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Traditional data acquisition methods, such as surveys and diaries, used in 
transportation studies have become burdensome and inefficient in com-
parison to the emerging sources of passively collected data. These newer 
data sources have the ability to improve data quality and accuracy and the 
potential to complement conventional data. This paper presents a com-
prehensive review of studies that have utilized passively collected data, 
such as data from personal or vehicle GPS devices, mobile phone network 
data, and—more recently—smartphone GPS data. This review focuses 
on the data-processing algorithms that have been used to derive travel 
information from trajectory traces, as well as the variety of applications 
that have been conducted on the basis of these data. Some applications 
of these data have included origin–destination estimation, real-time traf-
fic monitoring, and human mobility pattern analysis. Although passively 
collected data have great potential, issues with possible sample bias and a 
lack of demographic data require further research. This study may help 
people interested in employing these data to understand better the cur-
rent practices, as well as the potential and the challenges associated with 
the data.

As technologies have advanced, emerging data sources from passive 
collection methods have shown promise in helping transportation 
professionals better understand people’s movements through space  
and time. Traditional travel surveys are plagued by low response 
rates, high respondent burden, and significant implementation costs 
(1). Passively collected data, such as GPS data, mobile network 
data, and cell phone GPS data, may have the ability to supplement 
or complement traditional household travel surveys and overcome 
existing issues.

These data present different opportunities to reflect aspects of 
people’s travel patterns; the data also present challenges in collec-
tion and processing. This paper draws a typology of the available 
data sources and covers different types of data, processing meth-
ods, potential applications, and limitations. This review may help 
people who are interested in employing these data to better under-
stand current practices and the potential and challenges associated 
with the data.

Passively Collected Data

GPS Data

The first advancement in travel surveys saw the inclusion of GPS 
applications. GPS devices can provide accurate location infor-
mation anywhere in the world through the use of satellites in 
medium-Earth orbit.

A device’s position is calculated every 1 to 4 s. The position is 
calculated on the basis of the distance between the device and the sat-
ellites. Connecting to two satellites provides latitude and longitude. 
Incorporating a third satellite enables the calculation of altitude; the 
use of additional satellites increases accuracy. GPS has a horizontal 
accuracy of ∼3 m and a vertical accuracy of ∼5 m, 95% of the time 
(2). GPS location accuracy suffers when the signal is obstructed, 
such as in a tunnel or an urban canyon (3).

A typical raw GPS data set includes the time stamp, the latitude, 
the longitude, the altitude, and the speed of each record. The data 
sets may also include a heading and a measure of accuracy.

A significant body of research has examined the use of GPS data 
and their capability to supplement or complement household travel 
surveys (4). In most studies, a GPS device was fixed to a participant’s 
vehicle or a participant carried the device daily (5). Although these 
studies indicated that GPS provided detailed travel trajectory data 
with a sufficient level of accuracy, GPS also had some limitations. 
The cost of purchasing the GPS units and administering the survey 
(mailing the units to the participants and retrieving the units) can 
severely limit the scale and duration of this type of survey. There is 
also a certain level of respondent burden. For example, a participant 
could forget to charge the device or leave it at home, either of which 
would render the device useless.

Mobile Network Data

Other attempts to improve travel surveys saw the incorporation of 
mobile network data, most commonly the call detail records (CDRs). 
Similarly to GPS, the location of the cell phone is calculated on the 
basis of its distance from the surrounding towers. The spacing, the 
number of towers, and the signal strength directly affect the accuracy 
of the data. Simply, data are only recorded when the phone is active, 
such as during a phone call or when sending a message. Through 
this method it is possible to locate a phone within 50 to 300 m (6).

As a cell phone moves, the signal switches to the nearest and stron-
gest of the towers’ signals. However, a phone does not need to move 
to switch towers. A phone can switch between towers, or “oscillate,” 
as a result of network policies on performance optimization or the 
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proximity to a competing cellular tower with equal strength. In travel 
studies, oscillation can cause the data to indicate false movements; a 
real movement could also be misinterpreted as an oscillation on the 
basis of the repetitive nature of the movement.

