Fabrizio Durante; Erich Peter Klement; José Quesada-Molina; Peter Sarkoci
Remarks on Two Product-like Constructions for Copulas

Kybernetika, Vol. 43 (2007), No. 2, 235--244

Persistent URL: http://dml.cz/dmlcz/135769

Terms of use:

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
REMARKS ON TWO PRODUCT–LIKE CONSTRUCTIONS FOR COPULAS

FABRIZIO DURANTE, ERICH PETER KLEMENT, JOSÉ JUAN QUESADA-MOLINA AND PETER SARKOCI

We investigate two constructions that, starting with two bivariate copulas, give rise to a new bivariate and trivariate copula, respectively. In particular, these constructions are generalizations of the ∗-product and the ⋆-product for copulas introduced by Darsow, Nguyen and Olsen in 1992. Some properties of these constructions are studied, especially their relationships with ordinal sums and shuffles of Min.

Keywords: copula, ordinal sum, shuffle of Min, concordance

AMS Subject Classification: 60E05

1. INTRODUCTION

Given \(n \in \mathbb{N}, n \geq 2 \), an \(n \)-dimensional copula (briefly, \(n \)-copula) is a function \(C : [0,1]^n \rightarrow [0,1] \) such that

(C1) \(C(u_1, \ldots, u_n) = 0 \) if \(u_i = 0 \) for at least one index \(i \in \{1,2,\ldots,n\} \);

(C2) \(C(u_1, \ldots, u_n) = u_i \) if \(u_j = 1 \) for each \(j \neq i \);

(C3) \(C \) is \(n \)-increasing, i.e. for any \(n \)-box \(B = \times_{i=1}^{n} [x_i, y_i] \subseteq [0,1]^n \), with \(x_i \leq y_i \) for all \(i = 1,2,\ldots,n \), we have

\[
V_C(B) := \sum_{\mathbf{z} \in \times_{i=1}^{n} \{x_i, y_i\}} (-1)^{N(\mathbf{z})} C(\mathbf{z}) \geq 0,
\]

where \(N(\mathbf{z}) = \text{card}\{k \mid z_k = x_k\} \).

Two important examples of \(n \)-copulas are

\[
M_n(u_1, \ldots, u_n) = \min\{u_1, \ldots, u_n\}, \quad \Pi_n(u_1, \ldots, u_n) = \prod_{i=1}^{n} u_i.
\]

Another important 2-copula is \(W_2(u_1, u_2) = \max\{u_1 + u_2 - 1, 0\} \). By \(\mathcal{C}_n \) we will denote the class of all \(n \)-copulas (see [4, 8] for more details).
In Statistics, multivariate copulas are mainly used in the construction of multivariate distribution functions (= d.f.’s) with given univariate marginals [4, 8], as asserted by the following Theorem due to A. Sklar [10].

Theorem 1. Let X_1, X_2, \ldots, X_n be random variables with joint d.f. F and univariate marginals F_1, F_2, \ldots, F_n. Then there exists $C_n \in C_n$ such that, for all x_1, x_2, \ldots, x_n in \mathbb{R},

$$F(x_1, x_2, \ldots, x_n) = C_n(F_1(x_1), F_2(x_2), \ldots, F_n(x_n)).$$

(1)

If F_1, F_2, \ldots, F_n are continuous, then C_n is unique; otherwise C_n is uniquely determined on $\text{Ran } F_1 \times \text{Ran } F_2 \times \cdots \times \text{Ran } F_n$.

Conversely, if C_n is an n-copula and F_1, F_2, \ldots, F_n are univariate d.f.’s, then the function F defined by (1) is a multivariate d.f. with marginals F_1, F_2, \ldots, F_n.

One of the possible extensions of this problem is to construct n-dimensional d.f.’s with k given m-dimensional marginals, $1 \leq m < n$ and $1 \leq k \leq \binom{n}{m}$. For example, given two bivariate d.f.’s F_{12} and F_{23}, one may wish to construct, if there exist, trivariate d.f.’s F such that F_{12} and F_{23} are, respectively, the d.f.’s of the first two and the last two components of the random triplet associated to F, viz.

$$F(x_1, x_2, 1) = F_{12}(x_1, x_2),$$

$$F(1, x_2, x_3) = F_{23}(x_2, x_3),$$

for all x_1, x_2, x_3 in \mathbb{R}.

