CLUSTERED BASED TAKAGI-SUGENO NEURO-FUZZY MODELING OF A MULTIVARIABLE NONLINEAR DYNAMIC SYSTEM

E. A. Al-Gallaf

ABSTRACT

This research framework investigates the application of a clustered based Neuro-fuzzy system to nonlinear dynamic system modeling from a set of input-output training patterns. It is concentrated on the modeling via Takagi-Sugeno (T-S) modeling technique and the employment of fuzzy clustering to generate suitable initial membership functions. Hence, such created initial memberships are then employed to construct suitable T-S sub-models. Furthermore, the T-S fuzzy models have been validated and checked through the use of some standard model validation techniques (like the correlation functions). Compared to other well-known approximation techniques such as artificial neural networks, fuzzy systems provide a more transparent representation of the system under study, which is mainly due to the possible linguistic interpretation in the form of rules. Such intelligent modeling scheme is very useful once making complicated systems linguistically transparent in terms of fuzzy if-then rules. The developed T-S Fuzzy modeling system has been then applied to model a nonlinear antenna dynamic system with two coupled inputs and outputs. Validation results have resulted in a very close antenna sub-models of the original nonlinear antenna system. The suggested technique is very useful for development transparent linear control systems even for highly nonlinear dynamic systems.

KeyWords: Neuro-fuzzy systems, fuzzy clustering, Takagi-Sugeno modeling, nonlinear systems.

I. INTRODUCTION

1.1 T-S Modeling

Developing mathematical models of real systems is a central topic in many disciplines of engineering and science. Models can be used for simulations, analysis of the system’s behavior, better understanding of the underlying mechanisms in the system, design of new processes, or design of controllers. Takagi-Sugeno T-S modeling plays an essential role in deriving local linear models of the nonlinear dynamic system under concern. Through the use of the heuristic rules inherent in the fuzzy systems, T-S fuzzy models, then makes it possible to have a transparent like system which is governed by the fuzzy inference system and rules.

T-S fuzzy models have indeed received a focused attention in terms of their utilization in most advanced control paradigms. In a similar way fuzzy clustering has been utilized as well in classifying the data-driven fuzzy modeling, since it draws a methodology for assigning label like to similar data. Such assignment does gives quantitative directions for shaping the fuzzy membership functions. T-S fuzzy models can then be utilized to design advanced fuzzy controllers such as H^∞ robust controllers for nonlinear systems. Such fuzzy H^∞ robust controllers can then be selected...
based on the operating condition of the system under control. Once T-S fuzzy linear models are obtained, their state space models are computed, since most advanced control methodologies depend on the state space system model. Model validation and verification is also an important task in the modeling paradigm. This is due to the choice of the right model from a number of models that might present similar characteristics. Statistically validated models in addition to probabilistic validation are also used sometimes to make the suitable choice of a system model.

Fuzzy modeling concerns the methods of describing the characteristics of a system using fuzzy inference rules. Fuzzy modeling methods have a distinguishing feature in that they can express complex nonlinear systems linguistically. Takagi-Sugeno (T-S) modeling plays an essential role in deriving local linear models of the nonlinear dynamic system under concern [1,2]. Through the use of the heuristic rules inherent in the fuzzy systems, T-S fuzzy models, then makes it possible to have a transparent like system which is governed by the fuzzy inference system and rules. T-S fuzzy models have indeed received a focused attention in terms of their utilization in most advanced control paradigms.

In a similar way, fuzzy clustering has been utilized as well in classifying data-driven fuzzy modeling, since it draws a methodology for assigning label like to similar data. Such assignment does gives quantitative directions for shaping the fuzzy membership functions. Model validation and verification is also an important task in the modeling paradigm. This is due to the choice of the right model from a number of models that might present similar characteristics. Statistically validated models in addition to probabilistic validation are used sometimes to make the suitable choice of a system model. In general, fuzzy control systems can be classified as linguistic Takagi-Sugeno T-S type [2] and Mamdani type [3]. The linguistic type fuzzy control system is well recognized and received by the control society. The T-S type fuzzy system, which will be used in this article mainly focuses on the modeling aspect. It has been reported that a T-S fuzzy system can exactly model any nonlinear system [4]. On the other hand there is a main drawback of the linguistic model compared with the T-S model in that there is a difficulty in dealing with a multidimensional system since a large number of fuzzy rules have to be used.

Gorzalczyk et al. [5] has briefly presented and compared four neuro-fuzzy systems used for rule-based modeling of dynamic processes (chaotic Mackey-Glass time series). The following systems have been considered: NFMOD—the proposed system, the well-known Anfis and Nfident systems, and an alternative neuro-fuzzy system already reported in literature. The main criterion of comparison of all systems is their performance (modeling accuracy) versus interpretability (the transparency and the ability to explain generated decisions; it also includes an analysis and pruning of obtained fuzzy-rule bases). On the other hand, Zhang and Knoll [6] has proposed an approach for solving multivariate modeling problems with neuro-fuzzy systems. Instead of using selected input variables, statistical indices are extracted to feed a fuzzy controller. The original input space was transformed into an eigen-space. If a sequence of training data are sampled in a local context, a small number of eigenvectors which possess larger eigenvalues provide a good summary of all the original variables. Fuzzy controllers can be trained for mapping the input projection in the eigen-space to the outputs. Implementations with the prediction of time series was used to validate the concept.

