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ABSTRACT
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C.
The vitamins are mandatory for the function of numerous enzymes and lack of one or more of
the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in
microgram to milligram quantities and in addition some of the vitamins are synthesized by the
intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins
and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all
require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins
differs in depth and focus and is influenced by the prevalence of conditions and diseases related
to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects
for the individual vitamins. For each of the vitamins, we summarize the physiological role, the
steps involved in the absorption, and the factors influencing the absorption. In addition, for some
of the vitamins, the molecular base for absorption is described in details, while for others new
aspects of relevance for human deficiency are included. © 2018 American Physiological Society.
Compr Physiol 8:1291-1311, 2018.

Didactic Synopsis
Major teaching points
� Water-soluble vitamins cover eight B vitamins and vita-

min C.

� The vitamins are supplied with food in quantities of micro-
gram to milligram, and some are synthesized also by gut
microbiota.

� The intestinal uptake requests concerted action by several
cellular transporters.

� The vitamins function as coenzymes or antioxidants for
numerous intracellular metabolic reactions.

� Lack of one or the other of the vitamins may lead to severe
disease.

General Introduction
The water-soluble vitamins are fascinating low molecular
weight substances of importance for human and animal health.
Most of them evolved billions of years ago, in the pre-
DNA/RNA era (131) but were not discovered and charac-
terized until the twentieth century.

For some of the vitamins the discovery is based on unex-
plained human conditions as exemplified for vitamin B1.
Dutch soldiers in action in Indonesia in the 1890s devel-
oped a severe affliction that was assumed to be an infec-
tion at the time. To isolate the bug, groups of hens were
infected with the soldier’s blood; like the soldiers, the hens

were fed polished rice. When changed to unpolished rice,
they recovered—independent of the blood injections. This
led Eijkman to speculate that the rice coating contained a
substance of importance for human and animal health. Even-
tually the substance was isolated and named vitamin B1 or—
later—based on its chemical structure thiamin (for a historical
account see (182)).

The term vitamin was introduced around 1900 as a com-
bination of the words vital (important for life) and amine
(a substance containing nitrogen). Vitamins are organic sub-
stances needed in quantities that are small, but more than can
be supplied by endogenous synthesis. Thus, vitamins must be
obtained from exogenous sources (diet and gut microbiota)
and consequently taken up in the gastrointestinal tract.

Vitamin B1 (thiamin) and vitamin C (ascorbic acid) were
isolated in 1926. Relatively soon thereafter structures were
clarified and modern naming followed (named as their struc-
ture was clarified) riboflavin (B2), pyridoxine (B6), niacin
(B3), biotin (B7), pantothenic acid (B5), and folate (B9).
Vitamin B12 (cobalamin) was finally isolated and named
in 1948. Some initially identified B vitamins proved not to
be well-defined substances and because of that there are
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missing numbers in the B-vitamin series. For example, we
have B12 though altogether we have only eight B vitamins
(for an extensive historical account on the vitamins see (33)).

In our continuous presentation of the vitamins, we will
use the abbreviations indicated in Table 1.

Occurrence, recommended daily allowance (RDA),
and turnover
Most of the water-soluble vitamins are present in a wide vari-
ety of food. An exception is vitamin B12, which is present
only in food of animal origin (Table 2). The recommended
daily allowance ranges from a few micrograms (vitamin B12)
to more than 50 mg (vitamin C). The values as recommended
by the Food and Nutrition Board/USA are presented in Table 2
(41). Only values for adults are provided. As a rule of thumb,
children need a little less; in contrast, pregnant and lactating
women needs up to 40% more. To ensure a sufficient sup-
ply of each vitamin, vitamin fortification has increased over
the years. For example, fortification with vitamin C (juices
and other soft drinks and folate (cereals) is widespread),
http://www.ffinetwork.org/global_progress.

In food, the vitamins are usually bound to proteins; they
are released from proteins by the action of digestive enzymes.
The released vitamins are then absorbed by a specific carrier-
mediated process that has a limited capacity (Fig. 1). This
carrier-mediated transport can be circumvented by intake of
high doses of the vitamins. Around 1% of luminal vitamin is
expected to cross the intestine by passive absorption.

Until recently vitamins were considered only to be
absorbed in the small intestine, but now also synthesis by
the microbiota and uptake in colon is judged of importance
for many of the vitamins, as summarized in Figure 2.

The turnover rates for the vitamins are relatively fast.
Because of that signs and symptoms of deficiency may occur
within months. An exception is vitamin B12, which has a
very slow turnover rate, thus delaying the development of
symptoms up to years of insufficient intake/uptake.

Function and common causes of lack
Vitamins function as coenzymes for many different enzymes
and as antioxidants (Table 3). Vitamin deficiency and sub-
optimal levels are common in underdeveloped countries and
amongst individuals not receiving an adequate diet. In addi-
tion to nutritional deprivation, chronic diseases such as alco-
holism and conditions affecting the intestine will often lead
to an insufficient body supply. In rare cases, genetic defects
in any step of the digestion/transport of the vitamin may lead
to a functional deficiency (see the individual vitamins).

Ascorbate (Vitamin C)
Two forms of vitamin C exist in the diet: a reduced form
(ascorbic acid) and an oxidized form (dehydro-L-ascorbic

Table 1 List of Abbreviations

AA: Amino acids

ATP: Adenosine triphosphate

B12: Cobalamin, vitamin B12

BBMV: Brush border membrane vesicles

BLM: Basolateral membrane

Bp: Base pairs

cKO: Conditioned knockout

CN-B12: Cyano-B12

Cnn: Cysteine, nn: indicates amino acid number

DHAA: Dehydro-L-ascorbic acid

DYNLRB1: Dynein light-chain road block-1

EnnQ: Glutamine (Q) instead of glutamic acid (E) in position nn

FAD: Flavin adenine dinucleotide

FMN: Flavin mononucleotide

Gnn: Glycine, nn: indicates the amino acid number

GC-box: A pattern of nucleotides that binds promotion factors

GKLF: Gut-enriched Kruppel-like factor/cis element

h: used to indicate human origin

HFMS: Hereditary Folate Malabsorption Syndrome

HO-B12: Hydroxo/aquo-B12

KnnE: Glutamic acid (E) instead of Lysine(K) in position nn

miRNA: MicroRNA

NAD: Nicotinamide adenine dinucleotide

NADP: Nicotinamide adenine dinucleotide phosphate

Nnn: Asparagine, nn: indicates the amino acid number

PCFT: Proton-coupled folate transporter

RFC: Reduced folate carrier

RFVT: Riboflavin transporter

SLC5A6: The gene coding for SMVTSLC19A1: The gene coding
for RFC

SLC19A2/3: Genes coding for THTR-1 and THTR-2

SLC23A: The gene coding for SVCT

SLC44A4: The gene coding for TPPT

SLC46A1: Gene coding for PCTF

SLC52A: The gene coding for RFVT

SMVT: Sodium-dependent multivitamin transporter

Sp1: GC-box binding factor/cis element

SVCT: Sodium-dependent vitamin C transporter

THTR: Thiamin transporter

TMD: Transmembrane domain

TTP: Thiamin pyrophosphate/triphosphate

TPPT: Thiamin pyrophosphate transporter
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Table 2 Daily Requirement and Contribution from Food Items

The numbers indicate % supplied by a Western dietb

Vitamin

Recommended daily
allowance (RDA) Men

(Women)a
Bread,
cereals

Fruit,
vegetables

Meat,
poultry, fish Dairy, eggs Othersc

Ascorbate (Vitamin C) (mg) 90 (75) <0.5 72 7 3 20

Biotin (Vitamin B7) (μg) 30 (30) X X X X X

Cobalamin (Vitamin B12) (μg) 2.4 (2.4) <0.5 <0.5 55 38 8

Folate (Vitamin B9) (μg) 400 (400) 22 44 9 17 9

Niacin (Vitamin B3) (mg) 16 (14) 11 15 37 21 18

Pantothenic acid (Vitamin B5) (mg) 5 (5) X X X X X

Pyridoxine (Vitamin B6) (mg) 1.3 (1.3) 16 32 28 15 8

Riboflavin (Vitamin B2) (mg) 1.3 (1.1) 11 9 19 49 14

Thiamin (Vitamin B1) (mg) 1.2 (1.1) 32 16 35 14 4

Note. X indicates that the vitamin is present, but it is not possible to indicate exact contribution.
aFrom (41).
bBased on “Danskernes kostvaner” 2003 to 2008, ISBN: 978-87-92158-67-3.
cOthers: Fat, sugar, sweets, drinks, etc.
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Figure 1 Absorption of water-soluble vitamins in the small intestine. The figure depicts key proteins involved in the uptake of vitamins supplied
with food or recycled with bile and absorbed in the small intestine. The question mark indicates that the molecular identity of the system involved
has not been identified yet.