A typical CDR data set contains the caller ID, the time stamp, the 
duration of the call or other activity, the longitude, and the latitude. 
Other data, such as the call receiver’s ID, may also be available. As 
a result of privacy concerns, these IDs are always anonymized, and 
the formatting varies across carriers.

Because of the proliferation of cellular phones, a large sample 
of data can be obtained at a comparatively low cost. Recent data indi-
cated a penetration rate of 120% in developed and 92% in developing 
countries (7). These results indicated that a person, particularly in a 
developed country, may possess more than one cell phone. Caution 
should be taken, as the sampling of mobile phone networks could 
introduce bias or overrepresent participants with multiple phones. Not 
only is the scale of the data sets enormous, this form of data collec-
tion also eliminates the respondent’s burden; most respondents are not 
even aware the data is being recorded. However, CDR data tend to be 
less accurate than GPS data. Because data are only recorded when the 
phones are in use, CDR data are less frequent and irregular and could 
therefore leave significant gaps in trajectory traces and complicate the 
application of the data. However, many studies have used these data 
successfully.

Cell Phone GPS Data

Recent efforts to improve travel surveys became possible with the 
advent of cell phone GPS or “assisted GPS” data. This technology 
merges mobile phone network and traditional GPS data. Similarly 

to mobile network data, cell phone GPS data have the potential for 
large-scale applications and a somewhat reduced respondent bur-
den. For example, the recording of the data can reduce battery life, 
and the retrieval of such data may be burdensome. This source could 
also cause sample bias. Cell phone GPS data also have an accuracy 
similar to GPS data of 9 m (3).

A cell phone’s position is calculated by triangulation. Data 
points can be recorded through wireless fidelity, GPS satellite, 
or mobile networks; certain phones give users control over how 
the data are recorded to help conserve power. Unlike with mobile 
network data, it is possible to track the phone when it is not being 
used, and it can be tracked without a cell phone signal if the phone 
is in view of the satellites.

Cell phone GPS data’s recording frequencies vary, depending 
on movement, with fewer data records when the phone is still. For 
example, while the cell phone is in movement, Google location his-
tory data are usually recorded every 30 to 60 s; while the phone is 
still, the recording rate increases to over 1 min, but rarely exceeds 
5 min. As a result, it is common for more than 1,000 points to be 
recorded in a day.

Google location history data can be accessed as KML or JSON 
files. Both file types provide information on the time stamp, the lon-
gitude, and the latitude; JSON files provide additional information, 
such as the accuracy level and the activity by mode. Figure 1 shows 
1 day of records from the JSON file. Although the activity may not 
be identified correctly for each point, the map shows the quantity of 
data points recorded. The relatively large interval between the data 
points in the horizontal line (located roughly in the middle of the 
figure) is attributable to high vehicular speeds (50 to 60 mph). This 
figure shows how the data could be used to detect mobility patterns 
and other aspects of travel.

Activity

In vehicle

On foot

Still

Tilting

Unknown

FIGURE 1    JSON file: 1 day of data.
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Data Processing

This section provides an overview of the use of these data in data-
processing algorithms from four perspectives: preprocessing, trip 
end identification, trip mode detection, and trip purpose identifica-
tion. The intention is to aid understanding of the scope of the data 
provided and the level of effort involved in the use of these passively 
collected data.

Preprocessing

Although the content and use may vary, the method for data pre-
processing is relatively simple. Generally, the raw data are passed 
through multiple filters to identify erroneous data points.

Ideally, data should contain a measure of the horizontal dilution 
of precession as well as the number of satellites, but these measures 
are usually only found in GPS data sets. When provided with these 
measures, studies were able to assess the accuracy of all points within 
the data set directly and filter out data points that had a poor horizon-
tal dilution of precession value or a small number of satellites (8). 
Unfortunately, the horizontal dilution of precession and the number 
of satellites are not always provided; in these cases, other criteria need 
to be established to clean the data.

Preprocessing is commonly accomplished through criterion-based 
data elimination. In the literature, the speed, location, and local rela-
tive behavior of the data points were commonly used criteria for data 
elimination. The most common criterion was to remove data points 
with unreasonably high speeds; such was the case in Nour et al. (9), 
Huntsinger and Ward (10), and Wang et al. (11). Although rare, certain 
freight applications excluded slow speeds (5).

