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ABSTRACT: Since the early 2000s, borate bioactive glasses (BBGs) have been
extensively investigated for biomedical applications. The research so far
indicates that BBGs frequently exhibit superior bioactivity and bone healing
capacity compared to silicate glasses. They are also suitable candidates as drug
delivery devices for infection or disease treatment such as osteoporosis.
Additionally, BBGs are also an excellent option for wound healing applications,
which includes the availability of commercial (FDA approved) microfibrous
BBG dressings to treat chronic wounds. By addition of modifying ions, the bone
or wound healing capacity of BBGs can be enhanced. For instance, addition of
copper ions into BBGs was shown to drastically increase blood vessel formation
for wound healing applications. Moreover, addition of ions such as magnesium,
strontium, and cobalt improves bone healing. Other recent research interest
related to BBGs is focused on nerve and muscle regeneration applications, while
cartilage regeneration is also suggested as a potential application field for BBGs.
BBGs are commonly produced by melt-quenching; however, sol−gel processing
of BBGs is emerging and appears to be a promising alternative. In this review
paper, the physical and biological characteristics of BBGs are analyzed based on
the available literature, the applications of BBGs are discussed, and future research directions are suggested.
KEYWORDS: borate glasses, tissue engineering, wound healing, drug delivery, scaffolds

1. INTRODUCTION
Bioactive glasses (BGs) are surface reactive materials when
they are in contact with physiological fluids, such as human
plasma, or in aqueous phosphate solution.1−5 In 1969, Prof.
Larry Hench invented the first silicate-based BG, known as
45S5 BG (composition: 45SiO2−24.5CaO−24.5Na2O−6P2O5
in wt %).6−8 When soaked in human plasma (usually tested
using simulated body fluid), an amorphous calcium phosphate
(ACP) layer forms on the BG surface, which then crystallizes
into hydroxyapatite (HA).9 This surface bioreactivity enables
strong bonding with the surrounding bone tissue, which gives
BGs their osteoconductive properties. Following the release of
dissolution products, BGs are also osteoinductive.10 However,
silicate-based BGs such as 45S5 and 13-93 (composition:
53SiO2−20CaO−6Na2O−12K2O−5MgO−4P2O5 wt %)
glasses appear to have limitations for some applications.
First, calcium phosphate (CaP) conversion is incomplete.11 In
vivo, 45S5 BG transforms slowly to HA, and the conversion
rate of 13-93 BG into HA is even slower. Another limitation is
the likelihood of 45S5 BG to crystallize during heat treatments,
which leads to difficulties producing noncrystalline 45S5-based
3D scaffolds and fibers.12,13

An important number of studies have shown that certain
compositions of borate glasses (and phosphate glasses) are also
bioactive.9,14 Borate bioactive glasses (BBGs) are produced by
replacing network silica ions with boron ions in the glass
network. Boron is an essential trace element with important
roles in the human body.15,16 It is found in the body in the
form of organoboron complexes of which 96% is boric acid and
the rest is in the form of borate anion.17 It has been reported
that 1 mg boron intake daily is optimum and essential for
normal functioning of the body.18 In the body, bone, nails, and
hair have the highest concentration of boron.17 Moreover, it
has been reported that the presence of boron in the body
alleviates symptoms of osteoporosis, coronary heart disease,
and arthritis.19,20 Boron improves calcium integration into
bone, joints, and cartilage.21 As part of the bone metabolism,
boron works together with vitamin D, calcium, and
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magnesium, and it has anti-inflammatory and antioxidant
effects.22,23 Moreover, boron has wound healing properties
which are related to the ability of boron to regulate the release
of collagen, proteoglycans, and proteins. Kerotinocyte
migration is enhanced also in the presence of boron, which
may play a key role in wound healing.24

BBGs are the most recent members of the BG family.25

BBGs with specific compositions are biodegradable, bioactive,
and osteoconductive.26 Due to their advantageous properties,
in some cases surpassing the performance of silicate BGs,
BBGs are exploited for bone regeneration, wound healing, and
nerve tissue engineering applications.27 Such increasing
interest in BBG applications in medicine prompted the
preparation of this review. A search from 1990 to 2021 was
performed with the search engines Web of Science, Google
Scholar, and Scopus. BBGs were first developed for biomedical
applications with a focus on bone tissue engineering at the
beginning of the 2000s.25 Since then, BBGs have been
increasingly investigated for a variety of biomedical applica-
tions, which is outlined in Figure 1.28 This review is organized

in the following manner. First, the production of BBGs is
introduced, which is followed by the discussion of the in vitro
behavior of borate glasses. The next section reviews the effect
of boron ion release from BBGs on cell viability. Then, the
application of borate glasses in hard and soft tissue engineering
is discussed. Finally, the scope for future research in the field is
presented.

