brain (Lin and Koretsky, 1997). As shown in Fig. 5C, the interhemispheric Mn$^{2+}$ transfer dropped by 18.5% at the left V1/V2 transition zone upon the right visual cortex Mn$^{2+}$ injection compared to normal rats. However, no significant difference in Mn$^{2+}$ enhancement in the corpus callosum or LGN through direct anterograde or retrograde axonal transport was observed. These results echoed with the findings by Bearer et al. and supported that electrical activity may not be necessary for uptake and monosynaptic transport of Mn$^{2+}$, but was required for its multiple synaptic transmission (Bearer et al., 2007). In summary, this study for the first time demonstrated that MEMRI is capable of tracing layer-specific transcallosal connectivity of visual cortex and is potentially sensitive to activity modulation. Combined with newly available Mn$^{2+}$ administration methods, including infusion with engineered mini-pumps, MEMRI will enable both long-term and short-term in vivo studies with negligible toxicity, and may expedite the research into cortical development and plasticity.

RSfcMRI of cortico-cortical and cortico-subcortical connections

In this study, the spontaneous low frequency fluctuations between different brain regions were assessed between specific visual brain regions (e.g. V1M, V1B, V2M, V2L, V1/V2, sSC, dSC, dLGN, vLGN) and between visual nuclei and somatosensory and auditory cortical nuclei in more detail than previous rodent RSfcMRI studies (Hutchinson et al., 2010; Pawela et al., 2008). As seen in Fig. 6, intrahemispheric cortical functional connectivity was in general stronger than interhemispheric correlation functional connectivity, whereas corticocortical functional connectivity appeared to be stronger than cortico-subcortical functional connectivity both intra- and inter-hemispherically. Specifically, it is interesting to note that V1/V2 transition zone in one hemisphere was found to possess the highest mean correlation coefficient with the contralateral V1/V2 transition zone compared to other cortical nuclei measured in the contralateral hemisphere. This appeared to be consistent with our MEMRI observations in Figs. 1–5, showing more Mn enhancement in the anatomical transcallosal connections to contralateral V1/V2 transition zone upon intracortical Mn$^{2+}$ injection to ipsilateral V1/V2 transition zone. Comparing within cortico-subcortical network, those with more direct anatomical visual connections traced by MEMRI (e.g. visual cortex vs superficial layers of SC) also showed stronger functional connectivity than the less direct anatomical network (e.g. visual cortex vs deep layers of SC). These observations appeared to support the recent hypotheses on a strong relationship between structural and functional connectivity across intra- and inter-hemispheric brain regions (Zhou et al., 2012, 2013). Mn transport can be activity-driven and occurs via both axonal connections and neuron synapse terminals. The results in Fig. 7 showed a strong positive correlation between normalized signal intensities in MEMRI and correlation coefficients in RSfcMRI in the visual cortex upon Mn injection and seed voxel placement to contralateral visual cortex respectively. These results suggested a tight coupling between structural and functional connections in the bilateral visual cortex. Primary somatosensory cortex (S1) appeared to have a stronger correlation with the visual network compared to primary auditory cortex (Aud1) in RSfcMRI in Fig. 6. Whether such functional connectivity difference was related to structural interconnections among visual, somatosensory and auditory cortices (Miller and Vogt, 1984a; Van Brussel et al., 2011) remained to be elucidated. Recent evidence from human brain RSfcMRI studies suggested that blind subjects exhibited reduced functional connectivity in the bilateral visual cortex, and between visual cortex and sensorimotor and multisensory cortices compared to sighted subjects (Liu et al., 2007; Yu et al., 2008). In addition, subjects with intensive cross-modal Braille training or early introduction of Braille exhibited improved intrinsic functional connectivity between these brain areas (Liu et al., 2007). The current structural MEMRI and functional connectivity MRI techniques may help uncover the mechanisms of developmental and plastic changes in intrinsic visual and other brain network observed in humans in a systematic manner using well-defined animal models such as the monocular enucleation rodent model in the future (Van Brussel et al., 2011).