Volume 8, October 2018 1293



Vitamin Absorption Comprehensive Physiology

NiacinFolate
Biotin/

Pantothanic 
acid

Pyridoxine ThiamineRiboflavin

Apical
membrane 

Basolateral
membrane 

Cobalamin

SMV
T

?RFC

MDR
–3

? ? THT
R2

RFV
T2

RFV
T3

TPPTHT
R1

THT
R1

Figure 2 Absorption of water-soluble vitamins in the large intestine. The figure depicts key proteins involved in the uptake of vitamins
synthesized by the gut microbiota and absorbed in the large intestine. The question mark indicates that the molecular identity of the system
involved has not been identified yet.

acid; DHAA). Ascorbic acid acts as a cofactor in reactions
related to normal iron and copper metabolism, synthesis of
collagen, and metabolism of carnitine and tyrosine; it also acts
as free-radical scavenger and plays a role in normal immune
function. Most mammals generate vitamin C from D-glucose
endogenously, but humans (as well as other primates and
the guinea pigs) cannot do so because they lack the needed
enzyme, that is, L-gulonolactone oxidase. Thus, they need
to obtain the vitamin from exogenous sources. Deficiency of
vitamin C leads to a variety of clinical abnormalities includ-
ing scurvy, poor wound healing, vasomotor instability, and
connective tissue disorders.

Absorption of dietary vitamin C
The diet is the main source of vitamin C for humans as lit-
tle is generated by the intestinal microbiota (258). Uptake of
ascorbic acid in the small intestine occurs via specific sodium-
dependent carrier-mediated process (181, 217). Uptake of
DHAA occurs via a sodium-independent carrier-mediated
process that is competitively inhibited by sugar (due to struc-
tural similarities) (18, 251). DHAA is converted inside the
enterocyte to ascorbic acid by the action of the enzyme
DHAA-reductase (18, 32, 211).

The human intestine expresses two transporters for ascor-
bic acid: the sodium-dependent vitamin C transporter-1
(SVCT-1; a 598 AA protein; product of the SLC23A1 gene)

and the sodium-dependent vitamin C transporter-2 (SVCT-
2; a 650 AA protein product of the SLC23A2 gene) (Fig. 1)
(247, 253). SVCT-1 and SVCT-2 share significant sequence
similarity with one another. In the intestine, SVCT-1 is
expressed at a higher level than SVCT-2 and both carri-
ers transport ascorbic acid via a specific, electrogenic, and
sodium-dependent process. While the affinity of SVCT-2
for ascorbic acid appears to be higher than that of SVCT-1
(114), neither of them transports DHAA. As to the system(s)
involved in the intestinal absorption of DHAA, both glu-
cose transporters GLUT2 and GLUT8 appear to be involved
(Fig. 1) (36, 114).

Knowledge about cell biology and structure-activity rela-
tionship of the SVCT-1 protein has also been forthcom-
ing. Thus, expression of the hSVCT-1 protein at the apical
membrane domain appears to be determined by a sequence
(amino acids 563-572) in the C-terminal tail of the polypep-
tide (226). Intracellular trafficking of the SVCT-1 protein
appears to involve heterogeneous population of intracellular
vesicles, the mobility of which depends on temperature and
on intact microtubule network (226). With regards to SVCT-
2, this transporter is expressed at the basolateral membrane
(BLM) domain of enterocytes (23), and expression is dic-
tated by a basolateral targeting sequence (26). Other inves-
tigations have reported that the hSVCT1 has an accessory
protein: the enzyme glyoxalate reductase/hydroxypyruvate
reductase (hGR/HPR), and that their interaction has functional
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Table 3 Structure and Function of Water-Soluble Vitamins

Vitamin Structure Active forms Function

Ascorbic acid Ascorbic acid – Antioxidant
– Iron and copper metabolism
– Collagen synthesis
– Carnitine and tyrosine metabolism
– Immune function

Biotin Biotin – Metabolism of fatty acids, carbohydrates,
and amino acids

– Energy metabolism
– Regulation of cellular oxidative stress
– Gene expression
– Immune function
– Maintenance of normal intestinal homeostasis

cobalamin Upper ligand (replacing the cyanide
(CN) group:
– Methyl-5′-deoxyadenosyl-

– Methyl transfer
– Metabolism of odd chain fatty acids,

branched amino acids, and cholesterol

Folate Many derivatives, e.g., tetrahydrofolate
(THF) N5-methyl-THF, N10-formyl-THF

– DNA synthesis
– Metabolism of amino acids

Niacin Niacin-adenine-dinucleotid (NAD),
Niacin-adenine-dinucleotid-phosphate
(NADP)

– Glycoysis
– Maintenance of cellular redox state
– Maintenance of normal intestinal homeostasis

Pantothenic acid Part of coenzyme A – Metabolism of carbohydrates, lipid and
protein

Pyridoxine Pyridoxin, pyridoxal pyridoxamin – Metabolism of carbohydrates, lipids and
proteins

– Production of neurotransmitters

Riboflavin Flavinmononucleotide (FMN),
flavinadenindinucleotid (FAD)

– Oxidation-reduction
– Protein foldings, energy metabolism,

antioxidant, anti-inflammatory

Thiamin Thiamin pyrophosphate (TPP) – Energy metabolism
– ATP production
– Reduction of cellular oxidative stress
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consequence (233). Finally, a role for the histidine residue at
position 51 of the hSVCT-1 protein and the histidine residue
at position 109 of the hSVCT-2 protein in the function of
these transporters have been reported (250); also, both of
the putative N-glycosylation sites of the hSVCT-1 polypep-
tide (located at positions 138 and 144) and of the hSVCT-2
polypeptide (located at positions 188 and 196) appear to be
glycosylated and are important for function (229).

As to regulation of the intestinal ascorbic acid uptake
process, important knowledge regarding transcriptional regu-
lation of the SLC23A1 and SLC23A2 genes has been reported.
Thus, the promoter of the SLC23A1 gene has been cloned and
characterized, its minimal region required for basal activity
has been identified to be within the 135-bp region upstream of
the transcriptional start site, and a role for the hepatic nuclear
factor 1 (HNF-1) in promoter activity has been reported (128).
With regards to the SLC23A2 gene, again its promoter has
been cloned and characterized, the minimal region identified,
and a role for Krupp-like factor (KLF)/Sp1 in promoter activ-
ity has been reported (172).

Other investigations have shown that the intestinal ascor-
bic acid uptake process is adaptively regulated by extracel-
lular substrate level (95, 120). The process also undergoes
differentiation-dependent regulation that involve changes in
the expression of hSVCT-1 (but not the hSVCT-2) (126).
Finally, both hSVCT-1 and hSVCT-2 appears to be under
the regulation of an intracellular protein kinase C (PKC)-
mediated pathway (115).

Biotin (Vitamin B7)
Biotin acts as a cofactor for multiple carboxylases involved in
fatty acid, glucose and amino acid metabolism. Recent studies
have suggested new roles for biotin in energy metabolism (i.e.,
ATP production), regulation of cellular oxidative stress (121),
and gene expression (179). Furthermore, a role for biotin in
normal immune functions (2,103-105), in maintenance of nor-
mal integrity/homeostasis of gut mucosa (63,183), and in the
colonization/invasiveness of certain enteropathogenic bacte-
ria (261) have been reported. Biotin deficiency/suboptimal
levels have been reported in different conditions including
chronic alcoholism (21), inflammatory bowel disease (IBD)
(55), the inborn errors leading to multiple carboxylase defi-
ciency (244), and biotin-responsive basal ganglia disease (98),
and patients on long-term anticonvulsant therapy (100), or
long-term parenteral nutrition (130). Overt severe biotin defi-
ciency leads to dermatological abnormalities, neurological
disorders, and growth retardation.

Absorption of dietary and microbiota-
generated biotin
Biotin is available to the host from two exogenous sources:
the diet and the gut microbiota (258). In the diet, biotin
exists in both the free and protein-bound forms; the latter

is enzymatically hydrolyzed (in the gut lumen) first to bio-
cytin (biotinyl-L-lysine) and biotin bound to oligo peptides
via the action of gastrointestinal proteases and peptidases.
Free biotin is released via the action of the enzyme bio-
tinidase that hydrolyzes the amide bond between the car-
boxyl group of biotin and the epsilon amino group of lysine
(208, 257). Because the intestine absorbs biocytin (biotinyl-
L-lysine) or biotin-short peptides poorly (208), mutations in
the enzyme biotinidase (as in patients with the autosomal
recessive disorder “biotinidase deficiency”) leads to biotin
deficiency/suboptimal levels and is associated clinical (neu-
rological and cutaneous) abnormalities; likely the result of
multiple carboxylase deficiencies (19, 208, 257).

