
Using Vector Quantizationfor Image ProcessingPamela C. Cosman, Karen L. Oehler, Eve A. Riskin, Robert M. GrayAbstractImage compression is the process of reducing the number of bits required to representan image. Vector quantization, the mapping of pixel intensity vectors into binary vectorsindexing a limited number of possible reproductions, is a popular image compression algorithm.Compression has traditionally been done with little regard for image processing operations thatmay precede or follow the compression step. Recent work has used vector quantization bothto simplify image processing tasks { such as enhancement, classi�cation, halftoning, and edgedetection { and to reduce the computational complexity by performing them simultaneouslywith the compression. After briey reviewing the fundamental ideas of vector quantization,we present a survey of vector quantization algorithms that perform image processing.1 IntroductionData compression is the mapping of a data set into a bit stream to decrease the number of bitsrequired to represent the data set. With data compression, one can store more information in agiven storage space and transmit information faster over communication channels. Suppose a sourceis producing symbols from an alphabet of size 2b at a rate of R symbols per second. Each symbolcan be described with an index that is b bits long. Because the rate of the source is Rb bits persecond, the data would need to be compressed to be transmitted over channels with capacity lessthan Rb.The two types of data compression are lossless and lossy. Lossless compression has the advantagethat the original information can be recovered perfectly from the compressed data. Short indices(less than b bits) are assigned to high probability symbols, and long indices (more than b bits)are assigned to low probability symbols. Lossless codes are variable rate because the number ofbits allocated to source symbols di�ers. Whereas the source would still produce R symbols persecond, only Rm � Rb bits per second are required on average to identify them. The compressionratio is de�ned as b:m, and is limited by the source entropy rate, a measure of the randomnessinherent in the source. For example, if all the source symbols are independent and equally likely(maximum randomness), a lossless code must have a bit rate that is no lower than Rb bits persecond. Alternatively, you could use a lossy code that operates at rates below the source entropyrate. Lossy compression introduces error into the data, so the original data cannot be perfectlyrecovered. Vector quantization (VQ) [1, 21, 59], described in the next section, is a popular algorithmfor lossy compression.An image compression system may serve as a front end for a digital image processor. Digitalimage processing is the processing of a two-dimensional set of data. Among others, it includes1



representation and modeling, enhancement, restoration, analysis and reconstruction. Images areoften processed in di�erent ways, and there are open questions about how the image processingoperations interact with each other. Which operation should be performed �rst? Which operationmakes another processing task simpler or more complex? This paper addresses the question: Doany image processing operations naturally and e�ectively combine with VQ algorithms? Two at-tributes of VQ suggest that such smart compression is possible. First, the VQ design techniques ofclustering and classi�cation trees have a long history of applications to image processing, includingenhancement and classi�cation. Second, since a VQ system uses a collection of possible imagereproduction blocks, an image processing routine can be applied to this set of blocks ahead of timerather than to the compressed image itself.By combining other signal processing goals into the design of the VQ, the compression systemcan be better customized for a particular application. Isolated examples of these ideas have appearedin the literature, but little attempt has been made to unify them as a common approach; this isour goal. We begin with a description of unstructured (full search) vector quantization and tree-structured implementations. We then examine a number of variations on the VQ design algorithmsthat allow for the incorporation of image processing into the compression system.2 Vector QuantizationVector quantization is an image compression algorithm that is applied to vectors rather than scalars,and it can be easily understood through scalar quantization. Scalar quantization maps a large setof numbers to a smaller one and includes such operations as \rounding to the nearest integer,"although in general the quantization levels do not have to be neither integers nor evenly spaced.Vector quantization rounds o� (or quantizes) groups of numbers together instead of one at a time.These groups of numbers are called input vectors, and the quantization levels are called reproductionvectors. To specify a vector quantizer, one needs the set of possible reproduction vectors and a rulefor mapping input vectors to the reproduction vectors. A two-dimensional example of a VQ isshown in Figure 1. The dots represent the reproduction vectors and the mapping rule is indicatedby the lines, which delineate the boundaries between regions. Any input vector lying in a givenregion maps to the reproduction vector in that same region.Another way of depicting this system is in Figure 2, which shows a VQ that operates directlyon image pixel blocks. The input image is parsed into a sequence of groups of pixels, possibly {2 � 2 squares as shown in the �gure, but larger squares and rectangles and other shapes are oftenused. The encoder views an input vector X and applies its mapping rule to select one of the Npossible reproduction vectors from its codebook. The chosen reproduction vector Yi is also calleda codeword and is (usually) a grayscale pixel block of the same dimension as the input block. Theindex i of Yi is binary. Notice that X and X̂ are slightly di�erent in Figure 2 to demonstrate thatVQ is a lossy compression technique. If the code has a �xed rate of b bits per input vector, then ihas length b. With a variable rate code, the indices i have variable length, and b is their averagelength. The compressed image is represented by these indices i, and the compressed representationrequires fewer bits. For example, for an 8 bit per pixel (bpp) original image, the input block requires4 � 8 = 32 bits. For a �xed rate code with 256 codewords in the codebook, each codeword hasan 8-bit index. Thus the compression ratio is 32:8, or 4:1. The decoder also has a copy of thecodebook, and it operates as a simple table look-up. Upon receiving an index i, the decoder puts2



Figure 1: 2-D example of VQ.out the stored codeword Yi.The operation of the decoder is thus completely described once we have speci�ed the codebook.The operation of the encoder requires a choice of the mapping rule. The basic Shannon sourcecode model provides an encoder that is optimal for a given codebook if the goal is to minimize anaverage distortion. If we assume d(X; X̂ ) � 0 measures the distortion or the cost of reproducingan input vector X as a reproduction X̂ , and if we further assume that the overall distortion (orlack of �delity) of the system is measured by an average distortion, the optimal encoder for a givencodebook selects the vector Yi if d(X;Yi) � d(X;Yj), all j.In other words, the encoder operates in a nearest neighbor or minimum distortion fashion. A fullsearch VQ is an unstructured collection of codewords. The encoder determines the closest one byan exhaustive search. A structured codebook uses a constrained search to speed up the encoding,but it is not guaranteed to �nd the overall nearest neighbor in the codebook.The choice of distortion measure permits us to quantify the performance of a VQ in a mannerthat can be computed and used in analysis and design optimization. By far the most commonlyused distortion measure for image compression is the mean squared error, in spite of its often citedshortcomings. Although there are many approaches to code design, the algorithms surveyed hereare all based on clustering techniques, such as the Lloyd (Forgey, Isodata, k-means) algorithm. TheLloyd algorithm has been described in detail in a variety of places (see, for example [1, 21, 24]).It iteratively improves a codebook by alternately optimizing the encoder for the decoder (using aminimum distortion or nearest neighbor mapping) and the decoder for the encoder (replacing theold codebook by generalized \centroids"). For squared error, centroids are the Euclidean mean3
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Figure 2: Vector Quantizer.of the input vectors mapping into a given index. Code design is usually based on a training setof typical data rather than on mathematical models of the data. For example, to produce a VQfor magnetic resonance chest scans, one begins with a set of 20 to 30 representative scans. Theseimages are divided up into training vectors, and the clustering algorithm is run on this set.3 Tree-Structured Vector QuantizationShannon theory states that VQ can perform arbitrarily close to the theoretical optimal performancefor a given rate if the vectors have su�ciently large dimension. Unfortunately code complexity growsexponentially with vector dimension. The practical solution to this \curse of dimensionality" is toconstrain the code structure. This solution results in codes that are not mathematically optimal;but it will likely provide better performance with implementable codes for a given rate. Thereare many common constrained code structures [1, 21], including lattice-based codes, classi�ed VQ,multistep VQ, product codes (gain/shape and mean removed), predictive VQ, �nite-state VQ, andtree-structured VQ. The only constrained code structure we describe here is tree-structured VQ(TSVQ) because it is used in several of the combined systems for compression and image processing.TSVQ avoids the full search of an unstructured codebook. Figure 3 depicts two simple binarytrees. In both cases, the codeword is selected by a sequence of binary decisions. Vector reproductionsare stored at each node in the tree. The search begins at the root node. The encoder compares theinput vector to two possible candidate reproductions, chooses the one with the minimumdistortion,and advances to the selected node. If the node is not a terminal node (leaf) of the tree, the encodercontinues and chooses the best available node of the new pair presented. The encoder producesbinary symbols to represent its sequence of left/right decisions. The stored index is then a path4