The construction of trivariate d.f.’s with given bivariate marginals has been recently studied in [3]. Specifically, in order to characterize the class of all trivariate d.f.’s when their bivariate marginals are known, two new construction methods for copulas have been proposed.

The aim of this note is to present these methods and to study their relationships with other well known constructions. In Section 2 we define two operations on the set of copulas and we study their basic properties. In Section 3 we study how the constructions performed by these operations fit into the framework of ordinal sums and shuffles of Min.

2. TWO CONSTRUCTIONS FOR COPULAS

In this section, we present the two constructions of copulas introduced in [3]. For a function $f : [0, 1]^2 \rightarrow \mathbb{R}$, $\partial_1 f$ and $\partial_2 f$ will denote, respectively, the derivatives of f with respect to the first and the second variable.

Proposition 1. Let A and B be in C_2 and let $C = (C_t)_{t \in [0, 1]}$ be a one-parameter family of 2-copulas. Then the mapping $A \ast_C B : [0, 1]^2 \rightarrow [0, 1]$ defined by

$$(A \ast_C B)(u_1, u_2) = \int_0^1 C_t(\partial_2 A(u_1, t), \partial_1 B(t, u_2)) dt$$

(2)

is in C_2.

Throughout this paper the boldface symbol C always denotes a family of 2-copulas (C_t) parametrized by $t ∈ [0, 1]$. The copula $A *_C B$ is called the C-product of A and B. If $C_t = C$ for all $t ∈ [0, 1]$, then we shall write $A *_C B$ instead of $A *_C B$. In the special case when $C_t = Π_2$ for all $t ∈ [0, 1]$, the C-product coincides with the product of copulas studied in [1].

Just to give some examples, simple calculations show that, for every $A ∈ C_2$ and every family C

\[
A *_C M_2 = A = M_2 *_C A,\]

\[
(A *_C W_2)(u_1, u_2) = u_1 - A(u_1, 1 - u_2),\]

\[
(W_2 *_C A)(u_1, u_2) = u_2 - A(1 - u_1, u_2).
\]

Remark 1. For a fixed family C, the C-product induces a binary operation $*_C$ on the set C_2 given by

\[
*_C : C_2 × C_2 → C_2, \quad (A, B) ↦ A *_C B
\]

This operation has neutral element M_2. However, while the operation $*_Π_2$ is associative [1], in general the operation $*_C$ need not to be so. For example, given the 2-copula C, defined for every $u_1, u_2 ∈ [0, 1]$, by

\[
C(u_1, u_2) = u_1 u_2 + u_1 u_2 (1 - u_1)(1 - u_2),
\]

simple (but really tedious) calculations yield $C *_C (C *_C C) \neq (C *_C C) *_C C$.

Example 1. Let $C = (C_t)_{t∈[0,1]}$ be a family of 2-copulas. Then we have

\[
(Π_2 *_C Π_2)(u_1, u_2) = \int_0^1 C_t(u_1, u_2) \, dt.
\]

The function $Π_2 *_C Π_2$ is a 2-copula, also known as the convex sum of the family C with respect to the Lebesgue measure in the unit interval [8, Section 3.2.4]. Moreover, the finite convex combination of the 2-copulas $(D_i)_{i=1,2,...,n}$ with coefficients $α_i$, where $α_i ≥ 0$ and $∑_{i=1}^n α_i = 1$, can be obtained for a special choice of the family C. Namely, put $β_0 = 0$ and $β_i = ∑_{j=1}^i α_j$ for all $i = 1, 2, \ldots, n$. Now, it is sufficient to take $C = (C_t)_{t∈[0,1]}$ such that $C_t = D_i$ whenever $t ∈ [β_{i-1}, β_i]$, in order to obtain that

\[
(Π_2 *_C Π_2)(u_1, u_2) = ∑_{i=1}^n α_i D_i(u_1, u_2).
\]