The article of Ikonen et al. [7] concerned a process modeling using fuzzy neural networks. In Distributed Logic Processors (DLP) the rule base is parameterized. The DLP derivatives required by gradient-based training methods are given, and the recursive prediction error method is used to adjust the used model parameters. The power of the approach is illustrated with a modeling example where NOx emission data from a full-scale fluidized-bed combustion district heating plant are used. The method presented in there paper was general, and can be applied to other complex processes. Bologna [8], has presented a new neuro-fuzzy model denoted as Fuzzy Discretized Interpretable Multi-Layer Perceptron (FDIMLP). Fuzzy rules were extracted in polynomial time with respect to the size of the problem and the size of the network. He applied their model to three classification problems of the public domain. It turned out that FDIMLP networks compared favorably with respect to EFUNN and ANFIS neuro-fuzzy systems.

For NING et al. in [9], a fuzzy satisfactory clustering algorithm was presented in their paper. It started with two cluster centers and increases new center if necessary. A system data set was quickly divided into several satisfactory fuzzy clusters by the algorithm. A Takagi-Sugeno (T-S) type fuzzy model was then identified.

In [10] Chen and Linkens introduced a three-layered RBF network to implement a fuzzy model. Differing from existing clustering-based methods, in their approach the structure identification of the fuzzy model, including input selecting and partition validating, was implemented on the basis of a class of sub-clusters created by a self-organizing network instead of on raw data. The important input variables which independently and significantly influence the system output can be extracted by a fuzzy neural network. On the other hand, the optimal number of fuzzy rules can be determined separately via the fuzzy c-means clustering algorithm with a modified fuzzy entropy measure as the criterion of cluster validation.

Akkizidis and Roberts in [11] proposed an algorithmic methodology for identifying and modeling non-linear control strategies. The methodology presented was based on choices of different fuzzy clustering algorithms, projection of clusters and merging techniques. The best features of well-known clustering methods such as the Gustafson-Kessel and mountain method were combined. The latter was used to determine and define the number and the approximate positions of the cluster prototypes, whereas the former was used to define the shapes of the clusters according to the data distribution. The projection of the prototypes and variables of clusters was a recognized approach to extracting the information included in the data clusters.
into fuzzy sets. Merging these fuzzy sets, based on proposed guidelines, can minimize the number of rules and make the identifying control strategy more transparent. Some improvements to the resulting fuzzy system can be achieved by using optimization methods such as the gradient method. The proposed methodology was based on making the right choice of the right tools and can be described as a universal approximation in terms of identifying and modeling non-linear control strategies.

1.2 Article contribution

Within this article we shall present a novel research framework which has been conducted to accomplish an intelligent based modeling of a highly nonlinear antenna system via employment of clustering and T-S modeling technique. Consequently, models were validated. The system we are investigating under study is a typical of the type used for oceanary satellite communication system and has a high nonlinear coupling among its two outputs. Hence, it is required to have transparent sub-models. Fuzzy sets in the antecedent of the rules are obtained from the partition matrix by projection onto certain antecedent variables. The obtained point-wise fuzzy sets are then approximated by some suitable parametric functions. The transparency of the antenna model obtained using the above approach could be hindered by the redundancy present in the form of many overlapping (well-matched) membership functions. Certain similarity measures were used in order to assess the compatibility (pair-wise similarity) of fuzzy sets in the rule base, in order to detect sets that can be merged. Fuzzy sets estimated from antenna training data can also be similar to the universal set, thus adding no information to the model. Sets of such nature were removed from the antecedent of the rules, thus reducing the number of the fuzzy rules.

1.3 Article organization

The article has eight sections. Beginning with an overview of intelligent modeling terminology in section 2, Section 3 introduces neuro-fuzzy modeling, the structural and parametric tuning in typical neuro-fuzzy systems. The concept of modeling based on fuzzy clustering is presented in section 4 and the concept of extraction of a state space model from T-S sub-models is explained in section 5. Section 6 discusses validation of the resulted fuzzy models. In section 7 T-S modeling is applied to a nonlinear antenna as a case study showing its strength and characteristics, and finally section 8 presents few points for conclusions.

II. DYNAMIC SYSTEMS MODELING

2.1 NARX modeling of dynamic systems

A common drawback of most standard modeling approaches is that they cannot make effective use of extra information, such as the knowledge and experience of engineers and operators, which is often imprecise and qualitative in its nature. The fact that humans are often able to manage complex tasks under significant uncertainty has stimulated the search for alternative modeling and control paradigms. In the case of (intelligent) modeling and control methodologies, which employ techniques motivated by biological systems and human intelligence to develop models and controllers for dynamic systems, have been introduced. These techniques explore alternative representation schemes using, for instance, natural language, rules, semantic networks or qualitative models, and possess formal methods to incorporate extra relevant information.

Precise numerical computation with conventional mathematical models only makes sense when the parameters and input data are accurately known. As this is often not the case, a modeling framework is needed which can adequately process not only the given data, however, also the associated uncertainty. Stochastic approach is a traditional way of dealing with uncertainty, where it has been recognized that not all types of uncertainty can be dealt within the stochastic framework.

2.2 Intelligent modeling

A common drawback of most standard modeling approaches is that they cannot make effective use of extra information, such as the knowledge and experience of engineers and operators, which is often imprecise and qualitative in its nature. The fact that humans are often able to manage complex tasks under significant uncertainty has stimulated the search for alternative modeling and control paradigms. In the case of “intelligent” modeling and control methodologies, which employ techniques motivated by biological systems and human intelligence to develop models and controllers for dynamic systems, have been introduced. These techniques explore alternative representation schemes using, for instance, natural language, rules, semantic networks or qualitative models, and possess formal methods to incorporate extra relevant information. Fuzzy modeling and control are typical examples of techniques that make use of human knowledge and deductive processes.