The implementation of geographic information system (GIS) tools 
in preprocessing was also useful. Researchers were able to easily 
remove data that were outside of the study area or the desired buffer 
zones [e.g., Sharman and Roorda (12)].

At the disaggregate level, the consideration of the distance or time 
between consecutive data points has proved to be effective (13). 
Sometimes preprocessing also involved the removal of data when a 
sufficient number of data points could not be obtained (5); although 
labor intensive, manual checking could also be helpful.

Trip End Identification

Various attributes have been utilized in past studies to indicate that a 
trip has ended or that an intermediate point has been reached. When 
the data set was complete (no signal loss), many studies used time-
constrained rules. Trip ends have been assumed when the speed was 
zero or very low (8). Other studies used the “dwell duration,” or the 
amount of time spent at a certain location, which can be calculated 
as the difference in the arrival and departure times (14, 15). Many of 
these studies used conditional statements, in which both conditions 
must be satisfied to identify a trip end. Although these rules have 
been the most commonly applied, care should be taken to choose the 
thresholds wisely.

Many studies also used the capabilities of GIS to help identify 
trip ends; these capabilities included data clustering (5), georefer-
encing (12), and the retrieval of the first and last recorded points in 
a trajectory (16).

Some of the less often used methods included the identification 
of a change in the latitude, the longitude, or the constant heading 

threshold (8); the application of filters to CDR data to smooth the 
trajectories (17); probabilistic methods in which activity locations 
were identified on the basis of the frequency, the duration, and the 
time of day (18); and point density or other clustering methods 
in which points were assigned to a cluster on the basis of relative 
distance (19). Visual map checking was also noted (8). One study 
showed great potential for the application of a model-based cluster-
ing algorithm to identify clusters that were then divided into trip end 
clusters and travel clusters (20).

During instances when there was no signal, many studies used the 
time between consecutive points as a proxy dwell time for the detec-
tion of trip ends (21). For example, it is possible to assume that if the 
location of Point A and Point B does not change significantly over a 
time interval (when no signal is available), then the location is a trip 
end. However, if the distance between the two points changes signifi-
cantly during this time interval, it is likely that the missing data are 
best represented by a trip rather than by a trip end.

Trip Mode Detection

The literature provided a plethora of methods that had been success-
fully employed to detect travel modes. The speed-based method has 
been applied successfully and is applicable to most situations. Com-
monly used criteria included the average or maximum speed (4), a 
range of average or maximum speeds (22), the statistical mode of 
speed (8), and the average acceleration for each mode (23).

GIS tools have also been used to consider built environment char-
acteristics. For example, pedestrians must walk on links that are 
accessible; the duration must not exceed 60 s (21), and the speed 
should not exceed 10 km/h (4). Other studies created buffer zones 
around bus stops or rail stations and considered proximity to the 
stops to identify these modes (5).

Several other studies used probabilistic methods to determine 
which mode of transportation was used. Some studies developed a 
probability matrix (9, 24, 25); other studies employed the fuzzy logic 
method (21). These methods have been proved to be effective in iden-
tifying cycling and walking modes but have struggled to differentiate 
between motorized modes (26).

Machine learning is the emerging approach in this area because 
of the approach’s high level of accuracy (27). Some common 
methods have included decision tree (28), Bayesian network (29), 
support vector machine (23, 30, 31), conditional random field (32), 
random forest (33), and multilayer perceptron neural network 
(34, 35). The machine learning method was the most effective, and 
it has been suggested that the method be used when calibration data 
are available (26).

Trip Purpose Identification

Similarly to mode detection, purpose identification has been accom-
plished by three general methods: criterion based, probabilistic, and 
machine learning. In most studies, trip purpose identification was 
the most difficult step. Many studies employed GIS to facilitate this 
process.

In the application of the criterion-based method, some studies 
used land use coding (4), and others focused on land use–purpose 
matching rules (36). The inclusion of data matching, which entailed 
the verification of locations, such as home, for use throughout the 
study, was also noted (23). General trip end rules, such as assigning 
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the purpose as “shopping” if a trip end was located near a known 
mall, were also used but often relied on information provided by 
the participant (10, 14, 15, 18, 19, 37, 38). The time of day and the 
duration were also used in some studies after proximity rules were 
applied (4, 39).