Absorption of free biotin (a negatively charged molecule)
in the small intestine occurs via an efficient sodium-dependent
carrier-mediated process that takes place mainly in the proxi-
mal small intestine (196, 202). This sodium-dependent event
reflects the function of the uptake system at the apical mem-
brane of the polarized enterocytes as shown by functional
[e.g., purified intestinal brush border membrane vesicles
(BBMV)] as well as immunological, and live-cell confo-
cal imaging studies (Fig. 1) (196, 202, 203, 205). A unique
feature of this system is that it also transports vitamin B5
(pantothenic acid) and the antioxidant lipoate (187, 199).
For this reason, the system has been named the “sodium-
dependent multivitamin transporter,” or “SMVT.” Biotin exits
the polarized absorptive cells via a sodium-independent
carrier-mediated process (203).

In the large pool of microbiota-generated biotin, a con-
siderable portion exists in the free form, and hence available
for absorption (258). Indeed, human/mammalian large intes-
tine is capable of absorbing free biotin via the SMVT system
(Fig. 2) (24, 199).

The SMVT system is product of the SLC5A6 gene. In
the intestine, SMVT is exclusively expressed at the apical
membrane of the polarized intestinal absorptive cells as shown
by functional, immunological, and confocal imaging studies
(Fig. 1) (190). The SMVT system appears to be the only biotin
uptake system that operates in the mammalian gut as shown
by in vitro gene-specific silencing (siRNA) approach (12),
and in vivo conditional (intestinal-specific) SMVT-knockout
(cKO) mouse investigations (63).

Aspects of the SMVT cell biology and structure-function
relationship have been delineated. The structural component
that determines apical membrane targeting of the hSMVT in
absorptive epithelial is located in to the C-terminal tail of the
polypeptide (225). Both distinct trafficking vesicles and the
microtubule network appear to be involved in intracellular
trafficking of the hSMVT (225). Furthermore, PDZD11, an
accessory protein containing the PDZ domain has been identi-
fied as an interacting partner with SMVT in gut epithelia; this
interaction (which occurs at the PDZ binding domain located
at the cytoplasmic tail of the SMVT polypeptide) has func-
tional consequences for vitamin transport (142). Moreover,
C294 of SMVT is important for function (66), and protein gly-
cosylation at N138 and N489 is important for function (67).
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Important knowledge regarding transcriptional regulation
of the SLC5A6 gene and resulting regulation of the intesti-
nal biotin uptake has been reported. The 5′ regulatory region
of the SLC5A6 gene has been cloned and characterized; that
region contains two promoters (39); activity of these promot-
ers appears to be regulated by the nuclear factors Kruppel-like
factor 4 (KLF-4) and activator protein (AP-2) (39,174). From
a whole organism standpoint the intestinal biotin absorption is
adaptively regulated by biotin availability (171,195). A signif-
icant upregulation in intestinal carrier-mediated biotin uptake
was observed in biotin deficiency, and a significant downreg-
ulation occurs following oversupplementation. This adaptive
regulation appeared to be mediated at the level of transcrip-
tion of the SLC5A6 gene (171). The biotin level-responsive
region in the SLC5A6 promoter was identified to be within a
103-bp region sequence and contains gut-enriched Kruppel-
like factor (GKLF) cis-elements that confer the upregulatory
response to extracellular biotin level (171). The intestinal
biotin uptake process also undergoes developmental regu-
lation during early life and this regulation also occurs via
transcriptional mechanisms involving the SLC5A6 gene (143,
204). A role for protein kinase C (PKC) in regulating intesti-
nal biotin uptake has also been reported and appears to occur
at T286 of the hSMVT (67). Also, a protein casein kinase-2
(CK-2) -mediated pathway appears to exert a regulatory effect
on SMVT via regulating its level of expression at the cell sur-
face and that this effect involves T78 of the SMVT (109).

Factors influencing the uptake of biotin
Chronic alcohol consumption is associated with subopti-
mal levels of biotin (21). At least in part this appears to
be mediated via inhibition in intestinal (and colonic) biotin
uptake and involves transcriptional mechanisms affecting the
SLC5A6 gene (239). Other studies have shown that intesti-
nal infection with Salmonella enterica serovar Typhimurium
(S. typhimurium) leads to a significant reduction in intesti-
nal biotin uptake (64). However, the latter effect appears to
be indirect, involves proinflammatory cytokines, and is medi-
ated via NF-κB signaling pathway (64). Similarly, exposure of
colonic epithelial cells to the bacterial endotoxin lipopolysac-
charide (LPS) (a major component of the outer membrane
of gram-negative bacteria) leads to a significant inhibition in
biotin uptake via interference with the portion of the SMVT
protein exposed at the cell surface; the latter appears to be
mediated via a protein casein kinase (CK-2) -mediated path-
way (109). Finally, intestinal biotin uptake process appears to
be sensitive to the effect of the anticonvulsant drugs carba-
mazepine and primidone (206).

Cobalamin (Vitamin B12)
The discovery of vitamin B12 (B12) and its almost magic
effect is related to the disease pernicious anemia. Back in
time patients suffering from this condition presented with

severe megaloblastic anemia and often devastating neuro-
logical symptoms. Searching for a suitable treatment of the
deadly disease finally led to the isolation of B12 in 1948, and
to a pathophysiological explanation for the condition. The
patients had lost the ability for gastrointestinal absorption of
the vitamin; but if treated with pharmacological doses of B12
in time—and for life—all symptoms could be prevented [for
a historical review see (25)]. The pathophysiological expla-
nation for the disease has turned out to be an autoimmune-
induced destruction of the parietal cells that produce intrinsic
factor, a protein needed for the gastrointestinal uptake of B12.
Details are described in the following sections.

The chemical name for B12 is cobalamin, which in turn
reflects its structure. The core of the molecule is a cor-
rin ring surrounding a central cobalt atom. Attached to the
cobalt atom is a lower ligand common to all forms of B12,
and an upper ligand, specific for the various forms of the
vitamin, Table 3 [for details on chemistry see (160)]. Two
forms have coenzyme functions, the so-called coenzyme-
B12’s, methyl-B12, and 5′-deoxyadenosyl-B12. Methyl-B12
is coenzyme for the cytoplasmic methionine synthetase
(5-methyltetrahydropteroyl-L-glutamate: L-homocysteine-S-
methyltransferase; EC 2.1.1.13). The enzyme converts homo-
cysteine to methionine which in turn leads to the formation
of the methyl donor S-adenosylmethionine. In addition, the
enzyme is essential for a normal DNA synthesis, where also
folate is at play (see the section on folate). The B12-form
5′-deoxyadenosyl-B12 is coenzyme for the mitochondrial
methylmalonyl-CoA mutase (methylmalonyl-CoA CoAcar-
bonylmutase; EC 5.4.99.2) that plays a role for the catabolism
of odd chain fatty acids, branched amino acids, and choles-
terol. Coenzyme-B12’s are converted to hydroxo/aquo-B12
(HO-B12) upon exposure to light, and because of that HO-
B12 accounts for the major part of endogenous B12 in food.
The synthetic form of the vitamin, cyano-B12 (CN-B12), is
widely employed in vitamin pills [for reviews see (31, 157)].

In humans, the total amount of B12 is in the magnitude of 2
to 3 mg. This figure is derived from old studies employing two
different approaches, isotope dilution or direct measurement
[for review see (42)]. The principle of the isotope dilution
method is to administer labeled B12, wait until it is assumed
that an equilibrium has been reached between administered
and endogenous B12 and then calculating the total amount
of endogenous B12 from a measure of label and endogenous
B12 in a representative biopsy, for example, from the liver (1).
Though several concerns can be raised against this method
the results fit reasonably well with estimates based on post
mortem measures of the B12 content in tissues (167).

The absorptive capacity of B12 is limited. Only around
1 μg is absorbed from a single dose of the vitamin, and fol-
lowing this there is a lag of 4 to 6 h before a new dose can
be absorbed with the same efficiency [for review, see (31)].
This in turn implies that the maximal capacity for active B12
uptake is in the magnitude of 4 to 6 μg/24 h. When exposed to
pharmacological amounts of the vitamin 1% of the dose will
be absorbed by passive absorption (27).
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The turnover rate of B12 in healthy humans is exception-
ally slow, with a daily loss of no more than around 0.13% [for
review see (42)] but somewhat faster in individuals unable
to absorb the vitamin, because they do not benefit from B12
recycled with bile (5).