Various alternative approaches have been proposed, Fuzzy Logic and Set Theory being one of them. Artificial neural networks and fuzzy models belong to the most popular model structures used. From the input-output view, fuzzy systems are flexible mathematical functions, which can approximate other functions or just data measurements with a desired accuracy. Compared to well-known approximation techniques such as Neural Networks, fuzzy systems provide a more transparent representation of the system under study, which is mainly due to the possible linguistic interpretation in the form of rules. The logical structure of the rules facilitates understanding and analysis of the model in a semi-qualitative manner, close to the way human reason about the real world.
Given the state of a system with a given input, the next state \(x(k+1) \) can be determined. In the sense of discrete-time setting, it can be written as in Eq. (1):

\[
x(k+1) = f(x(k), u(k))
\]

where \(x(k) \) and \(u(k) \) are the state and the input at time \(k \), respectively, and \(f \) is a static function. Fuzzy models of different types can be used to approximate the state-transition function. As the state of a system is often not measured, input-output modeling is usually applied. The most common is the NARX (Nonlinear Auto-Regressive with Exogenous input) model, as defined by Eq. (2):

\[
y(k+1) = f(y(k), y(k-1), ..., y(k-n_y+1), u(k), u(k-1), ..., u(k-n_u+1))
\]

where \(y(k) \), \(y(k-1) \), ..., \(y(k-n_y+1) \), and \(u(k) \), \(u(k-1) \), ..., \(u(k-n_u+1) \) denote the past model outputs and inputs respectively and \(n_y \) and \(n_u \) are integers related to the model order. For instance in Eq. (3), a linguistic fuzzy model of a dynamic system may consist of rules of the following form:

\[
R_i : \text{if } y(k) \text{ is } A_{1i} \text{ and } y(k-1) \text{ is } A_{2i} \text{ and } ..., \text{ then } y(k+1) \text{ is } C_i
\]

In Eq. (3), the input dynamic filter is a simple generator of the lagged inputs and outputs, and no output filter is used. Since the fuzzy models can approximate any smooth function to any degree of accuracy, models of the type in Eq. (3) can approximate any observable and controllable modes of a large class of discrete-time nonlinear systems.

2.3 Building fuzzy models

Two common sources of information for building fuzzy models are the prior knowledge and data (process measurements). Prior knowledge can be of a rather approximate nature (qualitative knowledge, heuristics), which usually originates from “experts”, i.e., system operators. Building fuzzy models from data involves methods based on fuzzy logic and approximate reasoning, in addition to ideas originating from the field of neural networks, data analysis and conventional systems identification. The design of fuzzy models requires two basic items: the structure and the parameters of the model.

Structure determines the flexibility of the model in approximation unknown mappings, whereas the parameters are then tuned (estimated) to fit the data at hand. In fuzzy models, structure selection involves the following choices:

- Input and output variables.
- Structure of the rules.
- Number and type of membership functions for each variable.

- Type of the inference mechanism, connective operators, defuzzification method.

These choices are restricted by the type of fuzzy model (Mamdani, T-S). Within these restrictions, however, some freedom remains, e.g., as to the choice of the conjunction operators. To facilitate data-driven optimization of fuzzy models (learning), differentiable operators (product, sum) are often preferred to the standard min and max operators. Once the structure is fixed, the performance of a fuzzy model can be fine-tuned by adjusting its parameters. Tunable parameters of linguistic models are the parameters of antecedent and consequent membership functions (determine their shape and position) and the rules (determine the mapping between the antecedent and consequent fuzzy regions).

2.4 Knowledge-based models

To design a (linguistic) fuzzy model based on available expert knowledge, the following steps are needed:

- Select input and output variables, structure of the rules and inference, and defuzzification methods.

- Decide on the number of linguistic terms for each variable and define the corresponding membership functions. Formulate the available knowledge in terms of fuzzy if-then rules, hence validating the designed model.

It is assumed that a set of \(N \) input-output data pairs \(\{(x_i, y_i) | i = 1, 2, ..., N\} \) is available. Recalling that \(x_i \in \mathbb{R}^{\nu_x} \) are input vectors and \(y_i \) are output scalars. Denote \(X \in \mathbb{R}^{N \times \nu_x} \) a matrix having the vectors \(x_i^T \) in its rows, and \(y \in \mathbb{R}^N \) a vector containing the outputs \(y_i \):

\[
x = [x_1 \cdots \cdots \cdots x_N]^T
\]

\[
y = [y_1 \cdots \cdots \cdots y_N]^T
\]

III. NEURO-FUZZY MODEL SYSTEM

In order to optimize the parameters, which are related to the output in a nonlinear manner, training algorithms known from the area of neural networks can be employed. At the computational level, a fuzzy model can be seen as a layered structure (network), similar to artificial neural networks. Hence, this approach is usually referred to as neuro-fuzzy modeling. Figure 1 shows a typically five layers of a neuro-fuzzy system that can be employed to accomplish a rule network. Typically, such rules are:

\[
\text{if } x_1 \text{ is } A_{1i} \text{ and } x_2 \text{ is } A_{2i} \text{ then } y = b_i
\]

\[
\text{if } x_1 \text{ is } A_{3i} \text{ and } x_2 \text{ is } A_{32} \text{ then } y = b_2
\]

Nodes in the first layer compute the membership degree of the inputs in the antecedent fuzzy sets. The product nodes
Π in the second layer represent the antecedent conjunction operator. The normalization node N and the summation node \(\Sigma \) realizes the fuzzy-mean operator. Using smooth antecedent membership functions, such as a Gaussian function, as given below in Eq. (8):

\[
\mu_{ij}(x_j, c_{ij}, \tau_{ij}) = \exp \left(-\frac{(x_j - c_{ij})^2}{2\tau_{ij}} \right),
\]

in which \(c_{ij} \) and \(\tau_{ij} \) parameters are adjusted by gradient-descent learning algorithms, such as back-propagation. This allows for a fine-tuning of the fuzzy model to the available data in order to optimize its prediction accuracy.