Several studies employed the probabilistic approach. One study 
employed a multinomial logit model in high-density areas and a single 
deterministic matching method in low-density areas (4). Another 
explored the use of nested multinomial logit models, which were 
calibrated on the basis of existing, revealed participant information 
(26). Trip purpose was also determined on the basis of probabilistic 
calculations related to trip distance (40).

Machine learning, specifically the category model and decision 
trees, were also employed (16, 41). Because of their complexities, 
probabilistic and machine-learning methods were used less frequently. 
Of all the procedures, the identification of trip purpose was the area 
with the most room for improvement.

Table 1 presents a brief summary of the studies based on cell phone 
data and includes the data type (CDR and GPS), the sample size, 
the data-processing methods, and the major findings related to the 
effectiveness and accuracy of the methods used.

Modeling Applications

The section discusses some of the applications based on passively 
collected data. Only studies that used CDRs or cell phone GPS 
appear in Table 2. In most cases, some form of validation—usually 
N-fold cross validation, participant verification or correction, or other 
existing data—was used to assess the accuracy of the applications.

Origin–Destination Matrix Applications

Several studies were able to apply the available data to produce dif-
ferent facets of origin–destination (O-D) tables. The use of different 
data, GPS and CDR, proved that both types of data could be used to 
reproduce trips accurately (10, 42). One study was able to estimate 
Florida’s statewide O-D truck flows (13). Similar studies proposed 
a method that used CDR data to infer trips and then estimate large-
scale O-D matrices (11, 18, 43, 44); these studies found that the data 
were most effective at the aggregate level.

In an attempt to capture more-detailed information, one study 
used similar CDR data in combination with Foursquare check-in 
data to reproduce O-D matrices (45). Through the incorporation of 
time of day data, another study found that it was possible to create 
O-D sample characteristics, mobile O-D flow distributions, direc-
tional patterns, and spatial analysis; flow analysis for each O-D pair 
was also conducted (46).

Traffic Monitoring Applications

Another common application encountered in the literature was 
traffic monitoring. Through the use of a limited GPS data sample 
and embedded road traffic sensors, one study explored the possibil-
ity of estimating the fuel consumption and the emissions of different 
modes (47). A similar study used GPS data of commercial and private 
vehicles to better understand the emissions and fuel consumption by 
link and time of day (48). The generation of a traffic performance 
measure was also a frequented topic (49–53).

Similar studies targeted flow and density models. A study that 
used GPS data tested six microscopic traffic flow models (54). This 
study used the genetic algorithm–based approach to estimate model 
parameters for two cases: speed and headway data. Generally, all 
models performed better with speed data than with headway data.

Other studies were interested in real-time traffic monitoring; one 
attempted to use CDR data and traffic counts (55). However, incon-
sistencies between the cell tower handover rate and the traffic vol-
ume counts prevented accurate volume estimation. In a similar study, 
researchers employed cell phone GPS data to study traffic conditions 
in real time (56). To overcome privacy concerns, this study employed 
virtual trip lines, which is a technology that only transmits data at cer-
tain locations. The study suggested that a 2% to 3% penetration rate 
of GPS-enabled cell phones was sufficient to duplicate the results.

Choice Model Applications

Route choice was the focus of several studies. One study sought 
to explore the application of route choice portfolios, which had the 
potential to solve the traffic assignment problem (57). Traditional 
GPS data were used, and the results indicated that the participants 
did not have a single dominant route. Moreover, the study suggested 
that route choice portfolios better suited a traveler who sought to 
optimize route decisions under uncertain conditions.

Another study considered the application of general route choice 
models on the basis of real-world GPS data (58). This study had 
three main findings. First, the observed route choice percentages 
varied from those derived through the use of stochastic user equi-
librium expectations but approached specific values. Second, four 
types of heterogeneous driver learning and choice evolution pattern 
were identified. Third, driver and choice situation variables could 
predict the identified learning patterns.

Another study combined GPS and GIS data (59). The study con-
sidered three models, which contained different choice set sizes of 
five, 10, and 15. Estimations of the effects of free-flow travel time, 
left turns, right turns, intersections, and circuity on the attractiveness 
of different route alternatives proved to be statistically significant and 
reasonable. Also, the factors’ sensitivity varied on the basis of trip and 
traveler characteristics.