Part of the daily loss is possibly explained by degrada-
tion of B12 to inactive corrinoids, also referred to as B12-
analogues. B12-analogous are present in human stool, bile,
and blood, but it is still argued to which extent they are derived
from metabolism of B12 and to which extent they are pro-
duced by microorganisms in the gut (4, 48, 84). Cobinamide
has been suggested as a predominant analogue (84), but final
proofs as to the nature of the analogues are pending.

Absorption of dietary vitamin B12
Vitamin B12 is requested in the lowest quantity of all vita-
mins. The daily requirement is 2.4 μg for adults, 2.6 μg during
pregnancy, and 2.8 μg during lactation (41). The vitamin is
exclusively produced in microorganisms, and is supplied to
humans through food of animal origin. Because of that it is
often supplied in insufficient amounts in a vegetarian diet [for
reviews see (68, 158)].

In food B12 is present either as the coenzyme forms or
as HO-B12, and most is protein bound. Its gastrointestinal
uptake depends on a coordinated action between enzymes
capable of liberating the vitamin from food items, soluble
B12 binding proteins, and receptor molecules [for review see
(154)].

Three classes of soluble B12 binding proteins have
been described, each of them present in the gastrointestinal
tract of either humans or other animals. The three proteins,
transcobalamin, intrinsic factor, and haptocorrin are phylo-
genetically related with transcobalamin (gene: TCN2) as the
oldest, then follows intrinsic factor (gene: GIF) and finally
haptocorrin (gene: TCN1) that most likely is evolved from
duplication of the intrinsic factor gene (74, 94). The proteins
have been purified from natural sources (152) and after in vitro
cloning from man as well as other species (50, 52, 93). They
are structurally comparable (59, 125, 259) and all consists of
two parts that is sandwiched around the B12 molecule [for
review see (54)]. Intrinsic factor is always expressed in rela-
tion to the gastrointestinal tract. Interestingly the expression
of transcobalamin and haptocorrin varies across species; some
species secrete transcobalamin in saliva and milk, while oth-
ers, including man, secrete haptocorrin (53, 75, 91, 153).

The function of haptocorrin is unsettled. In humans and
many animal species it is present in most extracellular flu-
ids, but curiously it is not expressed at all in rodents (74, 91).
Haptocorrin is characterized by its ability to recognize both
active forms of B12 and B12-analogues (243). In the human
gastrointestinal tract, it is synthesized by the salivary glands
and released into saliva (153), with an estimated daily output
of more than 15 nmol (corresponding to a binding capacity of
more than 20 μg B12). It is also released from the gallbladder

together with B12 (78). In addition, human milk contains an
increasingly high concentration during the lactation period
with an output of more than 100 nmol/24 h at lactation month
nine (75). Other species like dog and hog synthesize the pro-
tein in the stomach (86, 123).

In the gastrointestinal tract haptocorrin may play a role
for the protection of B12 during its journey through the acidic
and pepsin attacking gastric juice. Haptocorrin and its binding
of B12 are resistant to both low pH and pepsin (3). In the
small intestine haptocorrin is degraded, notably by trypsin
and chymotrypsin and the attached B12 is liberated (3).

Intrinsic factor is mandatory for a normal intestinal uptake
of B12. It is a glycoprotein, and the carbohydrate moiety is
considered of importance for its unique stability toward enzy-
matic attacks on its journey from the upper gastrointestinal
tract and until it is recognized by specific receptors in the dis-
tal part of the small intestine. Intrinsic factor consists of one
amino acid chain (417 amino acids) with N-terminalα-subunit
united by a single amino acid strand to a C-terminal β-subunit.
Disruption of the uniting strand has no apparent influence on
binding to B12 or to the receptor [for review see (54)].

The daily output of intrinsic factor is in the magni-
tude of 20 nmol, which is considerably higher than the few
nanomol of B12 absorbed every day (31). Intrinsic factor
binds B12 independent of the upper ligand (e.g., HO-B12 or
CN-B12) with a dissociation constant exceeding 1012 mol/L
(51), but does not recognize B12-analogues (243). These fea-
tures ensure that only active B12 forms are presented for
absorption in the terminal ileum, that even very low concen-
trations of B12 is captured and that various B12 forms are
absorbed to the same extent.

The production site for intrinsic factor shows some vari-
ation among species. In humans, intrinsic factor is mainly
synthesized in the parietal cells of the stomach (85,113). Dog
intrinsic factor is produced in pancreatic duct cells and rodent
intrinsic factor in gastric chief cells (215, 218).

Transcobalamin is best known as the B12 transport
protein that ensures a receptor-mediated transport of B12
from the bloodstream and into all the cells of the body (165).
In addition, the protein is present in saliva of rodents and
in the milk of certain species including the cow (53, 91).
Potentially the protein may have two functions in the
gastrointestinal tract. Like haptocorrin it may cargo B12
until it is transferred to intrinsic factor in the small intestine.
In addition, transcobalamin may promote an intrinsic factor
independent uptake of B12. So far this has only been
supported by in vitro studies (87).

B12 bound to intrinsic factor or possibly transcobalamin
is internalized after binding to specific receptors present on
the brush border membranes of the enterocytes. Cubam rec-
ognizes B12 in complex with intrinsic factor and megalin
recognizes transcobalamin [for review see (154)].

The multifunctional receptor cubam is mandatory for a
normal intestinal uptake of B12. Cubam is an abbreviation
for cubilin and amnionless. Cubilin is a huge one amino acid
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chain protein with no membrane spanning motif. Initial stud-
ies suggested cubilin to act in concert with megalin for uptake
of intrinsic factor bound B12, but later the membrane span-
ning molecule, amnionless was proven to be the partner (61).
Cubam has been identified in several tissues including the
intestine and the proximal tubules of the kidney. In the intes-
tine, cubam is located to the brush border membranes of the
distal ileum, where its main function is recognition of intrin-
sic factor-B12. In the kidney, cubam is located to the luminal
part of the proximal tubules and plays an important role for
ensuring reabsorption of multiple proteins from the ultrafil-
trate including vitamin D binding protein (Gc) transferrin and
albumin [for review see (155)]. This dual function explains
why patients—and dogs—with mutations in the receptor may
display both B12 malabsorption and proteinuria (60, 242).

The N-terminal part of cubilin is responsible for recog-
nizing intrinsic factor. The binding is calcium dependent, and
the receptor recognizes only intrinsic factor saturated with
B12 (7).

Amnionless provides membrane anchorage of cubilin and
thereby endocytic capacity of the entire complex includ-
ing intrinsic factor-B12 (61). Internalization is promoted via
binding to the clathrin-associated sorting proteins disabled-2
(Dab2) and autosomal recessive hypercholesterolemia protein
(ARH) (159). In addition, amnionless is essential for escorting
cubilin to the surface of the cells (149).

Once internalized into the endosomes intrinsic factor-B12
dissociates from the receptor, and cubam recycles to the sur-
face of the enterocyte. Intrinsic factor is degraded in the
lysosome, a degradation that may involve cathepsin L (70).
Export of B12 from the lysosomes and into the cytoplasm of
the enterocytes request two membrane anchored transporters,
LMBRD1, a nine-path protein, ABCD4 (38), and the ZNF143
transcriptional factor (161). The major part of the absorbed
B12 is destined for the circulation and unlikely to be further
modified in the enterocyte. For example, most of orally admin-
istered CN-B12 is recovered as such in the circulation (83).

The export of B12 from the enterocyte remains contro-
versial. A persistent view has been that B12 is bound to
transcobalamin within the enterocyte and that the complex
is released into the circulation. This view has been supported
by a high expression of mRNA coding for transcobalamin in
the intestinal cells (164). The concept of the Schillings test
(no longer available) conflicts with this view. The Schillings
test is an absorption test that measure B12 excreted in the
urine following an oral test dose of labeled B12 combined
with an intramuscular dose of B12 that saturates all the circu-
lating B12-binding capacity (212). If B12 was delivered to the
circulation bound to transcobalamin no B12 would reach the
urine. This argument let to the search for transporters capable
of escorting B12 out of the enterocyte, and led to the identifi-
cation of MRP1. MRP1 is a multifunctional ATP-dependent
transporter localized on basolateral membranes of polarized
cells and involved in export of endogenous molecules such
as steroids and prostaglandins and several drugs [for review

see (34)]. Both in vitro studies and studies on MRP1 knock-
out mice (16) strongly supports that MRP1 is involved in the
transport of B12 across the intestinal basolateral membrane,
but the results also underscore that other exporters are at play.
Though the capacity for uptake of B12 is decreased in MRP1
knockout mice they are still capable of absorbing enough of
the vitamin to prevent any symptoms of B12 deficiency (16).