map through the tree to the terminal node, which is associated with the �nal codeword. The twotrees di�er in that the one on the right is balanced and all indices have the same length R. Thistree yields a �xed rate code. The other is unbalanced and has indices of di�ering length. Here theinstantaneous bit rate { the number of bits per input vector or pixel { changes, but the averagerate is constrained. Like a lossless code, an unbalanced tree gives the code the freedom to allocatemore bits to active areas and fewer bits to less active areas such as background. The goal inlossy compression, however, is to choose long or short codewords to minimize average distortionfor a given bit rate, not to match improbable or probable vectors as in lossless coding. The searchcomplexity of a balanced tree is linear in the bit rate instead of exponential but at the cost of aroughly doubled memory size. For unbalanced trees the search complexity remains linear in theaverage bit rate, but the memory can be considerably larger unless constrained.������ HHHHHj
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Figure 3: Unbalanced and balanced trees.Growing TreesTree-structured codes are designed by combining clustering with ideas from classi�cation and re-gression tree design [3]. Classi�cation trees apply a sequence of tests to an input to classify it.The general philosophy of classi�cation tree design is a gardening metaphor: First grow a tree andthen prune it. To grow a TSVQ, one begins with a set of training vectors and calculates theircentroid. This centroid is the optimum rate 0 codeword and is associated with the root node. Thecluster of data is then split into two subclusters. The split can involve perturbing the root nodecentroid slightly and associating the root node centroid and its perturbation with the two new childnodes. The iterative clustering algorithm is then run on the pair. The data points shift back andforth between the two subclusters until the subclusters stabilize, and their centroids represent thecodewords at the �rst level of the tree. There are now two quite di�erent options.Split all terminal nodes (balanced trees):The tree can be extended by simultaneously splitting the two clusters associated with the twocurrent terminal nodes and running the iterative clustering algorithm on each pair. For each current5



terminal node, only the training vectors in that node's cluster are used to design the node's children.The clustering algorithm will eventually converge for all the split clusters to give a new balancedtree with four nodes in the second level. One continues to grow the tree in this manner. Thistechnique is depicted in Figure 4. ������ HHHHHj0 1 ������ HHHHHj



� JJJĴ 



� JJJĴ0 10 1 0 1Figure 4: Growing a balanced tree.Balanced trees have two clear drawbacks. As the tree grows, some nodes may become sparsein training vectors, and the resulting clusters may not generalize well to outside data. Some nodesmay even be empty and will waste bits. Also, there will likely be too many codewords to representinactive vectors and too few to represent active vectors.Split one node at a time (unbalanced trees):An alternative design paradigm is to split nodes one at a time rather than an entire level ata time. After the level one codebook has converged, one chooses one of the two child nodes tosplit and run a clustering algorithm on that node alone to obtain a new unbalanced tree with threeterminal nodes. One then repeats the procedure, choosing one of the three nodes. This continuesuntil the tree reaches the desired average rate. The two common methods of choosing which nodeto split are not optimal. The �rst is to split the node with the largest contribution to the averagedistortion [42]. The second approach is optimal in an incremental or greedy fashion. Splitting anode causes an increase in average rate, �R, and a decrease in average distortion, �D. We splitthe node that maximizes the magnitude slope j�D=�Rj to get the largest decrease in averagedistortion per increase in average bit rate [62]. This splitting algorithm is a natural extension of afundamental design technique for classi�cation and regression tree (CARTTM) design [3].Pruning TreesWhether balanced or unbalanced, the growing algorithm is greedy and does not consider the impactthat the current split has on future splits. Furthermore, even the unbalanced tree can result insparsely populated or improbable nodes that cannot be fully trusted to typify long run behavior.A solution to both these problems is to prune the tree [6]. Pruning removes a node and all itsdescendents and hence reduces the average bit rate and increases the average distortion. The ideais to minimize the magnitude of the increase of average distortion per decrease in bit rate, j�D=�Rj(the same quantity we maximized in growing the tree). Because we have the entire tree, we canconsider the e�ect of removing entire branches rather than individual nodes. Thus, we can �nd theoptimal subtrees of an initial tree that provide the best distortion-rate tradeo�. The optimal TSVQsof decreasing rate formed by pruning an initial tree are nested (form embedded codes) which makes6



the pruning algorithm work e�ciently. These codes have a successive approximation character inthat the distortion decreases on average as the bit rate increases.The advantages of variable rate TSVQ are that it usually yields lower distortion than �xed ratefull search VQ for a given average rate and block size, encodes with a sequence of binary decisions,and has a simple design algorithm. It also has a natural successive approximation (progressive)property and is well matched to variable rate environments such as storage or packet communica-tions.4 Digital Image Processing and VQDigital image processing can be divided into several di�erent classes of applications, includingrepresentation and modeling, enhancement, restoration, analysis, and reconstruction. Typically,when one processes a compressed image, the steps are cascaded as shown in Figure 5. The originaldata are �rst compressed and stored as a list of codeword indices. The decoder reads in the indicesand generates the decompressed data set (reconstructed image), thereby expanding the compresseddata �le back to its original size. In Figure 5, the decompressed data look slightly di�erent fromthe original data to indicate that although the �le sizes are the same, the decompressed data arenot the same as the original due to the VQ. The processor operates on the decompressed data togenerate the processed result. The decompressed data and the processed result are shown di�erentlyin Figure 5 to indicate that the processed information may not even be an image.originaldata -encode6:::codebook indices -decode6:::codebook ��decompresseddata -process "!# processedresultFigure 5: Separate sequential decoding and processing steps with intermediate �le generation.Several ways of combining the decoding and processing steps have appeared in the literature.The simplest of these ways merely eliminates the need for the intermediate decompressed data �le.As the decoder retrieves blocks from the codebook, the blocks are immediately sent for processing.This situation is diagramed in Figure 6. As we discuss in Section 8, this combination might beuseful when the original data set is very large (e.g., 3-D data of size 512 � 512 � 512 pixels at 8bpp = 134 Mbytes) and the processed result is much smaller. In this case, one may not be able toaccommodate the entire decompressed data set even briey on the system.What characteristics of the processing let it be combined with the decompression step? Clearlythe processor must be able to operate on subblocks of the image that are no larger than the sizeof the codewords. In addition, the codewords must be processed independently of each other or atleast of the blocks which have not yet been decompressed. In general, a subblock can be anythingfrom a single point to the whole image. The key issues in combining processing with VQ are7