Another study used GPS data to estimate a utility function that 
reflected cyclists’ evaluations of paths (60). The study used logit 
models to determine the relative importance of four statistically sig-
nificant path parameters: length, auto speed, grade, and the presence 
of bike lanes. The results indicated the possibility of generating a 
relatively robust path and mode model that could be included in 
multimodal travel forecasting models.

One study successfully converted GPS data into routes to char-
acterize route choice variability and compare the least-cost route to 
the actual route (61). Generally, discretionary trips displayed greater 
intraindividual variability; work and study trips displayed greater 
interindividual variability and deviation from the least-cost routes.

Multiday Applications

Multiday GPS Travel Behavior Data for Travel Analysis contained 
four case studies in which multiday GPS data were analyzed (62). 
The first case study explored how drivers’ choices were affected by 
auto network reliability. O-D pairs were estimated on the basis of the 
GPS data, and the day-to-day travel time variation was examined. The 
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TABLE 1    Summary of Data-Processing Methods for Cell Phone Data

Study Type Data Set Data-Processing Algorithm Findings

37 CDR 500,000 participants;  
12 months

Home and work anchor points detected by time 
and frequency

Comparison to existing data showed method’s 
accuracy.

39 
 

CDR 
 

61 billion location data 
points; 2 months 

Home and work identified by time, duration, 
and frequency; kernel density estimation 
used for space–time activity density

Data were viable for analysis of human activity 
patterns in space–time. 

11 CDR 5 weeks Identified trip ends by duration time; calculated 
O-D and demand

CDR gave viable dynamic O-D traffic flow 
estimate (intercity trips).

38 CDR 829 million location  
estimations

Home location identified by frequency and 
time

Mobile phone data represented reasonable proxy 
for individual mobility.

20 
 
 

CDR 
 
 

7,989 mobile devices and 
survey data combined 
(simulated phone) 

Model-based clustering method; distinguished 
activity–travel cluster with logit model;  
location type detected with use of set of 
behavior-based algorithms

Home was identified within 100 m (70%) and  
1,000 m (97%); work identified within  
100 m (65%) and 1,000 m (86%). 

18 
 

CDR 
 

18 million participants;  
1 month 

Home and work identified by time, duration, 
and frequency; trips detected with fuzzy 
classification method

Successfully generated large scale O-D informa-
tion that matched output of traditional methods 

17 
 

CDR 
 

8 participants; 1 day 
 

Outliers removed with use of filters; RNF, 
RLAF, and KF 

RNF and RLAF improved speed and position 
significantly; KF only improved speed  
estimation significantly.

14 CDR 18,000 participants; 2 weeks Stops identified by time and distance; home 
and work identified by frequency and time

Network travel times reduced 10%; waiting time 
increased 2%.

10 
 

CDR 
 

24 h/day; 1 month 
 

Classified participants (resident, visitor) on 
basis of inferred home location; identified 
purpose (HBW, HBO, NHB)

Data were robust enough to develop and estimate 
external trip models. 

15 
 

CDR 
 

3,600 participants; 2 months 
 

Points clustered by distance; corrected oscilla-
tions; activity locations detected by duration 

Low entropy: 20 locations for 60% accuracy,  
50 for 70%, and 100 for 80%; high entropy:  
20 locations for 40% accuracy and 100 for 50%

28 
 
 

GPS 
 
 

6 participants 
 
 

Mode classified by k–nearest neighbor, naive 
Bayes, decision trees, and support vector 
machines, hidden Markov model, and  
decision trees with hidden Markov

Decision trees with hidden Markov model was 
most accurate (98%–99%). 
 

35 
 

GPS 
 

114 trips (38 car, 38 bus,  
38 walk) 

Mode classified by neural network; considered 
all GPS points rather than only critical points 

Acceleration and speed might be best indicator for 
mode detection; analysis with critical points 
produced accurate estimations of mode.

16 
 
 

GPS 
 
 

16 participants 
 
 

Mode detection with accelerometer (multiple 
machine learning methods); trip detection 
with Markov decision process; accuracy 
increased with Gaussian mixture model

Support vector machine made the best mode 
predictions (93%–95%). 
 