3.1 Structural and parametric learning

In a neuro-fuzzy system, two types of tuning are required, namely structural and parametric tuning. Structural tuning aims to find a suitable number of rules and a proper partition of the input space. Once available a satisfactory structure, the parametric tuning searches for the optimal membership functions together with the optimal parameters of the consequent models. There may be a lot of structure/parameter combinations which make the fuzzy model behave in a satisfactory way. The problem can be formulated as that of finding the structure complexity which will give the best performance in generalization. In our approach we choose the number of rules as the measure of complexity to be properly tuned on the basis of available data. We adopt an incremental approach where different architectures having different complexity (i.e. number of rules) are first assessed in cross-validation and then compared in order to select the best one.

The initialization of the architecture is provided by a hyper-ellipsoid fuzzy clustering procedure inspired by Babuska and Verbruggen [12]. This procedure clustering the data in the input-output domain obtaining a set of hyper-ellipsoids which are a preliminary rough representation of the input/output mapping. Methods for initializing the parameters of a fuzzy inference system form the outcome of the fuzzy clustering procedure. Here we utilize the axes of the ellipsoids (eigenvectors of the scatter matrix) to initialize parameters of the consequent functions, we project the cluster on the input domain to initialize the centers of the antecedents and we adopt the scatter matrix to compute the width of the membership functions. Once the initialization is done, the learning procedure begins. Two optimization loops are nested: the parametric and the structural one. The parametric loop (the inner one) searches for the best set of parameters by minimizing a sum-of-squares cost function which depends exclusively on the training set. The structural identification loop (the outer one) searches for the best structure, in terms of optimal number of rules, by increasing gradually the number of local models.
IV. FUZZY CLUSTERING TECHNIQUE

4.1 Fuzzy clustering

Identification methods based on fuzzy clustering originate from data analysis and pattern recognition, where the concept of graded membership is employed to represent the degree to which a given object, represented as a vector of features, is similar to some prototypical object. Based on that similarity, feature vectors can be clustered such that vectors within a cluster are as similar as possible, and vectors from different clusters are as dissimilar as possible. This thought of fuzzy clustering is depicted in Fig. 2.

Data is clustered into two groups with prototypes v_1 and v_2, using the Euclidean distance measure. The partitioning of the data is expressed in the fuzzy partition matrix whose elements μ_{ij} are degrees of membership of each data points (x_i, y_i) in a fuzzy cluster with prototypes v_j.

Fuzzy if-then rules can be extracted by projecting the clusters onto the axes. Figure 2 shows a data set with two apparent clusters and two associated fuzzy rules. The concept of similarity of data to a given prototype leaves enough space for the choice of an appropriate distance measure and of the character of the prototype itself. For example, prototypes can be defined as linear subspaces, or the clusters can be ellipsoids with adaptively determined shape [11]. From these clusters, the antecedent membership functions and the consequent parameters of the T-S model can be extracted as follows [12]:

$$
\begin{align*}
\text{if } x \text{ is } A_1 \text{ then } y &= a_1 x + b_1 \\
\text{if } x \text{ is } A_2 \text{ then } y &= a_2 x + b_2
\end{align*}
$$

Each obtained cluster is represented by one rule in the T-S model. Membership functions for fuzzy sets A_1 and A_2 are generated by point-wise projection of the partition matrix onto the antecedent variables. Such point-wise defined fuzzy sets are then approximated by a suitable parametric function. The consequent parameters for each rule are obtained as least squares estimates.

4.2 Fuzzy clustering algorithm

Consider a finite set of elements $X = \{x_1, x_2, \ldots, x_n\}$ as being elements of the F_{inp} dimensional Euclidean space $\mathbb{R}^{F_{\text{inp}}}$, that is, $x_i \in \mathbb{R}^{F_{\text{inp}}}$, $j = 1, 2, \ldots, n$. The issue is to perform a partition of such collection of elements into C fuzzy sets with respect to a given criterion. Hereby C is a given number of clusters. The criterion is usually to optimize an objective function that acts as a performance index of clustering. The end result of fuzzy clustering can be expressed by a partition matrix U such that:

$$
U = [u_{ij}]_{i=1, \ldots, C, j=1, \ldots, n}
$$

In Eq. (10), u_{ij} is a numerical value in $[0,1]$ and expresses the degree to which an element x_i belongs to the i^{th} cluster. However, there are two additional constraints on value of u_{ij}. First, a total membership of the element $x_i \in X$ in all classes is equal to unity, that is:

$$
\sum_{i=1}^{C} u_{ij} = 1 \text{ for all } j = 1, 2, \ldots, n
$$

Second, every constructed cluster is a nonempty and different from the entire set; that is,

![Fig. 2. Hyper ellipsoidal fuzzy clusters.](image-url)
where \(w(x_i)\) is a prior weight for each \(x_i\) and \(d(x_j, v_k)\) is the degree of dissimilarity between the data \(x_i\) and the superset element \(v_k\), which can be considered the central vector of the \(k^{th}\) cluster. Degree of dissimilarity is defined as a measure that satisfies two assumptions given by:

\[
d(x_j, v_k) \geq 0, \quad d(x_j, v_k) = d(v_k, x_j)
\]