For any $A, B, C_1, C_2 ∈ C_2$, note that $C_1 ≤ C_2$ implies $A *_{C_1} B ≤ A *_{C_2} B$. This fact suggests to use the operation $*_C$ as a method for the construction of one-parameter families of copulas $(C_α)_{α∈J}$, where J is an interval in $ℝ$, which are monotone with respect to the parameter, i.e. $C_α ≤ C_{α'}$ whenever $α ≤ α'$. Indeed, it suffices to fix $A, B ∈ C_2$ and consider a positively ordered family $(C_α)_{α∈J}$ of 2-copulas. Then $(A *_{C_α} B)_{α∈J}$ is also a positively ordered family of 2-copulas.
Example 2. Let \((C_\alpha)_{\alpha \in [-1,1]}\) be the Farlie–Gumbel–Morgenstern family of copulas defined by the expression
\[
C_\alpha(u_1, u_2) = u_1 u_2 + \alpha u_1 u_2 (1 - u_1)(1 - u_2).
\] (3)

Denote \(\tilde{C}_\alpha = C_0 \ast_{C_\alpha} C_1\). From Proposition 1 we have that \((\tilde{C}_\alpha)_{\alpha \in [-1,1]}\) is a one-parameter family of 2-copulas given by
\[
\tilde{C}_\alpha(u_1, u_2) = \frac{u_1 u_2}{3} (3 + \alpha (u_1 - 1)(u_1 - 1) + 3)(u_2 - 1))
\]
for every \(\alpha \in [-1,1]\). Moreover, \(\tilde{C}_{\alpha_1} \leq \tilde{C}_{\alpha_2}\) whenever \(\alpha_1 \leq \alpha_2\).

The \(C\)-product can be extended to obtain 3-copulas in the following way [3].

Proposition 2. Let \(A\) and \(B\) be in \(C_2\) and let \(C\) be a family of 2-copulas. Then the mapping \(A \ast_C B : [0,1]^3 \to [0,1]\) defined by
\[
(A \ast_C B)(u_1, u_2, u_3) = \int_0^{u_2} C_t(\partial_2 A(u_1, t), \partial_1 B(t, u_3)) \, dt
\]
is in \(C_3\).

The 3-copula \(A \ast_C B\) is called the \(C\)-lifting of \(A\) and \(B\). If \(C_t = C\) for every \(t \in [0,1]\), then we shall write \(A \ast_C B\) instead of \(A \ast_C B\). In the special case when \(C_t = \Pi_2\) for all \(t\) in \([0,1]\), the \(C\)-lifting coincides with the \(\ast\)-operation considered in [1, 5].

Just to give some examples, simple calculations show that, for every \(A \in C_2\) and every family of 2-copulas \(C\)
\[
(A \ast_C M_2)(u_1, u_2, u_3) = A(u_1, u_2 \wedge u_3),
\]
\[
(M_2 \ast_C A)(u_1, u_2, u_3) = A(u_1 \wedge u_2, u_3),
\]
\[
(W_2 \ast_C W_2)(u_1, u_2, u_3) = W_2(u_1 \wedge u_3, u_2).
\]

Remark 2. Notice that, given \(A, B \in C_2\) and a family of 2-copulas \(C\), the 2-marginals of \(A \ast_C B\) are
\[
(A \ast_C B)(u_1, u_2, 1) = A(u_1, u_2),
\]
\[
(A \ast_C B)(u_1, 1, u_3) = (A \ast_C B)(u_1, u_3),
\]
\[
(A \ast_C B)(1, u_2, u_3) = B(u_2, u_3).
\]