27 
 

GPS 
 

6 participants; 3 weeks 
 

Used GIS data for mode detection; tested 
multiple machine learning methods 

Random forest method was able to achieve 
93.70% accuracy with GIS and 76% accuracy 
without GIS.

24, 
25 
 

GPS and 
other 
sensors

14 participants; 266 h 
15 participants; 355 h 

Mode classified by probabilistic means on basis 
of speed 

Nonmotorized modes showed greater accuracy 
(bike, 98% and walking, 92% versus  
railway, 80%). 

19 
 

GPS and 
CDR 

111 participants; 3 months 
 

Preprocessed data; trip ends identified by clus-
tering by space and time; home and work 
identified by frequency and time

Social contract influenced number of trips;  
communication usage influenced travel  
intensity but not distance.

30 
 

GPS 
 

3 participants; 7 h 
 

Mode detection through support vector  
machine learning 

98.86% accurate with sensor and GPS data, 
97.89% without GPS; difficult to differentiate 
bus from car and bike modes

34 
 

GPS 
 

Microsoft’s GeoLife data set 
 

Simulated near-real time multilayer perceptron 
neural network for mode detection 

Incorporation of spatial information helped 
achieve higher accuracy in mode detection to 
93%–95%.

33 
 

GPS 
 

35 participants; 2 weeks 
 

Mode identification through random forest 
 

Accuracy: bus (87.93%), car (97.68%), and 
walking (90.33%); instantaneous speed and 
GPS accuracy most influential

9 
 

GPS 
 

658 trips 
 

Mode detected with probabilistic methods that 
used speed, acceleration, and acceleration 
changes

Accuracy: walking (98%), bike (55%),  
transit (9%), and auto (72%) 

Note: O-D = origin–destination; RNF = recursive naive filter; RLAF = recursive look-ahead filter; KF = Kalman filter; HBW = home-based work; HBO = home-based 
other; NHB = non–home based.
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TABLE 2    Summary of Applications Based on Cell Phone Data

Study Type Sample Applications Findings

11 
 

CDR 
 

5 weeks 
 

Dynamic O-D estimation using probabilistic 
rules 

Good estimate of traffic volumes and traffic 
flow of special events; best for long-distance 
or intercity trips

55 CDR Multiple samples Traffic monitoring with MNL and ANN Accuracy of MNL was 76.4% and ANN was 
78.1%.

63 
 
 
 

CDR 
 
 
 

4 months 
 
 
 

Criterion-based method determined 
interaction characteristics and developed 
mobility profiles and forecasted weekly  
mobility patterns; Monte Carlo simulation 
estimated evolution of daily states.

Social media was viable as a stand alone or 
supplement to estimate the mobility behavior 
of individuals. 
 

38 
 

CDR 
 

829 million location  
estimations 

Daily mobility pattern calculated with a 
multivariate regression model 

Job accessibility and distance to nonwork  
destination influenced variations in individual 
and vehicular total trip lengths.

14 CDR 18,000 participants;  
2 weeks 

Mobility patterns; home and work and 
routes fed into transit optimization model

Decreased systemwide travel time by 10% 

18 
 

CDR 
 

18 million participants; 
1 month 

O-D estimation; rules-based home and 
work detection; mode classified by fuzzy  
classification method

Methodology generated O-D tables for large 
cities with large populations and had  
acceptable level of accuracy.

67 
 
 
 

CDR 
 
 
 

1,310 participants;  
12 months 
 
 

Spatial travel behavior; k-means clustering 
to divide sample; intrapersonal CV 
applied as dependent variable in some 
univariate general linear model; GLM 
models used to assess seasonal effects

Activity space varied more than number of  
activity locations; individual factors controlled 
monthly spatial behavior variation; signifi-
cant intrapersonal monthly variability. 

64 
 
 
 

CDR 
 
 
 

744 participants;  
2 months 
 
 

Location variability by time of day; 
entropy (measure of location variability); 
temporal profile of location variability; 
model-based clustering; linear regression 
on panel data

Time-of-day effect accounted for 36% of 
variations in location variability; smallest 
location variability was early in morning. 
 