originaldata -encode6:::codebook indices -decode & processeach index6:::codebook "!# processedresultFigure 6: Sequential decoding and processing steps with no intermediate �le.the size of the operational subblocks and whether the subblocks are processed in an independent(nonoverlapping) or dependent manner. If, in addition to operating independently on codeword-sized subblocks, the processor also depends only on information available at the time of codebookdesign, then the system in Figure 6 can be further simpli�ed. At the time of codebook design, eachcodeword is processed as if it were a subblock of an image. Each codeword is then linked to theresult of processing the codeword, as shown in Figure 7. This result may be another image subblock(a processed version of the codeword), or it may be a piece of information (e.g., a class assignmentfor the image subblock or a determination of edge orientation within the subblock). We use a circleto represent the result of processing the codeword to di�erentiate it from the original codewords.:::codebook -process m m:::linkedcodebookFigure 7: Perform processing on the codebook.The processing is done o�-line at the time of codebook design, and the decoder codebookcontains the codewords and processed results linked together. When the system decompresses animage, the decoder can put out the codewords, the processed result, or both, and no additional timeis required. This system appears in Figure 8; most of the image compression/processing algorithmswe will describe are based on this �gure.A trivial example of combining VQ and image processing is thresholding, which operates on agrayscale image in a pointwise manner. The VQ is designed as usual, and each pixel in each codewordis thresholded to produce the linked codebook. When the codebook is used for decompression, thedecoder can select the output from either the original or the thresholded codewords. Thus, athresholded compressed image can be obtained for no postprocessing costs.What are the costs in combining VQ and image processing? First, the decoder must store theprocessed codewords, which requires varying amounts of storage space. Second, if the process-8



originaldata -encode6:::codebook indices ����--decode6m m:::linkedcodebook �� decompresseddata����processedresultFigure 8: Combined decoding and processing steps.ing step normally depends on the entire decompressed image, the results obtained by processingthe codewords o�-line would be di�erent from the results usually obtained. Thresholding, how-ever, works on independent blocks (pixels) and therefore the results obtained by thresholding thecodewords in advance or thresholding the decompressed data �le are clearly the same.Even the simple thresholding case may not be as straightforward as described. One may wantto modify the standard VQ design algorithm based on the processing operation that follows. Withthresholding, many codewords may map to the same thresholded vector, and one could modify thedesign algorithm not to waste those codeword indices. This situation is diagramed in Figure 9, andclassi�cation applications based on this model are discussed in Section 6.originaldata -encode6:::codebook frommodi�eddesign algorithm
indices ����--decode6m m:::linkedcodebook �� decompresseddata����processedresultFigure 9: Combined decoding and processing steps, where encoder's codebook has been modi�edby knowledge of processing.All the examples in the literature follow one of these models. In the sequel we introduce avariety of image processing operations that can be combined with VQ. We consider the key issuesof operational block size, block independence, and the need for altering the VQ design.9



EnhancementThe goal of image enhancement is to accentuate certain features of the image for subsequent analysisor display. Examples include contrast enhancement, pseudocoloring, noise �ltering, sharpening,and magnifying. VQ has the innate ability to remove \speckle" noise because of the smoothing oraveraging performed by the centroid operation. For medical images, it was suggested in [53, 9] thatslightly compressed images yielded marginally better diagnostic accuracy and subjective qualityratings than did original images. Of course, such smoothing can be considered as enhancement onlyif the speckle is indeed undesirable noise and not the signal of importance. A discussion of the useof data compression (not speci�cally VQ) for �ltering random noise is given in [45].Histogram equalization (HE) is a powerful tool for contrast enhancement. Global HE remapspixel intensities in a pointwise fashion (thus subblock size = 1�1) with a remapping function basedon the histogram of the entire image (size = N�N). Despite the discrepancy in the two block sizes,neither of which is suitable for VQ, the operation can be made compatible with VQ by substitutingthe histogram of the training images used to design the VQ for the histogram of the decompressedinput image. Global and adaptive histogram equalization are described in Section 5.Classi�cation and AnalysisScene analysis and image understanding range from character recognition and medical image analy-sis to automatic defect analysis and cartography. Most such problems require examination of blocksconsiderably larger than a VQ vector, but the algorithms usually begin with low-level operationson small blocks. A VQ can be used for this low-level classi�cation or detection, and the low-levelclassi�cation itself may be useful. Examples of classi�cation and edge detection are given in Sec-tions 6 and 7. Classi�cation and analysis problems are often solved with tree-structured methods,and thus a natural meld with tree-structured VQ may exist.VisualizationScienti�c visualization is the use of computer graphics techniques for displaying experimental orsimulated data. Visualization includes techniques for displaying volumetric (3-D) scalar �elds as2-D images. Such 3-D arrays of digital data representing spatial volumes arise in many scienti�capplications, including medicine, nondestructive evaluation, astrophysics, and meteorology. Isosur-face generation is the construction of a polygonal model which approximates a contour surface inthe volume, thereby extracting and displaying a single surface from the volumetric data. Anotherexample is volume rendering, which treats the entire 3-D scalar �eld as a collection of sources andattenuators and integrates these contributions along the viewing direction to form a projected imageof the translucent volume. Section 8 presents an algorithm for combined VQ and volume renderingthat provides storage savings and may yield faster rendering.Reconstruction and RepresentationHalftoning is the conversion of a grayscale image to a bilevel image suitable for display on a binarydevice. A combination of compression and halftoning would be useful for transmitting images byfacsimile, transmitting images to printers, and storing images for display on monochrome monitors.10