Based on the above background, fuzzy clustering can be precisely formulated as an optimization problem:

\[
\text{Minimize} \quad J(u_{ij}, v_k) = \sum_{i=1}^{c} \sum_{j=1}^{n} \sum_{k=1}^{c} g[w(x_i), u_{ij}] d(x_j, v_k), \quad i, k = 1, 2, ..., c; j = 1, 2, ..., n
\]

Subject to

\[
\sum_{j=1}^{c} u_{ij} = 1 \quad \text{for all} \quad j = 1, 2, ..., n \quad \text{and} \quad 0 < \sum_{j=1}^{n} u_{ij} < n \quad \text{for all} \quad i = 1, 2, ..., C
\]

One of the widely employed clustering methods based on Eq. (16) is the Fuzzy C-Means (FCM) algorithm. The objective function of the FCM algorithm is expressed in the form of:

\[
J(u_{ij}, v_k) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m \| x_i - v_j \|^2, \quad m > 1
\]

where \(m\) is called exponential weight that influences the degree of fuzziness of the membership (partition) matrix. To solve this minimization problem, the objective function \(J(u_{ij}, v_k)\) is differentiated in Eq. (17) with respect to \(v_k\) (for fixed \(u_{ij}\), \(i = 1, \ldots, c\), \(j = 1, \ldots, n\)) and to \(u_{ij}\) (for fixed \(v_k\), \(i = 1, \ldots, C\) and apply the conditions of Eq. (11), obtaining:

\[
v_k = \frac{1}{\sum_{i=1}^{c} u_{ij}^m} \sum_{j=1}^{n} u_{ij}^m x_j, \quad i = 1, 2, \ldots, c
\]

\[
u_{ij} = \left(\frac{1}{\| x_i - v_j \|^2} \right)^{1/(m-1)} \cdot \sum_{k=1}^{c} \left(\frac{1}{\| x_i - v_k \|^2} \right)^{1/(m-1)}, \quad i = 1, 2, \ldots, C; \quad j = 1, 2, \ldots, n
\]

The system described by the Eqs. (18) and (19) cannot be solved analytically. However, the FCM algorithm provides an iterative approach to approximating the minimum of the objective function starting from a given position.

V. LINEAR STATE SPACE MODELS EXTRATION

5.1 T-S fuzzy space model

At each sample time \(k\), given an operating point condition (for example \(u(k-1)\) and \(y(k-1)\)), a local linear fuzzy state-space model can be constructed via calculating the degree of fulfillment \(\mu_i(x(k))\) of the antecedents, using product as the fuzzy logic AND operator. The inference of the entire structure (hierarchy) due to rule \(i\) results on a sub-model (1) which can be expressed as:

\[
y_i(k+1) = \frac{\sum_{r=1}^{r'} \mu_i(x_i(k)) \cdot y_r(k+1)}{\sum_{r=1}^{r'} \mu_i(x_i(k))}
\]

\[
y_i(k+1) = \left(\zeta_i \cdot y(k) + \eta_i \cdot u(k) + \theta_i \right)
\]

Defining \(\zeta_i, \eta_i\) and \(\theta_i\) as follows:

\[
\zeta_i = \frac{\sum_{r=1}^{r'} \mu_i(x_i(k)) \cdot \zeta_i}{\sum_{r=1}^{r'} \mu_i(x_i(k))}
\]

\[
\eta_i = \frac{\sum_{r=1}^{r'} \mu_i(x_i(k)) \cdot \eta_i}{\sum_{r=1}^{r'} \mu_i(x_i(k))}
\]

\[
\theta_i = \frac{\sum_{r=1}^{r'} \mu_i(x_i(k)) \cdot \theta_i}{\sum_{r=1}^{r'} \mu_i(x_i(k))}
\]

Defining \(x(k), u(k)\) and \(y(k)\) for the state-space description as:

\[
x(k) = \begin{bmatrix} x_1(k) & \ldots & x_i(k) & \ldots & x_n(k) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_n(k) & \ldots & x_{n} (k-n_d) & \ldots & x_{n} (k-n_d-n_a) \end{bmatrix}^T
\]

\[
u(k) = [u_1(k) \quad u_2(k) \ldots u_n(k)]^T
\]

\[
y(k) = [x_1(k) \quad x_2(k) \ldots x_n(k)]^T
\]

In order to employ Quadratic Programming for systems which depend on current as well as on the previous inputs, it is necessary to construct a state-space representation, such that the state vector \(x(k)\) to accommodate not only the state variables, appearing in \(y(k)\), but also the previous inputs and the offset as last element. This results in a system with only current inputs, but leads to a more complex \(A\)-matrix.