43 
 
 

CDR 
 
 

2.87 million partici-
pants; 1 month 
 

O-D estimation; determine scaling factors 
(MITSIMLab); route choices of drivers 
based on discrete choice-based probabi-
listic model

Relatively effective and economical; provided 
viable method 
 

44 CDR 
 

2 cases: 2.8 million 
and 2.0 million 
participants

Demand estimation; traditional 4-step 
model 

Results were similar to existing data and O-D 
matrices. 

10 
 
 

CDR 
 
 

24 h/day; 1 month 
 
 

External travel demand; average weekday 
trip tables were disaggregated into three 
trip purposes primarily on basis of home 
and work locations

Passively collected mobile phone data can be 
good source for development of external trip 
models. 

46 
 
 

CDR 
 
 

2 months (232 GB) 
 
 

O-D estimation; trip identification algorithm 
used 
 

Predicted demand patterns for different day 
types; showed time-varying features of  
demand by time of day; revealed directional 
patterns by time of day

51 
 
 

CDR 
 
 

17.5 million partici-
pants; 1 month 
 

Rail transit use patterns; algorithm used to 
match data to transit line 
 

Usage patterns changed on basis of transit 
dependency; spatiotemporal patterns were 
very different; demand of residents outside 
city center could not be satisfied.

45 
 
 
 
 
 

CDR and Four-
square data 
 
 
 
 

CDR (515,557 par-
ticipants)  
Foursquare 
 (13 days) 
 
 
 

O-D estimation; location data input into 
characterization model; cellphone 
sample to TAZ population ratio was 
expansion factor; sample O-D multiplied 
by TAZ’s expansion factor to estimate  
final O-D table; Foursquare provided 
trip production or attraction at TAZs

Trip attraction and production were reason-
able; CDR O-D matrices varied because of 
disproportionate variation and incomplete 
covariation; Foursquare O-D matrices varied 
because of incomplete covariation. 
 

56 
 

GPS 
 

100 vehicles; 8 h 
 

Traffic monitoring 
 

Data viable for traffic monitoring; 2%–3%  
penetration rate was sufficient to provide  
accurate velocity measurements

52 GPS Not specified Average speed and average travel time Android outperformed iOS.

Note: MNL = multinomial logit; ANN = artificial neural network; CV = coefficient of variation; GLM = general linear model; GB = gigabyte; TAZ = traffic analysis zone.
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results indicated that reliability was significantly impacted by trip and 
household characteristics. Also, there was a lack of definitive proof 
of a direct correlation between reliability and travel frequency at the 
household level.

The second case study used a 3-day, person-based GPS data set to 
detect day-to-day variations in the number, type, and level of disper-
sion (distance) of the destinations visited. Patterns of variability were 
discovered through the use of latent class cluster analysis. Distance and 
location were identified as influential over the variation type. The types 
of variability were also a function of spatial attributes.

In the third case study, the authors used the same data set as the pre-
vious case study to analyze day-to-day variations in mode choice. The 
authors successfully classified individuals into groups on the basis of 
mode changes and frequency. These groups were connected to spe-
cific personal and household characteristics. Relationships between 
participant characteristics and modality were also considered. Cor-
relations between modality style and other characteristics (household 
income, number of workers, individual education level, employment 
status, and gender) were confirmed, but to different extents. The use 
of multiple modes was noted for those with greater transit access 
(greater proximity). Age and the presence of children in a household 
indicated that there was a preference for only using one mode, specifi-
cally auto. However, statistical significance was not achieved because 
of the sample size.

The last study used a multiday, person-based GPS data set to study 
the deviation in travel time between the shortest path and the actual 
path, as well as the frequency of use of the shortest path for home-to-
work trips (62). The study revealed that participants did not make the 
same home-to-work auto trip frequently over multiple days and sug-
gested that multiday studies required a large sample size. It was also 
noted that most participants did not use the shortest path, which could 
be a result of trip circuity, the number of turns, or the age of the driver.