This problem has been examined by Vander Kam et al. [34, 35] and is discussed in Section 9.One particular halftoning process, error di�usion, is particularly challenging to combine with VQbecause it is a neighborhood process.Image reconstruction encompasses manymethods of generating images from raw data. Examplesinclude reconstruction of medical CT images from 1-D projections and reconstruction of syntheticaperture radar (SAR) images from complex radar returns. Because of the nature of the signalprocessing required by the SAR processing, VQ can be used to simplify reconstruction computationsfollowing compression. This technique is described in Section 10.5 Contrast EnhancementHistogram equalization is a contrast enhancement method for increasing the dynamic range ofimages to bring out features hidden in dark regions or washed out by light areas. Histogramequalization remaps each pixel to an intensity proportional to its rank among surrounding pixels[32]. Transforming each pixel according to the inverse of a cumulative distribution function alters thehistogram or empirical distribution of the pixel intensities. If the cumulative distribution function isthe empirical distribution of the image, the result is a more uniform distribution of pixel intensities.Histogram equalization e�ectively widens the perceived dynamic range of the image.In global histogram equalization, one calculates the intensity histogram for the entire image andthen remaps the intensity of each pixel to be proportional to its rank in this global histogram. Asingle, global remapping function does not provide much exibility. For example, in the originalimage of Figure 11, the dark areas of the cortex have intensities in the range of 70{80, and thebrighter pixels have intensities > 110. A function that maps pixels in the range of 70{80 to lowervalues, and maps pixel intensities > 110 to higher values would enhance the contrast between thevarious structures in the cortex. In the spinal column area, however, the vertebrae have intensitiesin the range of 70{80, and the intensities of the darker interstices between the vertebrae range from30{40. In this area of the image, the remapping function should map 70{80 to higher values and30-40 to lower values, to make the vertebrae more clearly distinguishable from their surroundings.Global histogram equalization, however, uses only one mapping function for the entire image.This problem is addressed by adaptive histogram equalization (AHE), in which the histogramis calculated for pixels in a context region (usually a square) and the remapping is done only forthe center pixel of the square. This can be called pointwise histogram equalization because, foreach point in the image, the histogram is calculated only for the square context region centered onthe point and that point alone is remapped. Because this is computationally intensive, the bilinearinterpolative version is an alternative to lower the computational complexity [57]. It calculates thehistogram for only a set of nonoverlapping context regions that cover the image; the remappingof pixel intensity values is then exact for only the centers of these context regions. For all otherpixels, a bilinear interpolation from the nearest context region centers determines the appropriateremapping function.With the bilinear interpolative AHE, the remapping function for a given pixel of intensity i atlocation (x; y) is determined from the nearest four context regions as shown in Figure 10. If m+�denotes the mapping at the grid pixel (x+; y�) to the upper right of (x; y) and similar subscriptsare used for the other surrounding context regions, the interpolated AHE result is given by11
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Figure 10: Bilinear interpolative adaptive histogram equalization.m(i) = a[bm++(i) + (1 � b)m�+(i)] + (1)[1� a][bm+�(i) + (1� b)m��(i)];where a = y � y�y+ � y� ; b = x� x�x+ � x� : (2)Pixels in the border regions of the image are handled separately by using a linear interpolation fromthe two nearest context region centers or, in the corners, using only a single remapping function. A256 � 256 pixel image typically has sixteen 64 � 64 context regions.Combined VQ and Histogram EqualizationInstead of performing the decoding and equalizing operations sequentially, one can perform themsimultaneously by equalizing the decoder's codebook o�-line at the time of codebook generation[8]. Although the histograms of the future test images are not available at the time of codebookgeneration, the histogram of the training sequence is available. The intensity distribution of thetraining set must be very similar to that of the test set for a VQ codebook to work well, and thehistograms would likely be quite similar.We implemented combined VQ and global histogram equalization by constructing the globalhistogram for the training set and equalizing the codebook with this global histogram. Each pixelof each terminal node remaps to a new intensity proportional to its rank in the global histogram.The new codewords are stored at the decoder along with the original codewords. The resultingsystem follows the model of Figure 8. In this application, the original data, the decompresseddata, and the processed result are all 256 � 256 grayscale images. The radiologist can view eitherthe equalized or the unequalized series of compressed scans (or both); both ways require the sameamount of time to reconstruct the image.The simultaneous combination of VQ and AHE is not straightforward. AHE remaps a pixel'sintensity using a histogram local to that pixel, so one must know the pixel's spatial location in12



Figure 11: Original image.addition to its intensity to determine the appropriate remapping function. AHE cannot be simplyapplied to VQ, because although the intensity of any pixel in a codeword is known, its \location"is unknown. Because the codewords represent centroids of clusters of training sequence vectors,the concept of a codeword's \location" within the training images is vague, because the codewordlikely does not exist in any of the images. We divided each training image into the sixteen contextregions shown in Figure 10 [7]. The pixels from the corresponding regions of the training imageswere pooled to form sixteen di�erent intensity histograms. The codewords were equalized usingeach of the sixteen di�erent histograms, and the resulting equalized versions of the codewords werestored at the decoder along with the original codewords. Because the input image is scanned ina �xed raster order, the spatial location of each vector was known to the decoder. The decoderautomatically generated the coe�cients a and b from Eq. 2 for the input vector location and selectedand linearly combined the four equalized versions of the codeword. The resulting system followsthe model in Figure 8, with the reproduction vectors linked to sixteen di�erent equalized versionsof themselves. The system di�ers slightly from the model in that a small amount of post-processing(the linear combination) is required at the decoder.To demonstrate combined AHE and VQ, an unbalanced tree was grown to an average depth of 2bpp on a training sequence of 10 magnetic resonance (MR) mid-sagittal brain scans of 10 di�erentsubjects. The 256� 256 training images were blocked into 2� 2 vectors. The tree was pruned backto 1.7 bpp and each leaf codeword equalized over the sixteen histograms from the training sequence.Figure 11 shows the original test image, which is not in the training set. Figures 12 and 13 showthe regular compressed and adaptively histogram equalized compressed images. The image qualityof the equalized compressed image is very high, and its contrast is enhanced. The invaginations ofthe cortex are more obvious, and the vertebrae are more clearly di�erentiated from the interstitial13
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Figure 12: Regular compressed image at 1.78 bpp.

Figure 13: Adaptively histogram equalized compressed image at 1.78 bpp.14



6 Classi�cationCombining vector quantization with classi�cation is natural because both techniques can be designedand implemented using methods from statistical clustering and classi�cation trees. The goal ofsuch a combination is to incorporate classi�cation information into the codewords by classifying thecodewords themselves during code design. By combining VQ and low-level classi�cation, certainsimple features in an image can be classi�ed automatically as part of the compression process.The classi�cation requires no more bits to describe than those required for compression alone, animportant feature in low memory or low bandwidth situations. Such a combination can be used tohighlight regions in the reconstructed image belonging to a speci�c class or to provide an e�cientfront end to more sophisticated full-frame recognition algorithms. If the VQ output is intended forclassi�cation, the compression design can provide better performance than if the quantization andclassi�cation algorithms were designed independently.The notion of using a VQ to classify is implicit in the classical nearest neighbor (NN) classi�-cation algorithms [17, 10]. The NN classi�er is constructed by labeling every training vector by itsclass and then using the entire training set with the corresponding classes as a VQ for future vectors.A new vector is classi�ed by �nding its nearest Euclidean neighbor in the training set and thenassigning the label of that nearest neighbor to the new vector. In this case, the entire training set isthe codebook, which can be extremely large. Although this can be considered as an application ofVQ to classi�er construction, little compression of the input is realized if the training set is large.One can reduce the codebook size by by eliminating a subset of codewords whose removal causesthe least damage to the classi�er performance [28, 20, 12]. Instead of applying explicit clusteringto minimize the squared error of a reduced set of labeled templates, the nearest neighbor literatureconsiders classi�cation error (or Bayes risk) when reducing the codebook size.An early example of using VQ for joint classi�cation and compression was described by Hilbert[30]. Hilbert applied clustering techniques to training vectors to produce a code in a mannersimilar to the Lloyd algorithm. The resulting codewords were labeled using a maximum likelihoodclassi�er developed from the training data. When these codewords were used for encoding, thelabels provided simultaneous classi�cation. An adaptive clustering algorithm produced variable sizecodebooks that better represented variations in the training data. Lossless source coding appliedto the encoder output further reduced the bit rate. The algorithm was applied to multispectralLandsat images, which were both compressed and classi�ed into eight classes of crop types. Thismethod follows the model in Figure 8, in which the VQ decoder can either put out codewords for theinput vector or the classi�cation of the input vector. In Hilbert's case, the data classi�cation wasnot incorporated into the clustering algorithm. Thus, the design algorithm was essentially a cascadeof separate compression and classi�cation steps, although the overall system provided simultaneouscompression and classi�cation.More recent methods modify the clustering algorithm used to design a VQ to improve classi-�cation ability. Such a system has the form of Figure 9. Perhaps the best known such techniqueis that of Kohonen et al. [36, 38, 37], who proposed a variety of learning vector quantizers (LVQ)to perform classi�cation using a VQ encoder and codebook. The encoder operates as an ordinaryminimum mean squared error selection of a representative from the codebook but the codebookis designed to attempt to reduce classi�cation error implicitly rather than reducing mean squarederror. Kohonen argued that for the case of Gaussian data, the partition induced by a VQ can ap-proximate that required for a Bayes estimator; his algorithm is based on this intuition. Kohonen's15