Actually, the \(C\)-lifting is exactly the tool that allows us to construct all the 3-copulas having \(A\) and \(B\) as respective marginals [3]. In particular, \(A\), \(B\) and \(A \ast_C B\) are compatible, viz. there exist three random variables \(U_1, U_2\) and \(U_3\), \(U_i\) uniformly distributed on \([0,1]\) for \(i \in \{1, 2, 3\}\), such that \(A\) is the distribution function of \((U_1, U_2)\), \(A \ast_C B\) is the d.f. of \((U_1, U_3)\) and \(B\) is the d.f. of \((U_2, U_3)\).
The \(C \)-lifting also provides a general method to construct families of 3-copulas that are \textit{positively ordered} with respect to the \textit{concordance order}, which is a condition stronger than pointwise order between functions \[8\]. In fact, we recall that given \(C_1, C_2 \in C_3 \), the copula \(C_2 \) is said to be greater than \(C_1 \) in the concordance order, and we write \(C_1 \preceq C_2 \), if \(C_1 \leq C_2 \) and \(\overline{C}_1 \leq \overline{C}_2 \), where \(\overline{C} : [0,1]^3 \to [0,1] \) is the survival function of \(C \), defined by

\[
\overline{C}(u_1, u_2, u_3) = 1 - u_1 - u_2 - u_3 + C(u_1, u_2, 1) + C(u_1, 1, u_3) + C(1, u_2, u_3) - C(u_1, u_2, u_3).
\]

The relationship between the \(C \)-lifting and the concordance order is summarized in the following proposition \[3\].

Proposition 3. Let \(C, C' \) be in \(C_2 \). If \(C \leq C' \), then \(A \star_C B \preceq A \star_C B \) for all \(A, B \in C_2 \).

Therefore, if we fix \(A, B \in C_2 \) and consider a positively ordered family \((C_\alpha)_{\alpha \in J} \) of 2-copulas, where \(J \) is an interval of \(\mathbb{R} \), then \((A \star_C B)_{\alpha \in J} \) is a family of 3-copulas positively ordered with respect to the concordance order.

Example 3. Let \((C_\alpha)_{\alpha \in [-1,1]} \) be again the Farlie–Gumbel–Morgenstern family of copulas \((3) \). Then \((\Pi_2 \star_C \Pi_2)_{\alpha \in [-1,1]} \) is a one-parameter family of 3-copulas given by the expression

\[
(\Pi_2 \star_C \Pi_2)(u_1, u_2, u_3) = u_1 u_2 u_3 (1 + \alpha (1 - u_1)(1 - u_3)) = u_2 C_\alpha(u_1, u_3).
\]

This family is increasing in \(\alpha \) with respect to the concordance order.

Remark 3. Given \(C \in C_n \), it can be easily derived that, for each permutation \(\pi \) of \(\{1,2,\ldots,n\} \), the function \(C^\pi : [0,1]^n \to [0,1] \) given by

\[
C^\pi(u_1, u_2, \ldots, u_n) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(n)})
\]

is also in \(C_n \). In particular, by applying this fact to the \(C \)-lifting, we obtain that, for all 2-copulas \(A, B \), for any family of 2-copulas \(C \), and for each permutation \(\pi \) of \(\{1,2,3\} \), the operation \((A \star_C B)^\pi \) is also in \(C_3 \), but in general \((A \star_C B)^\pi \neq A \star_C B \).

3. RELATIONSHIPS WITH OTHER CONSTRUCTIONS

In this section we show how the \(C \)-product is related to two known constructions of 2-copulas: the ordinal sums and the shuffles of Min. In both cases we will discuss the possible extensions to the trivariate case.
3.1. Ordinal sums

Let \((C_i)_{i \in I}\) be a family of 2-copulas indexed by the (at most) countable set \(I\). Let \((]a_i, b_i[)_{i \in I}\) be a family of pairwise disjoint subintervals of \([0, 1]\) indexed by the same set \(I\). The ord\(\text{s}\)al sum of \((C_i)_{i \in I}\) with respect to \((]a_i, b_i[)_{i \in I}\) is the copula \(C: [0, 1]^2 \to [0, 1]\) given by

\[
C(u_1, u_2) = \begin{cases}
 a_i + (b_i - a_i)C_i \left(\frac{u_1 - a_i}{b_i - a_i}, \frac{u_2 - a_i}{b_i - a_i} \right) & \text{if } u_1, u_2 \in]a_i, b_i[, \\
 M_2(u_1, u_2) & \text{otherwise.}
\end{cases}
\]

Usually, we make use of the notation \(C = (]a_i, b_i, C_i[)_{i \in I}\) (see, for example, [8, 9] for more details).