The latter contains also \(n\), corresponding to the previous inputs. If the maximal delay in the input \(i, i = 1, \ldots, n\) is \(d_{i, \text{max}}\), then the number of the additional columns is \(\sum_{i=1}^{n} \max (u_{i, \text{d max}} - 1, 0)\). In the last column of \(A\) are stored the offsets \(\theta\). The columns with \(n\) corresponds to the previous inputs, stored in the state vector; these columns are...
not included in B. The ones in A correspond to the delayed values of a certain variable. The local linear system matrices are derived as follows:

$$A = \alpha \times \alpha \text{ square matrix, where}$$

$$\alpha = \alpha_1 + \sum_{i=1}^{n_0} \max (n_j - 1, 0) + 1,$$

$$\alpha_k = \sum_{j=1}^{n_0} (n_{ij} - 1), \quad B \text{ is an } \alpha \times n_1 \text{ and } C \text{ is a } n_0 \times \alpha$$

matrix:

$$A = \begin{bmatrix}
\xi_{1,1} & \xi_{1,2} & \xi_{1,3} & \ldots & \xi_{1,n_0} & \eta_{1,1} & \ldots & \eta_{1,i} & \theta_{1,1} \\
1 & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots \\
0 & \ldots \\
\xi_{n_0,1} & \xi_{n_0,2} & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
0 & \ldots \\
\end{bmatrix}$$

$$B = \begin{bmatrix}
\eta_{1,1} & \eta_{1,2} & \ldots & \eta_{1,n_1} \\
0 & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
\eta_{n_0,1} & \eta_{n_0,2} & \ldots & \eta_{n_0,n_1} \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 0 \\
\end{bmatrix}$$

$$C = \begin{bmatrix}
1 & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
\end{bmatrix}$$

The ones in C are positioned such that $y(k) = x(k)$. At any time index k, initially the control signal $u(k-1)$ is used. However, after the optimization, $u(k)$ is available and could be used in next iterations.

VI. T-S FUZZY MODEL VALIDATION

6.1 Fuzzy models validations (correlation tests)

The importance of a model structure is clear and in this section, methods which can be used to assess the performance of different models are introduced. Practical experience has shown that model selection criteria, described above, can potentially select incorrect models, hence further validation is required. The simplest form of model validation is by expert inspection. If the model is simple and/or can be described qualitatively, an expert can verify the model by inspection or interrogation. However, traditionally more rigorous statistical validation tests are employed in which models residuals are examined and if found to be sufficiently correlated with a function of the data then the model is inadequate. This is achieved by defining a matrix Z containing the time lag of the system training inputs signals $u(t)$, outputs $y(t)$ in which $Z(x')$ is:

$$Z(x') = [m(t), m(t-1), ..., m(t-t_d)]^T$$

in which x' is the observational vector of inputs, outputs and errors seen up to time step t and $m(t)$ represents the degree of dependency of the two training signals $x(t), u(t)$ and the $e(t)$ is the error between the fuzzy model and actual system output $i.e.$:

$$x' = [x'^1, y'^1, e'^1]^T$$

and $m(t - 1)$ is a monomial of the vector x' given by:

$$m(t) = y(t-1) u(t-2)$$

The following two hypothesis are defined:

$$H_0: e(t) \text{ is uncorrelated with } Z(x'), \quad E(e(t)|Z()) = 0 \quad \text{and} \quad H_1: e(t) \text{ is correlated with } Z(x'), \quad E(e(t)|Z()) \neq 0$$

where the purpose of validation is to use the data to decide if H_0 holds. Two different test statistics have been proposed in the literature, the most common being the standard sample correlation measure $p(k)$, is defined as, [13]:

$$p(k) = \frac{1}{N} \sum_{i=1}^{N-K} (m(t-k+1) e(t))$$

$$\sqrt{\sum_{i=1}^{N-K} (m(t-k+1) m(t-k+1)) \sum_{i=1}^{N-K} (e(t) e(t))}$$

in which $k = 1, ..., t_d$ and $p(k) \in [-1, +1]$. If H_0 holds this statistic asymptotically approaches a normal distribution, and within 95% confidence limits H_0 is accepted if $p(k) \in [-1.96/\sqrt{N}, 1.96/\sqrt{N}]$.

An alternative statistic is given by:

$$d = N[\sum_{i=1}^{N-k} (e^2(t))]^{-\frac{1}{2}} \sum_{i=1}^{N-k} (Z(t) e(t))$$

$$\cdot \sum_{i=1}^{N-k} (Z(t) Z(t))^{-\frac{1}{2}} \sum_{i=1}^{N-k} (Z(t) e(t))$$

which is H_0 hold is asymptotically a $X^2(s)$ distribution where s is the number of delays t_d. For a given acceptance level (typically 95%), a critical point is found, and if elements of d are outside this acceptance region H_0 is rejected.

VII. T-S MODELING OF A NONLINEAR SYSTEM

7.1 Antenna system (input/output training pattern)

To test these proposed neuro-fuzzy methodologies
further, they are applied to model a realistic nonlinear dynamical system. The system considered is a nonlinear (MIMO) dynamics of an antenna system with two coupled inputs and outputs. A data set containing 500 samples of training patterns were produced by applying random torques to the different channels, with suitable sampling rate and an amplitude drawn from uniform random distribution in the range \((-1.5, +1.5)\) N/m.

Antenna system

A coupled two degree of freedom satellite dish, typical of the type used for oceanary satellite communication systems, is presented.

The behavior of the antenna is described by the following nonlinear idealized time invariant state space equations, \([13]\):

$$
\mathbf{z} = \begin{bmatrix}
\varphi \\
\dot{\varphi} \\
\psi \\
\dot{\psi}
\end{bmatrix}
$$

(36)

$$
\mathbf{z} = \begin{bmatrix}
\dot{\varphi} \\
T_{\varphi} - b_{\varphi} \dot{\varphi} - \frac{b_{\varphi} \psi}{I} (I' - I) \sin(2\psi) \\
\frac{I \sin^2(\psi) + I \cos^2(\psi)}{I} \\
T_{\psi} - b_{\psi} \dot{\psi} - \frac{b_{\psi} \dot{\varphi}}{I} (I' - I) \psi^2 \sin(2\psi)
\end{bmatrix}
$$

(37)

and

$$
\mathbf{y} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \mathbf{z} + \begin{bmatrix}
e_{\varphi}(t) \\
e_{\psi}(t)
\end{bmatrix}
$$

where \(\varphi\) is the azimuth angle, \(\psi\) is the elevation angle, \(b_{\varphi}\) and \(b_{\psi}\) are the associated friction coefficients, \(T_{\varphi}\) and \(T_{\psi}\) are the torques applied to the axes. The antenna nominal values are given in Table 1. To produce a more realistic simulation, the outputs are corrupted by additive Gaussian noise, \([e_{\varphi}(t) \ e_{\psi}(t)']\), representing a crude approximation to measurement noise.