approach has been widely used for classi�cation of such disparate applications as the classi�cationof speech sounds [14], of objects in clutter in synthetic aperture radar [27], of proteins [44], of birdsongs [47], of oceanic signals [22, 4], and of texture [43].Kohonen's algorithm is similar to Stone's general formulation of nearest neighbor methods forparametric regression, in which a general weighting dependent on class membership of severalnearest neighbors can be applied to the classi�er [64]. Viewed in this way, Kohonen's algorithmcan be considered a clustered simpli�cation of the nearest neighbor approach. As in the nearestneighbor classi�er, compression ability is not explicitly considered in LVQ. Kohonen's general goalwas to imitate a Bayes classi�er with less complexity than other neural network approaches, butthere is no explicit minimization of classi�cation error in the code design.We describe a method of explicitly combining classi�cation and compression using TSVQ in [51].The training set is classi�ed by determining those features to be recognized in subsequent images.In this example, aerial photographs are hand-labeled by a human observer as regions of man-madeor natural objects. This a priori knowledge is used when designing the TSVQ codebook to improvethe classi�cation accuracy over that of ordinary TSVQ.Because the classi�cation and compression are done simultaneously, one tree-structured searchboth encodes and classi�es each image subblock. Stored with each codeword in the codebook is alabel for the best class prediction for image subblocks that map into it. The best predictive class fora given codeword is determined by a majority vote of the a priori class assignments of the trainingvectors represented by that codeword. This classi�cation rule is essentially an empirical maximuma posteriori (MAP) classi�er based on the VQ output, where the necessary conditional probabilitiesare estimated by the relative frequencies when the VQ is applied to the training set. Once theencoder selects the best codeword, the preliminary classi�cation of the subblock is a simple tablelookup; no other computations are required. In e�ect, this classi�cation comes \for free" once thecodebook has been designed o�-line.The classi�cation accuracy can be explicitly incorporated into the VQ design through the nodesplitting strategy. Three splitting strategies are natural:Criterion 1 (Ordinary TSVQ) Split the node with the largest j�D=�Rj as in Sec-tion 3, yielding ordinary greedily grown TSVQ for comparison.Criterion 2 Split the node that is \worst" in terms of percentage of misclassi�ed train-ing vectors.Criterion 3 Split the node that is \worst" in terms of number of misclassi�ed trainingvectors.The encoder and the centroid reproduction levels are chosen to minimize squared error. The �rstsplitting criterion represents an ordinary TSVQ codebook design method, but the latter two splittingcriterion represent a modi�ed design method for constructing a codebook with reduced classi�cationerror.In [51] the training set consisted of �ve images. The images were 512�512 8-bit grayscale aerialphotographs of the San Francisco Bay area. Each 16 � 16 pixel subblock in the training set wasclassi�ed as either man-made or natural. The original test image is shown in Figure 14.Each of the splitting criteria was used to construct a TSVQ codebook at an average bit rateof 0.5 bpp. A test image outside the training sequence was encoded with the resulting codebooks.Compression and classi�cation ability results are shown in Table 1. The compression ability is16



Figure 14: Original aerial image (8 bpp).Criterion: 1 - Ordinary TSVQ 2 3Test PSNR (dB) 23.4 22.8 22.7Test classi�cation ability 0.71 0.74 0.75Table 1: PSNR and classi�cation ability using TSVQ codebooks grown using various splittingcriteria.measured by the peak signal to noise ratio (PSNR). The classi�cation ability is measured by thefraction of vectors classi�ed correctly by the encoder to the classi�cation standard created by thehuman observer. In general, the �rst splitting criterion provided the lowest mean squared error inthe encoded images at the expense of reduced classi�cation ability. The other splitting methodsprovided poorer compression ability (the encoded images were slightly more blocky in appearance)but better classi�cation ability for the test image. Choosing the splitting criterion involves a tradeo�between compression and classi�cation quality; some splits serve one purpose better than the other.This example demonstrates how knowledge of the subsequent processing can be used to modify thecodebook design algorithm to improve the subsequent processing. Again, this is the situation wehave illustrated in Figure 9.Ideally, the compressed images would be viewed as a color image so that the classi�cation in-formation could be indicated by color superimposed on the grayscale reconstructed image. Such acontrast makes the natural and man-made features of the image easier for a human viewer to di�er-entiate. Because it is di�cult to display the compression and classi�cation results simultaneously ina grayscale image, the results are shown separately here. Experimental data are shown for imagesencoded and classi�ed with a codebook grown using the second criterion. Figure 15 shows the imagecompressed to 0.5 bpp. In Figure 16, the subblocks classi�ed as natural are displayed directly while17



the subblocks classi�ed as man-made are replaced by solid white blocks. The classi�cation abilitywas modest; at 0.5 bpp the best classi�cation encoder still had 25% misclassi�cation error on thetraining sequence. This large error partly reects the quality of the training sequence, however.The hand-labeling was a�ected by the human observer's resolution and consistency limitations.The classi�cation results were comparable to results from the CARTTM algorithm, a traditionaltree-structured classi�cation technique [3].