The relationship between the ordinal sum construction and the \(C\)-product is summarized in the next result.

Proposition 4. Let \(C = (]a_i, b_i, C_i[)_{i \in I}\) be an ordinal sum. Then

\[
C = C_\Pi \ast C C_\Pi,
\]

where \(C_\Pi = (]a_i, b_i, \Pi_2[)_{i \in I}\), and \(C = (C_t)_{t \in [0, 1]}\) is any family of 2-copulas such that \(C_t = C_i\) whenever \(t \in]a_i, b_i[\) for some \(i \in I\).

Proof. Given \([a, b] \subseteq [0, 1]\), define \(U_{[a, b]}: [0, 1] \to [0, 1]\) by the expression

\[
U_{[a, b]}(x) = \begin{cases}
 0 & \text{if } x \leq a, \\
 \frac{x - a}{b - a} & \text{if } a < x \leq b, \\
 1 & \text{otherwise.}
\end{cases}
\]

Observe that

\[
\partial_2 C_\Pi(u_1, t) = \begin{cases}
 U_{[a_i, b_i]}(u_1) & \text{if } t \in]a_i, b_i[, \\
 1_{[t, 1]}(u_1) & \text{otherwise,}
\end{cases}
\]

and, since \(C_\Pi\) is symmetric, \(\partial_1 C_\Pi(t, u_2)\) has an analogous expression.

Now, let \(u_1, u_2 \in]a_i, b_i[\) for some \(i \in I\). In this case, we have

\[
(C_\Pi \ast C C_\Pi)(u_1, u_2) = \int_0^{a_i} C_t(1, 1) \, dt + \int_{a_i}^{b_i} C_t(U_{[a_i, b_i]}(u_1), U_{[a_i, b_i]}(u_2)) \, dt
\]

\[
= a_i + (b_i - a_i)C_i \left(\frac{u_1 - a_i}{b_i - a_i}, \frac{u_2 - a_i}{b_i - a_i} \right)
\]

\[
= C(u_1, u_2).
\]

Otherwise, if \((u_1, u_2) \notin]a_i, b_i[^2\) for all \(i \in I\), we have

\[
(C_\Pi \ast C C_\Pi)(u_1, u_2) = \int_0^{u_1 \wedge u_2} C_t(1, 1) \, dt = M_2(u_1, u_2),
\]

which concludes the proof. \(\square\)
Now, we will consider the above result in order to obtain a new 3-copula by means of the C-lifting.

Let $(C_i)_{i \in \mathcal{I}}$ be a family of 2-copulas and let $(]a_i, b_i[)_{i \in \mathcal{I}}$ be a family of pairwise disjoint subintervals of $[0, 1]$. Then we call lifting ordinal sum of $(C_i)_{i \in \mathcal{I}}$ with respect to $(]a_i, b_i[)_{i \in \mathcal{I}}$ the 3-copula \tilde{C} defined by

$$\tilde{C} = C_{\Pi} \ast_C C_{\Pi},$$

where $C_{\Pi} = (\langle a_i, b_i, \Pi_2 \rangle)_{i \in \mathcal{I}}$, and $C = (C_t)_{t \in [0,1]}$ is any family such that $C_t = C_i$ whenever $t \in]a_i, b_i[$ for some $i \in \mathcal{I}$.

Example 4. The lifting ordinal sum of (Π_2, Π_2) with respect to the family of sub-intervals $(]0, \frac{1}{2}[,]\frac{1}{2}, 1[)$ is the 3-copula \tilde{C} given by the expression

$$\tilde{C}(u_1, u_2, u_3) = \begin{cases} u_2C_1(u_1, u_3) & \text{if } u_2 \leq \frac{1}{2}, \\ \frac{1}{2}C_1(u_1, u_3) + (u_2 - \frac{1}{2})C_2(u_1, u_3) & \text{otherwise,} \end{cases}$$

where $C_1 = (\langle 0, \frac{1}{2}, \Pi_2 \rangle)$ and $C_2 = (\langle \frac{1}{2}, 1, \Pi_2 \rangle)$.