To conclude, the results of this study demonstrated MEMRI and RSfcMRI as efficient tools for assessing the structural, physiological and functional neuroarchitecture of the visual brains in vivo, and may possess great potentials for understanding the basic neural forms and functions of the circuitry in the visual system globally and longitudinally. MEMRI allowed visuotopic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Layer-specific and topographic visual cortical enhancements could also be differentiated among different routes of Mn$^{2+}$ administration. Loss of visual input upon left eye enucleation appeared to reduce interhemispheric polysynaptic Mn$^{2+}$ transfer but not intra- and interhemispheric monosynaptic Mn$^{2+}$ transport after Mn$^{2+}$ injection into right visual cortex. Strengths of resting state functional connectivity appeared to couple with structural connectivity in MEMRI in visual brain network. These structural and functional connectivity MRI techniques...
Dreher, B., Setfons, A.J., N.S., Nisbett, G. 1985. The morphology, number, distribution and
central projections of Class I retinal ganglion cells in albino and hooded rats.
Brain Behav. Evol. 25, 10–48.

Failor, S., Nguyen, V., Darcy, D.P., Cang, J., Wendland, M.F., Stryker, M.P., McQuilten, P.S.,
Neuroimage 50, 81–92.

Grieco, M.D., Supapek, K., Meon, V., Dougherty, R.F., 2009. Resting-state functional con-
nnectivity reflects structural connectivity in the default mode network. Cereb. Cortex
19, 72–78.

Harvey, A.R., Worthington, D.R., 1990. The projection from different visual cortical areas

Hernandez-Martinez, A.M., Bassett, D.S., Brown, K.S., Aminoff, E.M., Clewett, D., Freeman, S.,
Structural foundations of resting-state and task-based functional connectivity in the

Honey, C., Spoors, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.,
2009. Predicting human resting-state functional connectivity from structural connect-

work analysis in the anesthetized rat brain revealed by independent component analysis

In: Jones, E.G., Peters, A. (Eds), Sensory-motor Areas and Aspects of Cortical Con-

Ince, T., Tajadod, R.F., R.C., 2011. Manganese-enhanced fMRI (MEMRI): neurophysi-

in the nervous system of Alpaca clylalis using MEMRI at ultra-high field. Neuroimage
73, 1064–2711.

Jurgens, C.W., Bell, K.A., McQuiston, A.R., Guido, W., 2012. Optogenetic stimulation of the
corticospinal pathway affects relay cells and GABAergic neurons differently in the

Kaartonen, T., Huerta-Ocampo, L., Capogna, M., 2007. GABAergic and pyramidal neurons
of deep cortical layers directly receive and differently integrate calcium input. Cereb.
Cortex 17, 1213–1226.

Keck, T., Scheuss, V., Jacob, R.J., Wierenga, C.J., Eysel, U.T., Bonhoeffer, T., Hubener, M.,
2011. Evolution of sensory input causes rapid structural changes of inhibitory neurons in

Kondo, Y., Takada, M., Honda, Y., Mizuno, N., 1993. Bilateral projections of single retinal
ganglion cells to the lateral geniculate nucleus and superior colliculus in the albino rat.
Brain Res. 608, 204–215.

responses in the superior colliculus and lateral geniculate nucleus of the rat viewing

superior colliculus and lateral geniculate nucleus following short duration visual

ergization and chronic injury using a self-assembled nanomaterial and MEMRI for real-

Lin, Y.J., Korty, A.P., 1997. Manganese ion enhances T1-weighted MRI during brain

imaging corticospinal tract connectivity in injured rat spinal cord using manganese-en-
hanced MRI. BMC Med. Imaging 6, 15.

Liu, M., Dang, M., Duggan, J., Salt, T.E., Cordeiro, M.F., 2011. Dendritic changes in visual path-
ways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 92, 244–250.

2010. Retinogral axonal tracing using manganese enhanced magnetic resonance im-

Millecamps, S., Julien, P.J.P., 2013. Manganese-enhanced transport deficits and neurodegenerative

Miller, M.W., Vogt, B.A., 1984a. Direct connections of rat visual cortex with sensory,

Miller, M.W., Vogt, B.A., 1984b. Heuristic and homeomorphic callosal connections in rat

Mizuno, H., Hirano, T., Tagawa, Y., 2007. Evidence for activity-dependent cortical wiring:
formation of interhemispheric connections in neonatal visual cortex requires projection

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.

Plasticity is a game for two. Neural Plast. 2012, 838672.

Press/Elsevier, Amsterdam; Boston.