Figure 15: Image compressed at 0.46 bpp using a compression/classi�cation encoder.Another approach to using VQ to compress and classify explicitly incorporates a Bayes riskcomponent into the distortion measure used for code design; this trades o� mean squared errorwith classi�cation error [52]. Suppose that one wants to classify the input signal as being in one oftwo classes (say 0 or 1) and that the cost of misclassifying a vector in class k as being in class j isCk;j. Assume that Ck;k = 0. Given a classi�er h(i), which assigns a VQ index i to a class 0 or 1,the Bayes risk is given by B = C0;1Pr(h = 1 and X is in class 0) +C1;0Pr(h = 0 and X is in class 1):One can replace the usual design goal of minimizing an average distortion E[d(X; X̂)], such as meansquared error, by a modi�ed average distortion E[d(X; X̂)] + �B, where � is a Lagrange multiplierby which the relative importance of average distortion and Bayes risk can be adjusted. The averagedistortion depends only on the VQ encoder and decoder, whereas the Bayes risk depends only onthe VQ encoder and on the classi�er function h. A variation of the Lloyd algorithm that resemblesthe optimization used in entropy-constrained VQ [5] can be run to minimize the modi�ed averagedistortion: Given an initial codebook (possibly designed to minimize squared error alone) and a18



Figure 16: Image compressed at 0.46 bpp using a compression/classi�cation encoder where man-made subblocks are replaced by solid white subblocks.classi�er (possibly an empirical Bayes classi�er based on conditional probabilities in the labeledtraining set), the following iteration is performed:� Encode the training data by choosing the VQ index i for each input vector that minimizes themodi�ed distortion, (squared error) + (� � conditional Bayes risk), resulting from mappingthe input into VQ index i.� Update the reproduction vectors corresponding to the VQ indices by computing the Euclideancentroids of the training vectors mapping into them.� Update the classi�er decision for each VQ index by using a Bayes classi�er on the labeledtraining data.The iteration is continued until further improvements are negligible. Like the Lloyd algorithm,this is a descent algorithm, and results in a reduction of the average modi�ed distortion at eachstep.The conditional probabilities Pr(X is in class kjX) needed to compute the Bayes risk withinthe training set are simple fractions depending on how many times the observed vector occurswith a speci�c class label. Outside the training set these probabilities must be based on a model orempirically estimated. Alternatively, outside the training set one can use the simple but suboptimalencoder, which simply minimizes Euclidean distance, as LVQ does.This method has been used to analyze simulated data, identify pulmonary tumor nodules incomputerized tomography (CT) images, and identify man-made regions in aerial images [52]. ForCT images, the algorithm was used to design a VQ codebook that both compressed the images19



Figure 17: CT image compressed at 2 bpp using a compression/classi�cation encoder.and classi�ed vectors in the images as tumor or nontumor. The locations of the tumors weredetermined by radiologists, and 2� 2 training vectors were labeled accordingly. A 2 bpp full searchcodebook was constructed using unbalanced classi�cation costs, making missed tumors 100 timesmore detrimental than false alarms. Compression results on a CT image outside the training setare shown in Figure 17. This image contains three circular tumors in the left lung. The resultingclassi�cation of this image is shown in Figure 18. The algorithm correctly identi�es substantialparts of each of the three tumors. The classi�cation here involves no extra decoding complexitywhen implemented and is based entirely on small blocks with no context. It is signi�cantly simplerthan many other recognition algorithms and can provide a useful front end to more sophisticatedalgorithms yielding an overall performance improvement and complexity reduction.Recent work by Owsley and Atlas used multidimensional ordering of VQ codebooks in classi�ca-tion of vector-series patterns (such as spectrograms) [54]. By structuring the codebooks so that therelative positions of the codevectors in the codebook correspond to distances between codevectors,they made the codevector indices a meaningful representation of the information in the vectors.They were then able to classify based on the series of indices. Classi�ers such as neural networks,which would be overloaded by the presentation of the entire spectrogram, bene�ted from the moree�cient representation.7 Edge DetectionVariable rate VQ has some inherent edge-detecting properties. A variable rate TSVQ usually usesmore bits for regions of greater activity (such as edges) and fewer bits for homogeneous or inactiveregions. The number of bits allocated to a particular block provides information about the block.20



Figure 18: CT image compressed at 2 bpp using a compression/classi�cation encoder where lightregions represent vectors classi�ed as tumor.This is illustrated in the instantaneous rate image of Figure 19. The original image of Figure 11has been encoded with 2 � 2 blocks to an average rate of 1.8 bpp, with the encoding depth from 4to 18. The blocks at the greatest depths are shown in white, those with the shortest path lengthsare displayed in black, and the depths in between are in shades of gray. The edges around the headas well as some of the internal edges are clearly visible from the instantaneous rate picture.In another example of using VQ for edge detection, VQ has been used to implement gradientmagnitude edge detection [33]. The second directional derivative edge detector described in [25, 26]combines naturally with VQ because it works on small image blocks (typically 5� 5 or 7� 7). ThisVQ-based edge detector also �ts into the scheme diagramed in Figure 8.The second directional derivative edge detector estimates the gradient magnitude at each pixellocation in the image with a facet. The facet models a digital image as being derived by sampling acontinuous underlying grayscale intensity surface. This surface can be represented by a low-degree(usually quadratic or cubic) bivariate polynomial. The gradient direction and magnitude, the seconddirectional derivative in the direction of the gradient, and the contrast are all obtained in terms ofthe facet polynomial coe�cients. The center pixel of the block is labeled as an edge pixel if thesecond directional derivative in the direction of the gradient has a negatively sloped zero crossingwithin a threshold radius of the center of the pixel and if the edge contrast exceeds a thresholdvalue.The VQ-based edge detector is applied to each codeword in a codebook and the edge/no edgeinformation is stored with the codeword. Edge detection is then performed by VQ encoding andtable lookup of the edge information. The VQ encoding di�ers from ordinary VQ in that a slidingblock is used so that every pixel in the image appears as the center of a block. Usually, the image21



Figure 19: Instantaneous rate image.is tiled in a nonoverlapping manner. This algorithm is a \trainable edge detector," which has lowercomputational complexity than a conventional gradient edge detector. Further complexity can besaved by encoding with larger VQ blocks to determine edge information for multiple pixels at onetime.The VQ-based edge detector was applied to a motion sequence obtained from a camera mountedon a mobile robot in an outdoor environment, using a greedily grown unbalanced TSVQ with 5� 5vectors at a rate of 6 bits per vector [33]. Because we are using a sliding block VQ so that every pixelappears in 25 di�erent vectors, the e�ective bit rate is 6 bits per pixel. The VQ was trained on the�rst frame of the motion sequence and tested on the next 20 images of the sequence. The result wascompared to the case in which the second directional derivative edge detector was applied directlyto the original test image (with no encoding). The comparison showed that all dominant edges inthe original image are detected in the compressed image at this rate and, in fact, the algorithm gavefewer false positive edges by rejecting many high frequency low contrast texture edges. At the sametime, it preserved the low frequency high contrast edges. Recent extensions to this work includea supervised classi�cation scheme that uses human input to reclassify the output of the VQ-basededge detector; this is similar to using VQ for classi�cation as described in Section 6.8 Volume Rendering3-D scalar �elds arise in many applications. Empiric measurements of sonic waveforms or tomog-raphy radiation are processed to obtain density samples of a solid over a 3-D volume. In othercases, such as the stress distribution over a mechanical part or the pressure distribution within auid reservoir, the 3-D scalar �elds are calculated numerically using �nite di�erence or element22