The other B12-related receptor present in the gastroin-
testinal tract is megalin. This multifunctional receptor is
widely distributed in the body. Like cubam, it participates
in the reabsorption of proteins in the kidney [for review see
(155)]. Its localization and function in the gastrointestinal tract
remains controversial. It binds transcobalamin both saturated
and unsaturated with B12 and in vitro studies have shown that
megalin expressing Caco2 cells (a proxy for intestinal entero-
cytes) display a specific uptake of transcobalamin bound B12
(87). It has been speculated that this may represent a mecha-
nism whereby B12 bound to transcobalamin in, for example,
cow’s milk (53) can be absorbed independent of the intrinsic
factor pathway, but so far convincing evidence is lacking.

Over the year’s researchers have attempted to use the
intestinal uptake system for B12 to ensure uptake of other
cargoes, such as orally administered peptides (e.g., insulin).
The work has been driven by the observation that binding
of the peptide-B12 conjugates to intrinsic factor decrease the
susceptibility toward enzymatic digestion (20). An unsolved
problem is that the B12 conjugates may well compete for
the limited uptake capacity of B12, and thereby induce B12
deficiency. A study on mice highlights this concern (133).

Factors influencing the uptake of vitamin B12
The gastrointestinal uptake of B12 is vulnerable and influ-
enced not only by the supply of B12 but also by many other
factors. An insufficient uptake is common in areas with a low
intake of animal products, but even in communities where the
dietary supply of B12 is sufficient up to 20% of individuals
above the age of 60 years is considered to have an impaired
B12 status [for review see (72)].

The form of the vitamin supplied (e.g., CN-B12 in vita-
min pills or HO-B12 in food items) is unlikely to influence the
gastrointestinal uptake as recently confirmed in a study in rats.
Curiously, the study showed that the liver accumulated high
amounts of the absorbed HO-B12 while the kidney accumu-
lated a relatively high amount of the absorbed CN-B12 (99).

Microbial consumption of B12 may influence the B12
available for gastrointestinal uptake as exemplified by older
work on the fish tapeworm, Diphyllobothrium latum (156).

To some extent the source of food B12 will influence
the uptake of B12 because the bioavailability varies. Dairy
products have a high bioavailability of B12 while it is low
in seafood and eggs, because these food sources are reach in
B12 binding proteins (42, 112).

Age is an important factor. With age the capacity to
degrade food-bound B12 decreases, and at the same time the
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gastric function decreases typically followed by a decrease in
the output of intrinsic factor (29, 96). A decreased capacity
for degradation of B12 binding proteins is observed also in
patients with an impaired pancreatic function, and thereby
a decreased release of digestive enzymes [for review see
72, 77)].

The output of intrinsic factor strongly influences the B12
absorption. In healthy humans, the synthesis of intrinsic factor
occurs in parallel with gastric acid stimulation (97, 176) and
this in turn may suggest a poor uptake of B12 administered
as a vitamin pill without simultaneous intake of food. Lack
of intrinsic factor totally impairs active B12 absorption, as
evident in patients with pernicious anemia.

Pernicious anemia occurs in about 0.1% of the popula-
tion of the Western world. The condition is caused by an
autoimmune-induced chronic atrophic gastritis with destruc-
tion of gastric parietal cells. The gastric H+/K+ATPase (pro-
ton pump) is the primary causative autoantigen [for review
see (72)]. Molecular mimicry by Helicobacter pylori anti-
gens has questioned a microbial trigger for the initiation of
the autoimmune gastritis [for review see (108)].

An impaired release of intrinsic factor is related to numer-
ous other conditions including any kind of gastric body atro-
phy, total gastrectomy, gastric bypass, or any drug affecting
the output of gastric acid, notably proton pump inhibitors.
Finally, mutations in the GIF gene coding for intrinsic factor
represents a rare cause for an impaired production of intrinsic
factor [for review, see (71)].

Factors affecting the absorption of B12 in the terminal
ileum include intestinal diseases and specific alterations in
the expression of the cubam receptor. Patients with Crohn’s
disease and ulcerative colitis, notably those undergoing resec-
tion of more than the 20 distal centimeters of ileum will have
an impaired expression of cubam and thereby a decreased
capacity for absorption of B12 (15).

A few studies show the expression of cubam to be reg-
ulated by hormones. Thyroidectomized rats show a 70%
decrease in the expression of cubilin that can be reverted
upon treatment with thyroxin (260). Placental lactogen pep-
tide increase the capacity for B12 uptake as judged from
studies in the mice (178). This has been interpreted to indi-
cate an increased uptake of B12 during pregnancy, a theory
not confirmed in human studies (73).

Mutations in both cubilin and amnionless have been
reported in humans suffering from the Imerslud-Gräsbeck
syndrome, and such mutations have underscored the func-
tion of the two parts of the receptor in relation both to the
uptake of B12 and in relation to protein reabsorption in the
kidney (245).

Today the capacity for absorption of B12 can be explored
with the CobsSorb test, a test that measures the increase in
circulating B12 following a test dose of the vitamin (76). The
test cannot clarify the cause for malabsorption of the vitamin,
but it can help identifying patients unable to absorb B12 and
thereby in need for life-long treatment either with injections
or with high-dose oral B12 [for review see (72)].

Folate (Vitamin B9)
Folate (a term that refers to derivatives of folic acid)
is involved in the synthesis of pyrimidine and purine
nucleotides, and in the metabolism of several amino acids
(including homocysteine). Folate deficiency/suboptimal lev-
els occur in a variety of conditions including chronic alco-
holism, Hereditary folate malabsorption syndrome (HFMS;
an autosomal-recessive disorder; 62), patients with inflam-
matory bowel disease celiac disease, tropical sprue, and
those on long-term use of certain therapeutic agents (e.g.,
sulfasalazine, trimethoprim, pyrimethamine, diphenylhydan-
toin). Such deficiency leads to a variety of conditions includ-
ing megaloblastic anemia and growth retardation; when it
occurs in pregnancy, it could lead to neural tube defects in
the developing embryo. In addition, it has been related to an
increased risk of developing cardiovascular diseases.

Absorption of dietary and microbiota-
generated folate
Folate in the diet exists in the free (i.e., monoglutamate) and
polyglutamate forms. Folate polyglutamates are hydrolyzed in
the small intestine to folate monoglutamates prior to absorp-
tion via the action of the enzyme folate hydrolase (30). Uptake
of the generated folate monoglutamates occurs mainly in the
proximal part of the small intestine and involves a specific,
acidic pH- (but not Na-) dependent carrier-mediated process
(Fig. 1) (reviewed in 202). The mechanism of folate exit out
of the enterocytes across the BLM, also occurs via a specific
carrier-mediated mechanism (43).

As to the folate generated by the gut microbiota, a consid-
erable amount of this folate exists in the free (absorbable)
monoglutamate forms (180). Absorption, again involves
an efficient and specific carrier-mediated process (Fig. 2)
(44, 101).

The normal human (mammalian) intestine expresses two
folate uptake systems: the proton-coupled folate transporter
(hPCFT; product of the SLC46A1 gene; 89, 162, and 263),
and the reduced folate carrier (hRFC; product of the SLC19A1
gene; 255). The hPCFT protein (459 AA) plays a critical role
in the uptake of dietary folate monoglutamates (89, 162, and
references therein). Mutations in this transporter are the cause
of HFMS (89, 162, and references therein). PCFT operates
optimally at acidic pH 5.5 to 6.0 (with minimal activity at
pH 7.0 and above) and cotransport folate− with H+ via an
electrogenic process (89, 162, 263, and references therein).
The hPCFT protein is mainly expressed in the proximal small
intestine (89,162), and its expression is restricted to the apical
membrane domain of the polarized enterocytes (Fig. 1) (230).
As to the hRFC, this carrier functions as an anion exchanger
and operates optimally at neutral/alkaline pH of 7.0 to 7.4
(89, 255). The hRFC protein (591 AA) is expressed along
the intestinal tract and its expression is also restricted to the
apical membrane domain of epithelial cells (254). Since this
carrier operates at neutral/alkaline pHs (which is the pH at

1300 Volume 8, October 2018



Comprehensive Physiology Vitamin Absorption

the luminal surface of the distal small intestine and the large
intestine; 190), it is reasonable to assume that this carrier plays
a role in folate uptake in the distal gut (Fig. 2).

Knowledge about cell biology and structure-activity rela-
tionship of the PCFT and RFC proteins has also been forth-
coming. Thus, cell surface expression of the hPCFT appears to
be determined by a consensus beta-turn sequence separating
predicted TM2 and TM3 (230); also, an intact microtubule
network appears to be important for intracellular traffick-
ing of the protein (230). With regards to the hRFC protein,
the molecular determinants that dictate its targeting to cell
membrane appear to reside within the hydrophobic backbone
of the polypeptide (122, 228). Intracellular trafficking of the
hRFC protein again involves trafficking vesicles whose mobil-
ity depends on the microtubule network (122). Other inves-
tigations have identified the dynein light-chain road block-1
(DYNLRB1) protein as an interacting partner with hRFC, and
showed that this interaction has functional consequence (11).