Remark 4. The above result can also be applied to a related construction for copulas, called W-ordinal sum [2, 6]. Specifically, let $C = (\langle a_i, b_i, C_i \rangle)_{i \in \mathcal{I}}$ be the W-ordinal sum of $(C_i)_{i \in \mathcal{I}}$ with respect to $(]a_i, b_i[)_{i \in \mathcal{I}}$. Then

$$C = C_{\Pi} \ast_C C_{\Pi}^W,$$

where $C_{\Pi} = (\langle a_i, b_i, \Pi_2 \rangle)_{i \in \mathcal{I}}$ is the (usual) ordinal sum, $C_{\Pi}^W = (\langle a_i, b_i, \Pi_2 \rangle)^W$ is the W-ordinal sum, and $C = (C_t)_{t \in [0,1]}$ is any family of 2-copulas such that $C_t = C_i$ whenever $t \in]a_i, b_i[$ for some $i \in \mathcal{I}$.

3.2. Shuffles of Min

It is well known that every 2-copula C induces a probability measure λ_C on $[0, 1]^2$ given, for every x_1, y_1, x_2, y_2 in $[0, 1]$, $x_1 \leq y_1$ and $x_2 \leq y_2$, by

$$\lambda_C([x_1, y_1] \times [x_2, y_2]) = V_C([x_1, y_1] \times [x_2, y_2]).$$

In particular, the *support* of every copula C is the complement of the union of all open subsets of $[0, 1]^2$ with λ_C-measure equal to 0.

By using the probability measure induced by a copula, in [7] the authors introduced a new method for obtaining copulas, called *shuffles of Min*, by means of an intuitive geometrical “manipulation” of the measure induced by M_2 (see [7, 8] for more details).

The support of any shuffle of Min is the graph of a bijection f on $[0, 1]$ such that:

(a) f is piecewise linear;
(b) each component of the graph of f has slope 1 or -1;
(c) f has at most finitely many discontinuity points.
Conversely, from every bijection \(f : [0, 1] \rightarrow [0, 1] \) satisfying (a), (b) and (c), we can construct a shuffle of Min \(M_f \) whose support is given by the graph of \(f \).

From \(\text{[7]} \) (see also \(\text{[5, 8]} \)) it follows that, if \(M_f \) is the shuffle of Min corresponding to \(f \), then there exist two random variables \(U_1 \) and \(U_2 \), both uniformly distributed on \([0, 1]\), such that \(M_f \) is the d.f. of \((U_1, U_2)\) and \(U_2 = f(U_1) \).

Remark 5. By using the results of \(\text{[5]} \), we also have that, if \(M_f \) is the shuffle of Min associated with a bijection \(f \), then, because \(f \) is a measure-preserving transformation,

\[
M_f(u_1, u_2) = \lambda(\{f([0, u_1]) \cap [0, u_2]\}),
\]

where \(\lambda \) is the Lebesgue measure on \([0, 1]\).

In the next result, we compose two shuffles of Min by means of the \(C \)-product.

Proposition 5. Let \(M_f \) and \(M_g \) be shuffles of Min corresponding to \(f \) and \(g \), respectively. Then, for any family of 2-copulas \(C \), the 2-copula \(M_f \ast_C M_g \) is the shuffle of Min corresponding to \(g \circ f \).

Proof. It is known from \(\text{[3]} \) that, for every family \(C \), \(M_f \ast_C M_g \) is always the same copula, and \(M_f, M_f \ast_C M_g \) and \(M_g \) are compatible. Then there exist three random variables \(U_1, U_2 \) and \(U_3 \), \(U_i \) uniformly distributed on \([0, 1]\) for every \(i \in \{1, 2, 3\} \), such that \(M_f \) is the d.f. of \((U_1, U_2)\), \(M_f \ast_C M_g \) is the d.f. of \((U_1, U_3)\), and \(M_g \) is the d.f. of \((U_2, U_3)\). But, because \(M_f \) and \(M_g \) are shuffles of Min, we have \(U_2 = f(U_1) \) and \(U_3 = g(U_2) \). Therefore, \(U_3 = (g \circ f)(U_1) \) and, hence, \(M_f \ast_C M_g \) is the shuffle of Min \(M_{g \circ f} \) corresponding to the bijection \(g \circ f \). \(\Box \)