Table 1. Defined antenna parameters (non-isotropic).

<table>
<thead>
<tr>
<th></th>
<th>(b_{\varphi})</th>
<th>(b_{\psi})</th>
<th>(I)</th>
<th>(I')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropic</td>
<td>0.3375</td>
<td>0.3375</td>
<td>0.2 Nms^2</td>
<td>0.2 Nms^2</td>
</tr>
<tr>
<td>Non-isotropic</td>
<td>0.3375</td>
<td>0.3375</td>
<td>0.02 Nms^2</td>
<td>0.02 Nms^2</td>
</tr>
</tbody>
</table>

The azimuth is permitted to turn through a complete revolution, while end stops restrict the elevation to the interval \([0, \pi]\). In this antenna there are essentially two sources of nonlinearity: that produced from the end stops on the elevation and the other as a results of the non-isotropic moment of inertia tensor \(I' \neq I\). Indeed when isotropy is present the state space equations (above) are linear. The strength of this non-linearity depends on the degree of anti-isotropy and the angular velocities of the antenna.

These torques are chosen to emulate typical operating conditions. Such block diagram used to produce the identification data was simulated through Simulink/Matlab, using a set of nonlinear differential equations that describes the antenna system. Half of the training pattern was used in the modeling of the dynamic system whereas the other half was used to validate the fuzzy models resulted from the modeling. For a typical sequence of training data, such responses of the antenna inputs-outputs is shown in Fig. 3.

![Fig. 3. Input-output data training pattern.](image-url)
7.2 Clustering and training pattern

As discussed in section 3, fuzzy modeling of any dynamical system could be achieved through clustering the training data. For this simulation example, clustering has been applied to the antenna training pattern. In Fig. 4 it is shown the training pattern following applying the clustering algorithm, where it illustrates clearly the clusters and their three associated centers. For instant, Fig. 4(a) shows the training pattern which has been clustered into three clusters, whereas Fig. 4(b) shows the clustered antenna azimuth output for seven clusters. However, to reduce the fuzzy rules while preserving the model accuracy, the number of clusters were chosen to be three clusters. In Eq. (18), to adjust the fuzzy clustering, the fuzziness parameter \(m \) was kept at 2.2 with a termination criterion \(\epsilon \) for choosing cluster centers of 0.01. The result of the clustering algorithm is the fuzzy partition matrix and the cluster centers matrix, which will be used to construct the antenna system fuzzy models.

7.3 Neurofuzzy modeling

Neurofuzzy modeling is applied to the problem of identifying a discrete model of the antenna. A fuzzy model can be constructed from data by using the output of the clustering algorithm and by constructing regressors to form inputs to the neuro-fuzzy network. Hence a conventional linear difference model with regressors is constructed containing previous inputs and outputs, i.e.:

\[
\varphi(k) = [T_{\varphi}(k-1), T_{\varphi}(k-2), T_{\varphi}(k-1), \varphi(k-1), \\
\varphi(k-2), \psi(k-1), \psi(k-2), \Delta \varphi(k-1)]^T
\]

\[
\psi(k) = [T_{\psi}(k-1), T_{\psi}(k-1), T_{\psi}(k-2), \varphi(k-1), \\
\varphi(k-2), \psi(k-1), \psi(k-2), \Delta \psi(k-1)]^T
\]

Fuzzy if-then rules can be extracted by projecting the clusters onto the axes and the membership functions of the fuzzy sets generated by point-wise projection of the partition matrix onto the antecedent variables. Then consequent parameters for each rule are obtained as least squares estimates. When an initial structure is obtained through clustering, then the membership functions and the consequent parameters are tuned to satisfy certain cost function through the learning procedure of the neuro-fuzzy.

7.4 Membership functions and associated fuzzy rules

As a result, the membership functions of all the inputs (regressors) and outputs are shown in Fig. 5 for azimuth angle. The antenna system has six inputs (in terms of fuzzy model inputs) and two outputs, hence two groups of seven sets of MFs are shown. Each universe of discourse (set) has three MFs representing the assigned three clusters. Such memberships are representing the range of the input limits.

7.5 Fuzzy sub-models

The presented T-S fuzzy model has been used to identify the nonlinear antenna system. As was mentioned before that the number of rules in the T-S fuzzy model equals the number of clusters in the product space. The consequent of each rule is a local model that approximate the output of the real function for the range of \(x \) for which the rule is applicable. As a result of the modeling development, the following rules are obtained for azimuth and elevation angles:

Rule 1. If \(T_{\varphi}(k-1) \) is \(F_1^1 \) and \(T_{\varphi}(k-2) \) is \(F_2^1 \) and \(T_{\psi}(k-1) \) is \(F_3^1 \) and \(\varphi(k-1) \) is \(F_4^1 \) and \(\varphi(k-2) \) is \(F_5^1 \) and \(\psi(k-1) \) is \(F_6^1 \) and \(\psi(k-2) \) is \(F_7^1 \) then:

\[
x(t) = A_x x(t) + B_u u(t) \quad \text{and} \quad y(t) = C_x x(t).
\]
Fig. 5. Extracted membership functions of all inputs regressors associated with the elevation angle.