With regards to structure-function relationship of the
hPCFT and hRFC, a critical role for the conserved histidine
residues located at positions 247 and 281 in the function
of hPCFT has been reported (249). Also, clinical mutations
found in the PCFT protein in patients with the HFMS (located
at positions 65, 66, 113, 147, 318, 376, and 425; ref. 263 and
references therein) were found to be dysfunctional due to
early stop codon and a frame shift (both lead to absence of the
hPCFT protein), defect in intracellular trafficking/membrane
targeting of the protein, and/or protein instability (89, 263).
A role for residues 161, 232, 299, and 304 in the function of
the hPCFT protein has also been reported (89, 148). Finally,
the hPCFT protein appears to form homo-oligomers, and that
TMDs 2, 3, 4, and 6 are important for these formations (256);
also, TMDs 1, 2, 7, and 11 of the hPCFT appear to form an
extracellular gate in the inward-open confirmation (264). As
to RFC, studies have shown a role for residues 29, 44, 45, 46,
48, 106, 107, 132, 133, 313, and 373 in the function of the
transporter (89, 263, and references therein); also important
is the intracellular loop between TMDs 6 and 7 (118). Other
studies have reported that the RFC protein is N-glycosylated
at position N58 (89). Finally, the membrane translocation
pathway of hRFC appears to involve TMDs 1, 2, 4, 5, 7, 8,
10, and 11 (89).

As to regulation of the intestinal folate uptake process,
important knowledge regarding transcriptional regulation of
the SLC46A1 and SLC19A1 genes has been reported. Thus,
the SLC46A1 promoter has been cloned and characterized, its
minimal region required for basal activity has been mapped to
a region that is 157 bp upstream of the ATG site and contains
putative GC-box sites as well as enhancer elements (YY1
and AP1), which appear to play a role in promoter activity
(241). With regards to SLC19A1, again the promoter region
of this gene has been cloned and characterized [shown to
contain multiple alternative promoters that lead to the gen-
eration of distinct 5′-untranslated regions (UTRs) but with
common hRFC open reading frame] (reviewed in 69, 255,
263)]. A role for nuclear factors SP, USF AP1, and C/EBP in

regulating the expression of RFC in different tissues has been
reported. Finally, methylation and chromatin structure also
appear to play a role in regulating the function of the hRFC
promoters (69, 255, 263).

Other investigations have shown that the intestinal folate
uptake process is adaptively regulated by the prevailing level
of the vitamin. Thus, folate deficiency was shown to lead to
a specific and significant induction in intestinal folate uptake
that is associated with an increase in the level of expression
of RFC and PCFT mRNA and appears to involve transcrip-
tion mechanism(s) (10, 163, 188, 221). The intestinal folate
uptake process also appears to be developmentally regulated
during early stages of life (14). In addition, the process under-
goes differentiation-dependent regulation mediated via alter-
ation in the transcription of the SLC46A1 and SLC19A1 genes
(236). Finally, the intestinal folate uptake process appears to
be under the regulation of an intracellular protein-tyrosine
kinase (PTK) and a cAMP-mediated pathways (101, 194).

Factors influencing the uptake of folate
Chronic alcohol consumption is associated with folate sub-
optimal/deficient states. This appears to be, at least in part,
mediated via inhibition in both the initial hydrolysis phase of
dietary folate polyglutamates and the subsequent uptake of the
generated folate monoglutamates (80,124,150,252). Chronic
use of certain drugs (e.g., sulfasalazine; 57) also interferes
with normal intestinal folate uptake process. Finally, activity
of the intestinal folate hydrolase is suppressed in diseases like
celiac disease and tropical sprue (35, 79, 81).

Niacin (and Nicotinic Acid; Vitamin B3)
Niacin, a precursor for the coenzymes nicotinamide adenine
dinucleotide (NAD) and nicotinamide adenine dinucleotide
phosphate (NADP), is important for glycolysis and the pen-
tose phosphate shunt. Deficiency/suboptimal levels of niacin
occurs in chronic alcoholism and in patients with Hartnup’s
disease (which is caused by mutations in the gene that encodes
the membrane transporter of tryptophan). Severe deficiency
of niacin leads to pellagra.

Absorption of dietary and microbiota-
generated niacin
There is an endogenous and exogenous source for niacin. The
former is in reference to the niacin that is generated from
tryptophan. The latter is in reference to the vitamin that exists
in the diet and that is produced by the normal intestinal micro-
biota. Absorption of dietary niacin in the small intestine as
well as the niacin that is generated by the microbiota occurs
via an acidic pH- (but Na+-) dependent, specific, and high-
affinity carrier-mediated process (Figs. 1 and 2) (102, 135).
Molecular identity of the transport system involved, how-
ever, is not known so far. The intestinal niacin uptake process
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appears to be under the regulation of an intracellular protein-
tyrosine kinase (PTK)-mediated pathway; it is also adaptively
regulated by the prevailing substrate level (102).

Pantothenic Acid (Vitamin B5)
Pantothenic acid plays an important role in normal carbo-
hydrates, fat, and protein metabolism via its role in the
biosynthesis of coenzyme A and acyl carrier proteins. Since
pantothenic acid is widely distributed in diet, spontaneous
deficiency of the vitamin has not been reported in humans.

Absorption of dietary and microbiota-generated
pantothenic acid
Like a number of other water-soluble vitamins, pantothenic
acid is presented to the intestinal tract from two sources: the
diet and the gut microbiota (258). In the diet, pantothenic
acid exists mainly in the form of coenzyme A; this form is
converted to free pantothenic acid prior to absorption (216).
Absorption of free pantothenic acid in the small intestine
and that generated by the gut microbiota in the large intes-
tine occurs by a carrier-mediated process that involves the
sodium-dependent multivitamin transport (SMVT) system,
that is, its shares the same transport system with biotin (Figs. 1
and 2) (187,190,199). Little is known about how the intestinal/
colonic pantothenic acid uptake process is regulated.

Pyridoxine (and Derivatives; Vitamin B6)
Pyridoxine (mainly in the form of pyridoxal 5′-phosphate, the
most biologically active form of the vitamin) is a cofactor for
enzymes involved in carbohydrate, lipid, and protein (includ-
ing the amino acid homocysteine) metabolism, as well as in
the production of neurotransmitters. Vitamin B6 deficiency/
suboptimal levels occur in different conditions including
chronic alcoholism, diabetes, and celiac and renal diseases;
it also occurs in patients on long-term use of hydrazines
(antidepressant) and penicillamine (antirheumatic drug). Such
deficiency leads to a variety of clinical abnormalities includ-
ing microcytic anemia, dermatitis/glossitis, and neurological
disorders.

Absorption of dietary and microbiota-generated
vitamin B6
Pyridoxine like other members of the vitamin B6 family,
that is, pyridoxal and pyridoxamine, exist in the diet in
the phosphorylated and nonphosphorylated forms, which are
hydrolyzed to free forms prior to absorption (82). Absorption
of the liberated free forms of vitamin B6 occurs via an effi-
cient and specific carrier-mediated mechanism (Fig. 1) (198).
This process is acidic pH- (but is sodium-) dependent and
amiloride sensitive (198).

As to vitamin B6 generated by the gut microbiota, consid-
erable amount of this vitamin exists in the free form, and thus,
available for absorption (116). As to the mechanism involved
in this uptake process, evidence has emerged in recent years
to show that this occurs via an efficient and specific carrier-
mediated mechanism (Fig. 2) (209). Nothing, however, is cur-
rently known about molecular identity of the transport system
involved.

Factors influencing the uptake of vitamin B6
The intestinal vitamin B6 uptake process is adaptively regu-
lated by the prevailing level of the vitamin in the surrounding
media. Thus, cells maintained under low pyridoxine level
takes in more vitamin than cells maintained in the presence
of high levels. This induction appears to be transcriptionally
mediated (209). Other studies have reported that the intestinal
vitamin B6 uptake process is under the regulation of an intra-
cellular protein-kinase A-mediated signaling pathway (198).