Several CDR studies focused on human mobility patterns. One 
presented a technique to use social sensing to gauge human mobility 
(63). Another study compared individual mobility and vehicular 
mobility to understand daily mobility; the major influences on total 
trip lengths were observed to be job accessibility and distance to non-
work destinations (38). An optimized network design model for pub-
lic transit that decreased systemwide travel times was also proposed 
(14). Entropy was used as a measure of location variability to explore 
the effect of time of day on travel behavior (64). From that study, the 
authors determined that the time of day affected location variability 
and that location variability was smallest during the morning hours.

Other Applications

In addition to the groups previously discussed, other applications were 
noted. One study used anonymous GPS data to construct activity–
travel pattern characteristics, which were combined with land use data 
to estimate various models of demographic characteristics (65). The 
proposed method successfully identified several characteristics (work 
status, education level, age, possession of license, presence of children) 
but struggled with others (gender, household size, number of vehicles). 
The results were generally positive and demonstrated an ability to 
reconstruct some socioeconomic demographic data.

CDR and GPS data were also used to explore human mobility pat-
terns (38, 66). CDR data were used to demonstrate that variations in 
individual and vehicular mobility were mainly attributable to acces-
sibility rather than to population density and land use (38). A dif-
ferent study employed GPS taxi trajectories to serve as a proxy for 

individuals (66). The study discovered that, unlike most models, the 
travel distance and the elapsed time of these data were best fit by an 
exponential distribution, and human mobility tended to be sporadic.

One year of large-scale CDR data were used in an attempt to study 
human activity–travel behavior with respect to temporal trends (67). 
The results indicated that monthly variation in unique activity loca-
tions displayed seasonal trends, and spatial distribution varied greatly. 
The study also revealed that inter- and intrapersonal factors were more 
influential than seasonal impacts. Also, the daily variation of activity 
locations remained relatively constant throughout the study, and the 
participants’ activity more than doubled during the summer months.

Discussion of Findings

Many studies have explored the potential of passively collected data 
to supplement traditional surveys; this exploration may be the begin-
ning of a paradigm shift. Moving forward, it will be possible to tap 
into the full potential of these data sources and supplement them with 
minor surveys. This approach has the potential to decrease respon-
dent burden and cost while improving data quality and prediction 
accuracy.

Irrespective of accuracy, traditional GPS data have proved to be 
less useful on a large scale because of their cost. Mobile network data 
are a cheaper alternative to traditional GPS data. Mobile network 
data can provide anonymous information for millions of users. Scale 
alone can be misleading, though, because data are only recorded 
when the phone is used. When this factor is considered, along with 
laws in parts of the United States concerning phone usage while driv-
ing, the potential of this data source may also be limited. Although 
cell phone GPS data have no direct cost associated with them, there 
may be some respondent burden for participants who lack computer 
literacy. However, this respondent burden could easily be overcome 
by providing instructions, as has been noted by the authors. Cell 
phone GPS data provide nearly the same accuracy as traditional GPS 
data and have the large-scale, low-cost, high penetration rate, and 
low respondent burden benefits of mobile network data.

Given the passive nature of these data, a considerable amount of 
effort is needed to derive useful trip information, such as the trip 
ends, the mode, and the location type. Studies have employed vari-
ous methods to process and transform the data points into meaningful 
representations of human movement. On the basis of this information, 
many applications have become feasible, including O-D estimation, 
traffic monitoring, and the understanding of spatiotemporal human 
mobility patterns. These data sources have a level of detail that could 
afford researchers opportunities to create real-time representations 
of congestion, and therefore emissions, throughout the transporta-
tion network. These data hold the promise of helping produce more 
accurate transportation measures and representative models of human 
behavior and usher in a new era for activity-based modeling.

Although very detailed, these data have a few limitations. The most 
impactful of these limitations is the lack of demographic information, 
which is critical in travel studies and demand analysis. However, some 
studies have shown the potential for the derivation of demographic 
information with the aid of supplementary data (such as land use or 
census data). Another limitation is the potential sample bias of these 
data, as not all people carry smartphones and some people may possess 
multiple phones. This issue may diminish as technology advances and 
smartphones get more common; however, studies that use these data 
still need to be aware of the sampling issue. Besides the incorporation 
of demographic information through supplemental data sources and 



78� Transportation Research Record 2563

spatial analysis techniques, other areas for improvement and research 
may include validation methods to verify the trip information and the 
transferability analysis of the data-processing algorithms and derived 
findings.
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