Rule 2. If $T_y(k-1) \text{ is } F_1^2$ and $T_y(k-2) \text{ is } F_2^2$ and $T_y(k-1) \text{ is } F_3^2$ and $\varphi(k-1) \text{ is } F_4^2$ and $\varphi(k-2) \text{ is } F_5^2$ and $\psi(k-1) \text{ is } F_6^2$ and $\psi(k-2) \text{ is } F_7^2$ then $\dot{x}(t) = A_2 x(t) + B_2 u(t)$ and $y(t) = C_2 x(t)$.

Rule 3. If $T_y(k-1) \text{ is } F_1^3$ and $T_y(k-2) \text{ is } F_2^3$ and $T_y(k-1) \text{ is } F_3^3$ and $\varphi(k-1) \text{ is } F_4^3$ and $\varphi(k-2) \text{ is } F_5^3$ and $\psi(k-1) \text{ is } F_6^3$ and $\psi(k-2) \text{ is } F_7^3$ then $\dot{x}(t) = A_3 x(t) + B_3 u(t)$ and $y(t) = C_3 x(t)$.

where,

\[
A_1 = \begin{bmatrix}
0.09510 & -0.4265 & 0.0300 & -0.2998 & 0.0116 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0.0348 & -0.0273 & 0.8022 & -0.3315 & 0 & 0.0013 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
A_2 = \begin{bmatrix}
0.9354 & -0.4667 & 0.0525 & -0.0475 & 0.0119 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0.0373 & -0.0384 & 0.0844 & -0.3715 & 0 & -0.0002 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
A_3 = \begin{bmatrix}
0.9020 & -0.4099 & 0.0142 & -0.0157 & 0.0108 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0.1294 & -0.1098 & 0.7887 & -0.2987 & 0 & 0.0002 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
B_1 = \begin{bmatrix}
0.0128 & 0 \\
0 & 0 \\
0 & 0.0240 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
0.0128 & 0 \\
0 & 0 \\
0 & 0.0137 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix}, \\
B_3 = \begin{bmatrix}
0.0118 & 0 \\
0 & 0 \\
0 & 0.0028 \\
0 & 0 \\
1 & 0 \\
\end{bmatrix}
\]

\[
C_1 = C_2 = C_3 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad D_1 = D_2 = D_3 = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

where the C and D matrix are common for all of the three fuzzy sub-models, and the D matrix is equal to zero. Furthermore, the elevation angle dynamics is of the same above structure. The antenna simulation system incorporating the three models is shown in Fig. 6. Consequently, Fig. 6 shows the actual antenna output superimposed over the evaluated fuzzy model output. From the figure, it is apparent how the fuzzy model output resembles the actual system output. In this respect, the model output is able to move within 2π range of the antenna displacement.

7.6 Fuzzy model validation

Furthermore, correlation tests was employed to check that suitable regressors are uncorrelated with the models residuals. Figure 7 displays the cross-correlation function of the error signal with the first input signal of the antenna. The correlation in the figure is within the confidence interval, which indicates that the two signals are not correlated. To further investigate the constructed local linear sub-models of the antenna, Fig. 8 shows the attained linearized sub-models.
Fig. 6. Fuzzy model responses (azimuth and elevation angels) compared to the antenna outputs.

Fig. 7. Cross correlation of system first input with its associate error of the antenna system.
over the antenna time response. In terms of antenna non-linear behavior, it is obvious that the entire operating region has been sub-divided into a number of local models which could be employed for further control synthesis. From the shown antenna response, fuzzy models are useful for describing the antenna dynamics where the underlying physical mechanisms are not completely known and where the antenna behavior is understood in qualitative terms.

Consequently, an important property of fuzzy models is their capability to represent nonlinear dynamic systems. Therefore, the obtained fuzzy sub-models can also be applied to systems that are well understood but due to the nonlinearities untraceable with standard linear methods. Rule-based structure of fuzzy models allow for integrating heuristic knowledge with information obtained from antenna measurements. The global operation of the antenna nonlinear process is divided into several local operating regions. Within each region R_i, a reduced order linear model in ARMAX form is used to represent the local antenna behavior. That was not restrictive, and any appropriate model forms can also be used.

VIII. CONCLUSION

Recently, the interest in data-driven approaches to the modeling of nonlinear processes and uncertain dynamic systems has increased. Performances based on fuzzy sets and rule-based systems have proven suitable mainly because of their potential to yield transparent models that are at the same time reasonably accurate. In this sense, this article has been concentrated on the modeling of nonlinear antenna dynamic systems via the utilization of the well-known fuzzy modeling paradigm, the Takagi-Sugeno (T-S) technique. T-S models depend heavily on some initial membership centers of the universe of discourse of used fuzzy variables, such centers have been obtained through employing of clustering algorithm. Once such centers are computed and are known, a fuzzy system can establish initial membership centers through which they are updated via a neural network learning mechanism. One of the advantages of T-S modeling, is that, systems can be modeled by fewer number of rules, and consequently fewer linear sub-models. This advantage has overcome the difficulty of the large number of rules in the fuzzy modeling paradigm. Fuzzy models have also been verified and validated through some standard validation techniques, where they have shown clearly the successful ability of T-S techniques to model nonlinear systems with an excellent degree of accuracy.

REFERENCES