Riboflavin (Vitamin B2)
In its biologically active forms [i.e., flavin mononucleotide
(FMN) and flavin adenine dinucleotide (FAD)], riboflavin
plays important roles in oxidation-reduction reactions involv-
ing carbohydrate, lipid, amino acids, and processing of cer-
tain water-soluble vitamins. Other studies have shown that
riboflavin plays a role in protein folding (248), energy
metabolism (88), has antioxidant and anti-inflammatory prop-
erties (111, 117, 214), and is needed for normal immune
function (127). Riboflavin deficiency/suboptimal levels occur
in chronic alcoholism, diabetes mellitus, and inflammatory
bowel disease; they also occur in Brown-Vialetto Van Laere
and Fazio Londe syndromes [rare neurological disorders
caused by mutations in membrane riboflavin transporter-2 and
-3 (RFVT-2 and RFVT-3)] (22, 71). Such deficiency leads
to a range of clinical abnormalities including degenerative
changes of the nervous system, anemia, skin lesions, cataract,
and growth retardation.

Absorption of dietary and microbiota-
generated riboflavin
Riboflavin in the diet exists mainly in the forms of FMN
and FAD and is bound to protein. Digestions begins by
releasing these forms from the binding proteins (via the
action of gastric acid and hydrolases), followed by hydrolysis
(by intestinal phosphatases) to free riboflavin (37). Absorp-
tion of riboflavin then takes place via a specific and effi-
cient, sodium-independent carrier-mediated process (Fig. 1)
(129,189,192,193,246). Internalized riboflavin is then trans-
ported out of the enterocytes across the BLM via a specific
carrier-mediated mechanism (199).

As to the riboflavin generated by the large intestinal micro-
biota, a considerable amount of this riboflavin exists in the free
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form, and thus, available for absorption (92,220). Indeed, the
large intestine is capable of absorbing riboflavin and for this, it
utilizes an efficient and specific carrier-mediated mechanism
(Fig. 2) (200).

Three riboflavin vitamin transporters, RFVT-1, RFVT-2,
and RFVT-3 (encoded by SLC52A1, SLC52A2, and SLC52A3
genes, respectively) that share varied degrees of sequence sim-
ilarity have been identified in human (mammals) tissues (262).
All these transporters are expressed in the gut with expres-
sion of the RFVT-3 being significantly higher than RFVT-1
and RFVT-2 (238, 262); RFVT-3 also appears to be a more
efficient transporter for the vitamin than the other two trans-
porters (238). Furthermore, while expression of RFVT-3 is
restricted to the apical membrane domain of the polarized
absorptive epithelial cells, expression of RFVT-1 is mostly
at the BLM domain of these cells while that of RFVT-2 is
mainly expressed inside intracellular vesicles (238).

The RFVT-3 is the major contributor toward carrier-
mediated riboflavin absorption in the gut. This was estab-
lished in studies utilizing an in vitro gene-specific silencing
(siRNA) approach (238), and an in vivo intestinal-specific
(conditional) SLC52A3 knockout (cKO) mice (224). In the
latter study, all the RFVT-3 cKO mice developed riboflavin
deficiency, demonstrating the importance of RFVT-3 in reg-
ulating the overall body homeostasis of the vitamin (224).

Knowledge about cell biology and structure-activity rela-
tionship of the hRFVT-3 has also been forthcoming in recent
years. Thus, cell surface expression of the hRFVT-3 protein
appears to be determined by a sequence in the C-terminal
tail of the polypeptide, with a special role for the conserved
cysteine residues located at positions 463 and 467 (235). The
putative disulfide bridge between C463 and C386 also appears
to be important for membrane targeting of the RFVT-3 pro-
tein (235). In addition, intracellular trafficking of the RFVT-3
protein appears to involve distinct vesicular structures, and
that mobility of these vesicles depends on the microtubule
network (235). Moreover, the recent identification of clinical
mutations in SLC52A3 in patients with the Brown-Vialetto-
Van Laere syndrome has furthered our understanding of the
structure-function and cell biology of hRFVT-3 (144). Thus,
clinical mutants P28T, E36K, E71K, and R132W were all
found to be functionally defective and that this is due to intra-
cellular retention of the mutated hRFVT-3 (144).

As to regulation of the intestinal RF uptake process,
important knowledge regarding transcriptional regulation of
the SLC52A1 and SLC52A3 genes has also been reported in
recent years. Thus, the SLC52A1 promoter has been cloned
and characterized, its minimal region required for basal activ-
ity has been identified (between −234 and −23), and a role
for the cis-element Sp-1 has been shown (184). With regards
to SLC52A3, again the promoter of this gene has been cloned
and characterized in vitro and in vivo, its minimal promoter
region required for basal activity was identified (between
−199 and +8 bop), and a role for the Sp1 binding site (at
position −74/−71 bop) in determining the activity of the
SLC52A3 promoter has been demonstrated (65). More recent

investigations have shown that the RFVT3 is a target for post-
transcriptional regulation by miRNAs (specifically miR-423-
5p) in intestinal epithelial cells, and that this regulation has
functional consequences on intestinal riboflavin uptake (110).

Other investigations have shown that the intestinal
riboflavin uptake process is adaptively regulated by the pre-
vailing level of the vitamin (191, 193). This adaptive reg-
ulation appears to be mediated via changes in the level of
expression of the hRFVT-3 (and hRFVT-2; but not hRFVT-1)
(231). Focusing on the predominant hRFVT-3, the adaptive
regulation appears to be exerted at the level of SLC52A3 tran-
scription and involves the nuclear factor Sp1 (222); it also
involved epigenetic mechanism(s) and changes in the level of
expression of the hRFVT-3 protein at the cell surface (222).

The intestinal riboflavin uptake process also appears to be
developmentally regulated during early stages of life and that
this regulation is mediated via a decrease in the Vmax and an
increase in the apparent Km of the riboflavin carrier-mediated
uptake process. The molecular mechanism(s) that mediates
this type of regulation in intestinal riboflavin uptake, how-
ever, is not known at present. In addition, the process was
found to undergo differentiation-dependent regulation medi-
ated via alteration in the transcription rate of the SLC52A1 and
SLC52A3 genes (223). Finally, the intestinal riboflavin uptake
process appears to be under the regulation of an intracellular
protein-kinase A- and Ca2+/calmodulin-mediated signaling
pathways (192).

Factors influencing the uptake of riboflavin
Chronic alcohol exposure is associated with riboflavin subop-
timal/deficient states. This appears to be, at least in part, medi-
ated via inhibition in small intestinal and colonic riboflavin
uptake and based on studies with animal models believed
to be exerted at the level of transcription of the slc52a1
and slc52a3 genes (237). The Na+/H+ exchanger amiloride
and the antipsychotic tricyclic phenothiazine agent chlorpro-
mazine (the latter shares structural similarities with riboflavin)
also cause inhibition in intestinal riboflavin uptake (246).

Thiamin (Vitamin B1)
Thiamin (mainly in its diphosphate form, i.e., thiamin
pyrophosphate, TPP) acts as a cofactor for a number of
enzymes that catalyze important metabolic reactions relate
to energy metabolism and ATP production (reviewed in 188);
the vitamin also plays a role in reducing cellular oxidative
stress (28, 58). It is therefore not surprising that deficiency
of this vitamin at the cellular level leads in impairment in
energy metabolism/ATP production and to oxidative stress.
Other forms of thiamin, like thiamin triphosphate (TTP),
have also been reported as having biological activity (e.g.,
TTP regulates the function of membrane chloride channels in
nerve cells; 17). Thiamin deficiency/suboptimal levels occur
in chronic alcoholism, in patients with diabetes, celiac sprue,
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renal diseases, those undergoing bariatric surgery, those with
sepsis, following long-term use of furosemide, and in the
elderly (reviewed in 188). Such deficiency leads to a range of
clinical abnormalities including neurological and cardiovas-
cular disorders.

Absorption of dietary and microbiota-
generated thiamin
In the diet, thiamin exists mainly in the phosphorylated forms
which are hydrolyzed to free thiamin (a monocationic com-
pound at luminal pH) prior to absorption. This step is cat-
alyzed by intestinal phosphatases (219) [the small intestine
does not have an uptake system for TPP, i.e., it is unlike the
large intestine which possess such an efficient uptake sys-
tem; see succeeding text]. The proximal small intestine is the
preferential site of absorption of the liberated free thiamin,
and absorption occurs via a specific, pH (but not sodium)
-dependent, electroneutral, and amiloride-sensitive carrier-
mediated process (Fig. 1) (46, 177, 197). Internalized free
thiamin is then transported out of the enterocytes across
the BLM; this event is also specific and involves a carrier-
mediated mechanism (45, 177).

As to the thiamin that is generated by the gut microbiota,
this source of vitamin provides thiamin in both free and phos-
phorylated (mainly TPP) forms (8, 147, 258). Recent studies
have shown that human colonocytes can absorb both forms of
thiamin and that they do so via distinct and efficient carrier-
mediated processes (Fig. 2) (134, 139, 201).