techniques. The data set typically represents volume elements (voxel) samples of some scalar �eldf that are available on a cubical grid. The goal of visualizing the data is to understand the spatialdistribution of the �eld values over the domain on which the function is de�ned. This can be donewith volume rendering, which generates a 2-D image from the 3-D data set. The volume renderercomputes an image by assuming a translucent material model and a lighting model and then ren-dering from a given point of view. The volume renderer forms an image in two stages: shading andray tracing.Shading requires the assumption of a material model that assigns a color, c; and an opacity, �, toeach point in the volume. In a simple material model, color and opacity are user-de�ned functionsof the scalar �eld value alone. In a more complicated implementation, the volume is modeled asa composition of one or more materials [13], and either the material composition of each voxel isprovided directly or classi�cation is used to estimate these percentages from the original data. Inthis model, values of c and � are assigned to each material and are calculated from the materialcomposition in each voxel. In addition, the surface physics within the volume are approximated byassigning to each material a density characteristic, �. A surface is considered to occur within thevolume whenever two or more materials with di�erent � values meet. The strength of the surface isproportional to both the magnitude of the di�erence in � and the sharpness of the transition fromone material to the other. The surface normal vector (nx; ny; nz) can be required by the volumerenderer so that the color value can incorporate directional shading and the gradient magnitudek 5f k can inuence the opacity level.The ray tracer integrates the color and opacity values along each of a set of rays passing from achosen viewpoint though the volume. It resamples the c and � values along each ray and compositesthe samples. The computation consists of incrementing the position, resampling c and � with atrilinear interpolation from the surrounding voxel values, and blending the sample into the pixel ofthe �nal 2-D image.Such a volume rendering system typically processes the data in raw, uncompressed form. Forlarge data sets, the storage used by these methods is very high and rendering speed is generallyslow. For example, even if only a single 8-bit value of the scalar �eld f is stored for each voxel,the complete original (or decompressed) �le will amount to 134 Mbytes for a 512 � 512 � 512voxel array. Depending on the complexity of the material and lighting models, and depending onwhether the user wants to render the same material model from di�erent viewpoints without havingto recompute values, the �le may be expanded to include the various derived quantities, yielding asmany as seven values for each voxel: ff; nx; ny; nz; k 5f k; c; �g.Combined VQ and Volume RenderingNing et al. showed VQ to be a particularly useful technique for compressing volumetric data [50].In addition to providing a respectable amount of compression, VQ meets two criteria speci�callyimportant for pipelining it with volume rendering. VQ provides fast (table lookup) decoding sothat rendering is not slowed by the decompression. VQ also allows random access to voxel values,which is advantageous because voxel access patterns are viewpoint dependent. Capitalizing onthese advantages, Ning et al. [50] implemented a system in the form of Figure 6. A separate VQcodebook was designed for each volume to be compressed. In this case, the codebook must bestored in addition to the list of indices and the compression ratio cited must include the codebook.When the volume is visualized, the renderer performs the shading and ray tracing steps directly23



on the decompressed data as they arrive. The algorithm was tested on a uid ow data set.Only the scalar �eld values were stored for each voxel. This combined system provided excellentimage quality with 17:1 compression and only a modest 5% increase in rendering time. Recreatingthe entire decompressed �le was not necessary, and thus the 17:1 storage savings were retainedthroughout the entire processing operation.In further work [48, 49], Ning et al. showed that the shading and ray tracing steps could beaccelerated by performing precomputations on the codebook before decoding. The system di�ersslightly from the model in Figure 8, in which the processing on the codebook is only done onlyonce at codebook generation time. In volume rendering, because the user typically wants to selectwhich colors and opacities correspond to the di�erent features in the volume, c and � cannot becalculated at the time of codebook generation but must wait for the user to specify the correspon-dence immediately prior to decoding. At this point, the rendering can be sped up by performingthe c and � calculations on only the codebook rather than by decompressing the full volume andcalculating the values for each voxel in the decompressed volume. The ray tracing step can also beaccelerated. Each codeword in the codebook can be ray traced from the user-speci�ed viewpointto form a set of projected bit maps. This step involves trilinear interpolating of the c and � valuesand combining them for the samples within each codeword. When the volume is decompressed, theentire volume can be ray traced by stepping from block to block and compositing the samples fromthe appropriate precomputed bit maps. Compared to the standard ray tracer for full volumes, timeis saved in two ways: Fewer steps are taken because the steps are on a block basis rather than on asample basis, and each step is less costly because the trilinear interpolation has already been done.The algorithm was tested on a data set of computerized tomographic scans and on an air jet study.At a compression ratio of 6:1, the time savings for the shading step was approximately 1000:1, andthe speed-up for ray tracing was approximately 10:1.9 HalftoningHalftoning is the process of rendering grayscale (usually 8-bit) images to print them on binary(black and white) devices such as laser printers. Although the pixels in a halftoned image mustbe either black or white, the illusion of continuous shades of gray can be created by appropriatechoices of the percentage and patterns of black pixels in each region of the image. The data rateof an uncompressed halftoned image is 1 bit per pixel which is already reduced relative to the rateof the original grayscale image. However, large halftoned images still require several megabytes ofdata to be transmitted to the printer. Data compression can be used to reduce transmission delaysand printer memory requirements.Ordered dither [65, 46] is a simple halftoning technique that operates independently on blocks.In Eq. 3, X is a 4� 4 dither matrix for dithering 8-bit grayscale images [46]. The entire grayscaleimage is scanned in a nonoverlapping manner with the dithering matrix, and each grayscale pixelis compared to the appropriate threshold value in the matrix. If a pixel's intensity is above thethreshold, it is set to white; otherwise, it is set to black. Thus the decision for each pixel depends onits position in the block as well as its original grayscale intensity value. The quality of the resultinghalftoned image depends on the size and entries of the dithering matrix.24