Example 5. Consider the two shuffles of Min, \(M_f \) and \(M_g \), generated, respectively, by the bijections \(f \) and \(g \) defined by

\[
f(x) = \begin{cases}
\frac{1}{2} - x & \text{if } x \in [0, \frac{1}{2}], \\
\frac{3}{2} - x & \text{otherwise,}
\end{cases} \quad g(x) = 1 - x.
\]

Then, for every family \(C \), \(M_f \ast_C M_g \) is the shuffle of Min generated by

\[
(g \circ f)(x) = \begin{cases}
x + \frac{1}{2} & \text{if } x \in [0, \frac{1}{2}], \\
x - \frac{1}{2} & \text{otherwise,}
\end{cases}
\]

and, hence, its support is given by the segment connecting \((0, \frac{1}{2})\) and \((\frac{1}{2}, 1)\), and by the segment connecting \((\frac{1}{2}, 0)\) and \((1, \frac{1}{2})\).

Now, we will consider the above result in order to obtain a new 3-copula by means of the \(C \)-lifting.
Proposition 6. Let M_f and M_g be shuffles of Min corresponding to f and g, respectively. Then $M_f \star_C M_g$ is the 3-copula \tilde{C} given by
\[\tilde{C}(u_1, u_2, u_3) = \lambda(f([0, u_1]) \cap [0, u_2] \cap g^{-1}([0, u_3])). \] (4)

Proof. It is known from [3] that, for every family C, $M_f \star_C M_g$ is the only 3-copula \tilde{C} with 2-marginals M_f, $M_f \star_C M_g$ and M_g. Then there exist three random variables U_1, U_2, and U_3, uniformly distributed on $[0, 1]$ for every $i \in \{1, 2, 3\}$, such that M_f is the d.f. of (U_1, U_2), $M_f \star_C M_g$ is the d.f. of (U_1, U_3), M_g is the d.f. of (U_2, U_3), and \tilde{C} is the d.f. of (U_1, U_2, U_3). Moreover, because M_f and M_g are shuffles of Min, we have that
\[
U_2 = f(U_1), \\
U_3 = g(U_2) = (g \circ f)(U_1).
\]
As a consequence, we obtain that, for every $u_1, u_2, u_3 \in [0, 1],$
\[
\tilde{C}(u_1, u_2, u_3) = P(U_1 \leq u_1, U_2 \leq u_2, U_3 \leq u_3) = P(U_1 \leq u_1, f(U_1) \leq u_2, (g \circ f)(U_1) \leq u_3)
= \lambda([0, u_1] \cap f^{-1}([0, u_2]) \cap (g \circ f)^{-1}([0, u_3])),
\]
and, since f and g are measure-preserving transformations,
\[
\tilde{C}(u_1, u_2, u_3) = \lambda(f([0, u_1]) \cap [0, u_2] \cap g^{-1}([0, u_3])),
\]
which is the desired assertion. \qed

Notice that the function given by (4) is a copula in view of a more general result on the representation of copulas by means of measure-preserving transformations [5].

ACKNOWLEDGEMENTS

The third author acknowledges the support by the Ministerio de Educación y Ciencia (Spain) and FEDER, under research project MTM2006-12218. The fourth author gratefully acknowledges the support by the grants VEGA 1/3012/06 and VEGA 1/2005/05.

(Received December 12, 2006.)

REFERENCES

Fabrizio Durante, Erich Peter Klement and Peter Sarkoci, Department of Knowledge–Based Mathematical Systems, Johannes Kepler University, A-4040 Linz. Austria. e-mails: fabrizio.durante@jku.at, ep.klement@jku.at, peter.sarkoci@{jku.at,gmail.com}

José Juan Quesada-Molina, Departamento de Matemática Aplicada, Universidad de Granada, E-18071 Granada. Spain. e-mail: jquesada@ugr.es