Thiamin transporter-1 and -2 (THTR-1 and THTR-2;
products of the SLC19A2 and SLC19A3 genes, respectively;
40, 47, 56, 106, 166) are both expressed in the small and
large intestines (169,175,185). Both transporters appear to be
involved in thiamine uptake as shown in studies utilizing gene-
specific siRNA knockdown, and SLC19A2 and SLC19A3
knockout approaches (169, 185). The human (h)THTR-1 (a
497 AA protein) and hTHTR-2 (496 AA protein) share 48%
identity with one another; they also share around 40% identity
with the human-reduced folate carrier (hRFC) (47,49). How-
ever, neither hTHTR-1 nor hTHTR-2 transports folate, and
hRFC does not transport free thiamin (166). As to function, the
hTHTR-1 appears to operate in the micromolar range, while
the hTHTR-2 appears to operate in the nanomolar range of
the vitamin (9). The hTHTR-1 is expressed at a higher level
than hTHTR-2 in the human intestine (175, 185); it is also
expressed at both the apical and the basolateral membrane
domains of the polarized enterocytes, while expression of the
hTHTR-2 is restricted to the apical membrane domain only
(185, 227).

As to absorption of the microbiota-generated TPP in the
large intestine, this occurs via a specific and efficient carrier-
mediated process (139) that involves the thiamin pyrophos-
phate transporter (TPPT; product of the SLC44A4 gene)
(134). The hTPPT is expressed in the colon but not in the
small intestine with expression being restricted to the apical
membrane domain of the polarized colonocytes (134). This

tissue-specific expression of the TPPT along the intestinal
tract appears to be established by epigenetics as well as
miRNA-mediated mechanisms (136).

Knowledge about cell biology and structure-activity rela-
tionship of the hTHTR-1 and hTHTR-2 has also been forth-
coming in recent years. Thus, an essential role for the N-
terminal and the backbone of the hTHTR-1 polypeptide in
membrane targeting of the transporter has been demonstrated
(227). Intracellular movement of the hTHTR-1 appears to
involve trafficking vesicles whose mobility depends on the
microtubule network (227). As to the hTHTR-2 protein, an
essential role for the transmembrane backbone in membrane
targeting has been reported (232); again, intracellular move-
ment of hTHTR-2 to the cell surface involves trafficking
vesicles that depends on intact microtubule network (232).
Other investigations have identified a member of the human
tetraspanin family of proteins, the hTspan-1, and the human
transmembrane 4 superfamily 4 (hTM4SF4) as interacting
partners with the hTHTR-1 and hTHTR-2, respectively, in
human intestinal epithelial cells (141, 234). These accessary
proteins were shown to influence the functionality and/or cell
biology of these thiamin transporters.

Knowledge about structure-function relationship of the
hTHTR-1 protein came mainly from clinical findings of
mutations in the transporter in patients with the autosomal
recessive disorder, thiamin responsive megaloblastic anemia
(TRAM), a condition caused by mutation in the SLC19A2
gene (107, 132, 153). These mutations were found to alter
the functionality of hTHTR-1 via their effects on level of
expression/stability, membrane targeting, and/or alteration in
transport activity of the transporter. Experimentally, a role for
the anionic amino acid residue located at position 138 of the
hTHTR-1 polypeptide (the only conserved anionic residue
in the TMDs of the protein) in the transport of the posi-
tively charged thiamin has been identified (13). With regards
to the hTHTR-2 polypeptide, again data from clinical and
experimental investigations have shown that the two clin-
ical mutations (K44E and E320Q) identified in this trans-
porter in patients with thiamin-responsive Wernicke’s-like
encephalopathy are important for function. Other studies have
reported an important role for G23 and T422 in transport
function of hTHTR-2 (231). Finally, insight into structure-
function relationship of the colonic TPPT has also been forth-
coming in recent years (145). The protein appears to be gly-
cosylated at positions N69, N155, N197, N393, and N416;
however, only glycosylation at N69, N155, and N393 appears
to have functional importance (145).

As to regulation of the intestinal thiamin uptake pro-
cess, important knowledge regarding transcriptional regula-
tion of the SLC19A1 and SLC19A2 has also been gained.
Thus, the SLC19A2 promoter has been cloned, its minimal
region required for basal activity has been identified (between
−356 and −36), and a role for the nuclear factors GKLF, NF-
1, and SP-1 was demonstrated (173, 175). Also, the human
SLC19A2 promoter appears to be a target for activation by
the p53 tumor suppressor transcription factor (119). With
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regards to SLC19A3, again the promoter of this gene has
been cloned, its minimal promoter region required for basal
activity was identified (between −77 and +59), and a role for
the stimulating protein-1 (SP1)/guanosine cytidine box (GC-
box) binding site (located at position−48/−45 bop) in promo-
tor function has been reported (140). Similarly, the promoter
of the SLC44A4 gene has been cloned, the minimal region
required for basal activity has been identified (between −178
and +88), and a role for ETS/ELF3 [E26 transformation-
specific sequence (ETS) proteins], cAMP-responsive element
(CRE), and SP1/GC-box sequence motifs in activity of the
SLC44A4 promoter has been demonstrated (137).

Other investigations have shown that the intestinal thi-
amin uptake process is adaptively regulated by the prevail-
ing thiamin level (146,168). This adaptive regulation appears
to be mediated via a change in the level of expression of
THTR-2 (but not THTR-1) and appears to be transcription-
ally mediated (146,168). The thiamin level-responsive region
in the SLC19A3 promoter appears to be located in a sequence
between −77 and −29; also a role for the SP1/GC-box in
mediating the effect of extracellular thiamin level on SLC19A3
promoter activity has been demonstrated (146). Similarly, the
colonic TPP uptake process appears to be adaptively regulated
by extracellular TPP level. This regulation, however, appears
to be of two types. After a short-term exposure, the adaptive
regulation appears to be mediated via a change in the fraction
of the protein that is expressed at the cell membrane (tran-
scriptional regulation does not appear to be involved). After
long-term exposure, however, the adaptive regulation appears
to be mediated at the level of transcription of the SLC44A4
gene (6).

The intestinal thiamin uptake process also appears to be
developmentally regulated during early stages of life and
that this type of regulation is also mediated at the level of
transcription of the SLC19A2 and SLC19A3 genes (170). In
addition, the process was found to undergo differentiation-
dependent regulation that is transcriptionally mediated with
the differentiation-responsive region being located between
−356 to −275 bp in the case of the SLC19A2 promoter, and
between −77 and −13 bp in case of the SLC19A3 promoter
(138). Further, a role for the NF1 binding site (−348 to
−345 bp) in the SLC19A2 promoter and for the SP1/GC-box
binding site (−48 to −45 bp) in the SLC19A3 promoter in
mediating the differentiation-dependent regulation has been
reported (138). Finally, the intestinal uptake process of free
thiamin and the colonic uptake process of TPP both appear to
be under the regulation of an intracellular Ca2+/calmodulin
(CaM)-mediated pathway (139, 197, 201).

Factors influencing the uptake of thiamin
Chronic alcohol consumption impairs intestinal and colonic
thiamin absorption process (90, 240), thus contributing to
the development of thiamin deficiency. This impairment was
associated with a significant reduction in the level of expres-
sion of THTR-1 (but not THTR-2) (240). Also, infection with

the gram-negative enteropathogenic Escherichia coli (EPEC;
a food-borne pathogen) significantly inhibit intestinal thiamin
uptake (9). This inhibition appears to be associated with a
decrease in cell surface expression of THTR-1 and THTR-2
proteins as well as with a decrease in level of expression of
hTHTR-1 and hTHTR-2 mRNA and activity of their respec-
tive promoters. The EPEC structural components that mediate
its effect on intestinal thiamin uptake appear to be products
of the espF and espH genes (9). Finally, sepsis appears to be
associated with a significant inhibition in intestinal thiamin
uptake, and that the degree of inhibition correlates with the
severity of sepsis and is associated with a significant decrease
in the level of expression of THTR-1 and THTR-2 in the gut
mucosa (210).

Concluding Remarks
Today many details concerning the gastrointestinal handling
of water-soluble vitamins have been clarified, but more is
needed. We know now that the uptake of vitamins is rate
limited, but for many of the vitamins we do not know the
maximal capacity for uptake, nor do we know all the factors
that may influence the uptake, and thereby alter the amount of
vitamin absorbed. Also, while we do know that many of the
water-soluble vitamins are supplied both by diet and by the
gut microbiota, we lack knowledge as to the relative contri-
bution of the latter source toward overall body homeostasis of
these vitamins and how this is altered in different conditions.
Clarification of these issues should increase our knowledge
and understanding of the physiology and pathophysiology of
gastrointestinal handling of vitamins.
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