X = 0BBB@ 8 136 40 168200 72 232 10456 184 24 152248 120 216 88 1CCCA (3)Because each block is processed independently, ordered dither can easily be implemented withVQ if the dithering matrix and the VQ block are the same size (or the VQ block size is an integermultiple of the dithering matrix size). One applies the dithering matrix to each vector in thecodebook to form linked VQ codebooks, as in Figure 8. The main codebook contains grayscalevectors, and the processed codebook contains binary vectors.Error di�usion [18] is a neighborhood halftoning process. It is more complex than ordered ditherbut usually leads to higher halftoned image quality when the printing resolution is low (300 dpiand below). The error between the input grayscale pixel and its binary output is spread out overneighboring pixels by adding to the input a weighted combination of output errors from pixels aboveand to the left of the input. The updated input is compared to a �xed threshold to make the blackor white decision. Combining error di�usion with VQ is challenging because it is a neighborhoodprocess; however, it can lead to a signi�cant decrease in the computational complexity. We are stillexploring this problem.Vander Kam et al. present an algorithm for a joint vector quantizer and halftoner design [34]. Afrequency-weighted distortion measure based on the human visual response is used both to designthe VQ and to select the binary reproduction for an input grayscale vector. Full search VQ is usedto select the binary vector that measures a low frequency-weighted distortion compared to the inputgrayscale block. The halftoning algorithm is block-based (like ordered dither) so that it is easilycompatible with VQ but is more complex and higher quality than ordered dither. The compressedhalftoned image quality is then improved by including contextual information to allow more outputreproductions. Vander Kam et al. found that their joint VQ/halftoner gave better results thaneither �rst compressing and then halftoning or vice versa (for their halftoning algorithm). In laterwork, they further improved the system's performance by replacing the full search VQ with anentropy-constrained VQ [5]. They obtained good image quality at bit rates as low as 0.1 bpp [35].10 Synthetic Aperture Radar ReconstructionSynthetic aperture radar (SAR) is used to obtain high resolution images of the earth and other plan-etary bodies from aircraft and spacecraft [11]. The system illuminates the target with microwaves,which are relatively una�ected by cloud cover and precipitation, so illumination by the sun is notrequired for proper exposure. The returning radar signals are processed to determine the reectivityof the target at various range locations (perpendicular to direction of ight) and azimuth locations(along direction of ight). SAR uses these consecutive radar pulses at incremental antenna positionsalong the ight path to synthetically model an extremely long antenna aperture. Doing so improvesthe spatial resolution in the azimuth direction. The reectivity of each point in the reconstructedimage is obtained by correlating the raw data returns with a spatially dependent 2-D referencefunction, which performs a focusing operation (also called range/azimuth pulse compression). Theresults can be displayed as an image with intensity corresponding to reectivity. Because the com-putational demands of processing raw SAR data are high, the radar returns are usually digitally25



sampled and transmitted from the airborne source to ground processing facilities. The high datarates required for transmission make compression desirable. Traditionally, the compressed data aredecompressed before correlation with the location-dependent reference function for reconstruction.Combined VQ and SAR ReconstructionVector quantization can be combined with the subsequent image processing task of reconstructionto signi�cantly reduce both the bandwidth requirements and the computational demands of imagereconstruction at the cost of higher memory requirements and somewhat degraded image quality[2, 60]. To reduce the reconstruction complexity, the reference function can be considered to bespatially invariant so that a single function can be used to reconstruct multiple points in the �nalimage. The VQ codewords can be correlated with this spatially invariant reference function to formpreprocessed codewords. This allows direct SAR reconstruction of the image from vector quan-tized blocks. Reconstruction requires only summation of the appropriately shifted preprocessedcodewords. Eliminating the need for real-time multiplications signi�cantly speeds up the recon-struction process. This method is similar to the model of Figure 8, in which the VQ decoder canput out either codewords representing the raw data or processed image segments corresponding tothe reconstructed image.The method has two main drawbacks. First, because the correlation step produces preprocessedcodewords of signi�cantly larger dimension than their unprocessed counterparts, signi�cantly morememory is required. The memory requirements can be reduced somewhat by using a related tech-nique that performs the range and azimuth correlation separably using two codebooks (for 1-Dvectors in the range and azimuth directions) processed with corresponding 1-D reference functions[2, 60]. Second, image quality is degraded because of the approximation of the location-dependentreference function by a spatially invariant one. Inaccuracy in this focusing operation blurs the im-ages. Using the spatially varying functions in a combined VQ/reconstruction system would requirecross-correlating each of the codewords with each of the possible functions and storing all the resultsat the decoder; the memory requirements for this are prohibitive.Although this algorithm was demonstrated on the SAR application, it is applicable to manyother processing algorithms such as computing the discrete Fourier transform [61].11 Related Work in Speech ProcessingVector quantization has been extensively used for speech compression, but it can also be used forother speech processing tasks including speech and isolated word recognition, speaker recognitionand veri�cation, and noise suppression. The ideas involved are related to the image processingexamples. Abut devoted an entire section in his IEEE VQ reprint collection [1] to the use of VQfor speech processing.VQ has found wide use in speech recognition systems as a front end, but it can also be usedas a pattern matching technique to perform all or part of the recognition itself. Isolated utterancerecognition can be performed by constructing a separate VQ codebook for each word in the vocab-ulary. In the recognition phase, average distortions between inputs and the various codebooks arecomputed and the utterance corresponding to the codebook with the smallest distortion is chosen.Such codebooks can also be used as a preprocessor to a word recognition system by eliminating those26



word candidates with high distortion [39, 19]. Performance can be improved by adding temporalinformation to the distortion measure used to select the VQ codewords [55, 31]. The modi�ed dis-tortion penalizes the selection of codewords unlikely in the given context, and improves the overallperformance.In other speech recognition systems, VQ has been combined with Hidden Markov Models(HMM). In the SPHINX system at Carnegie Mellon University [40], for example, VQ is used todiscretize continuous data. The SPHINX system uses a size 256 codebook of 12-dimensional linearpredictive coding cepstrum coe�cients, and the VQ codewords are the symbols used in the system'sHMMs. When an input sequence is presented, the cepstral coe�cients are vector quantized, andthe probability of the VQ codeword sequence given each HMM in the system is calculated. Theutterance represented by the most likely HMM is selected. The SPHINX system recorded speaker-independent accuracy rates of 94% on a large vocabulary. For a review of the use of HMMs inspeech recognition systems, see [56].In recent related work, Pook and Ballard [58] have used VQ for HMMs that are applied to robotsensor data. The VQ is used to classify four di�erent types of teleoperated robot manipulations.The classi�cation is used both to �lter and symbolize sensor data for later recognition schemesand to capture the salient characteristics of the sensor data so that they may later be mapped toautonomous control space. VQ is used on spectral coe�cients for an HMM in a robotics system forlearning human skill, by Yang, Xu, and Chen [66].VQ can also be used for speaker recognition using a small VQ codebook consisting of highlyrepresentative speaker-speci�c feature vectors [29, 41, 63]. To di�erentiate between two speakers,training utterances from the two speakers are used to train two separate codebooks. Some clustersmay overlap from one codebook to the other. A set of feature vectors is generated from an unknownspeaker and encoded with each codebook. The speaker's identity is considered to be veri�ed if thecumulative distortion between the input and a codebook is less than some preset threshold. Finally,VQ can be used as part of a noise reduction algorithm which maps noisy speech features into cleanones [16, 23, 15].12 ConclusionOur goal has been to describe the fundamental ideas of vector quantization and to survey waysin which design algorithms based on clustering and classi�cation trees can be modi�ed to incor-porate image processing into VQ. We have provided examples of some of these methods includingcombining compression with histogram equalization, classi�cation, edge detection, halftoning, andreconstruction. The goals of these algorithms are to reduce the complexity of the processing thatfollows the decompression step or to provide better overall quality by jointly optimizing the twooperations instead of cascading them independently. Some of these techniques are recent in originand the results are preliminary, but they suggest that the inherent enhancement and classi�cationcapabilities of clustering and classi�cation trees can yield compression algorithms that perform avariety of signal processing functions. AcknowledgementsThe authors gratefully acknowledge the �nancial support of NIH Grant No. CA49697-02, NSFGrant Nos. MIP-9110508 and MIP-9016974, and of ESL, Incorporated for the research that led to27
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