2. PROCESSING METHODS FOR BBGS
Generally, BGs are produced by the melt-quenching technique,
which requires the melting of precursor oxide powders at
elevated temperatures (above 1000 °C) followed by rapid
cooling (quenching) of the melt to obtain an amorphous
(noncrystalline) glass. BBGs can be produced as powders,38−40

which can be further processed to fabricate 3D scaffolds41−43

or microfibers.30,44 BBG scaffolds are usually produced by a
polymer foam replication technique.41,42,45 Accordingly, micro-
porous polyurethane scaffolds are immersed in a slurry of BBG
powder dispersed in a solvent. The coated scaffold is then
dried, and following this, the scaffold is heat-treated to remove
the polymeric phase and sinter the BBG struts.41,42,45 Cotton-

like microfibers based on BBGs have also been produced by
exploitation of the melting technique.30,44,46 This type of BBG
microfiber has been FDA-approved and commercialized with
the trade name Mirragen for wound healing applications.10,47,48

The most commonly studied BBG obtained by the melt-
quenching technique for biomedical applications is the 13-
93B3 composition (54B2O3−22CaO−8K2O−8MgO−
6Na2O−2% P2O5 in mol %).9,29,49−54 This glass was developed
with the base composition being the silicate 13-93 BG and
replacing silica with borate ions. During melting, control of the
composition of the glass is challenging because of the presence
of volatile components. Also, in general, contamination may
take place during melting and crushing. Moreover, control of
the morphology and mean particle size of melt-derived BGs is
challenging. As a result, the sol−gel process has also been
considered for the preparation of BGs.55 The sol−gel route
exploits liquid-based precursors to enable gelation of the glass
network via hydrolysis and condensation reactions. Sub-
sequently, the gel is dried and calcined to densify the
amorphous glass and remove any organic product.13,56,57

Lower network connectivity (NC) makes gelation of BBGs
difficult. Only a few studies are available reporting on the sol−
gel processing of BBGs. In fact, boron had been previously
exploited only as a network modifier. In 2015, the first sol−gel
precipitated BBGs were produced with composition
46.1B2O3−26.9CaO−24.4Na2O−2.6P2O5 in mol %.58 In
comparison with melt-quenching, sol−gel processing leads to
the production of at least 2 orders of magnitude greater specific
surface area and total pore volume of BGs, which dramatically
increase the extent of aqueous interactions and ion release
rates. Other advantages of sol−gel derived BGs include
improved purity, homogeneity, and reduced processing
temperatures.58 Moreover, sol−gel processing leads to
production of BBGs with a rough, nanoporous texture which
is in contrast to the smooth surface appearance of melt-derived
glasses.56 Figure 2 schematically shows the sol−gel processing
route for BBGs introduced by Lepry et al.58

The effects of different ions have been analyzed for sol−gel
processed BBGs. Network modifiers such as sodium and
potassium disorganize the glass matrix, and a high sodium
content leads to glass crystallization at reduced temperatures.59

Additionally, low borate containing glasses undergo earlier
crystallization due to the greater extent of densification at
lower temperatures.58 On the other hand, higher borate
content glasses remain amorphous at higher calcination
temperatures which implies that high borate contents favor
glass formation. Lower borate content glasses exhibit fewer
boron units, which leads to more terminal groups, specifically
OH−. These terminal groups are more susceptible to
interactions with the phosphate solutions resulting in their
faster degradation in comparison to higher borate content
glasses. A faster degradation is more pronounced for sol−gel
processed glasses, as terminal groups are not completely
eliminated during drying and calcination.58

Recently, Deliormanlı et al.60 fabricated 13-93B glasses by
the sol−gel method. Lepry et al.61 had also prepared binary
glasses in the CaO−B2O3 system by the sol−gel route
previously. All of the glasses prepared had high surface area
and exhibited nanoporosity.61 Another method to produce
BBG is the use of high temperature spray pyrolysis by which
particles can be achieved of size smaller than 1 μm.41 In this
method, ultrasonic spray generators are used to atomize the
precursor solution which is introduced into a hot reaction

Figure 1. Applications of BBGs include soft tissue engineering
(wound healing29−31 and nerve regeneration32−34) and hard tissue
engineering applications.35−37
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column where droplets are dried, decomposed, and crystal-
lized.55,62 Cho et al.55 successfully produced 45S5B1 BBG
(46.1B2O3−24.4Na2O−26.9CaO−2.6P2O5 in mol %) particles
by using high temperature spray pyrolysis, thus obtaining
nanometric particles with high surface area.
BBGs are also used together with polymers, forming

composites, for various applications. For preparation of bone
cements, initially BBGs were mixed with PMMA powder,
which was then combined with the liquid component for
polymerization and subsequently pressed into a mold to form a
block.10 BBGs have also been blended with chitosan solution
to form an injectable scaffold to heal bone defects.26 For
similar applications, BBG incorporated gelatin-based injectable
scaffolds were prepared by mixing gelatin and citric acid with
BBG powder.63 To increase the mechanical properties of
porous BBG scaffolds, they were coated with PCL in a solution
of PCL−acetone for 30 min.64 Similarly, in another study BBG
scaffolds were coated with tungsten disulfide/PLGA/PCL by

the dip coating method.65 For wound healing applications,
BBG/PVA hydrogels have been prepared by blending in
solutions.66,67 BBG/methyl cellulose/manuka honey hydrogels
were also 3D printed for wound healing applications.67 For
nerve regeneration applications, BBG powders were mixed in a
PCL solution which was electrospun into aligned fibers.68 The
main types of production methods for preparation of BBG/
polymeric scaffolds are summarized in Figure 3.

3. PROPERTIES OF BORATE BIOACTIVE GLASSES
3.1. Acellular Bioactivity. The bioactivity of BGs is

usually evaluated by their conversion rate to HA when the
materials are immersed in simulated body fluid (SBF) for
periods which may vary from hours to months, depending on
the composition of the glass.14,72 The conversion of BBG to
HA occurs via dissolution−precipitation reactions similar to
the ones occurring in silicate glasses, but without the buildup
of a silica-rich layer.11,36,73 The concept of bioactivity is

Figure 2. Schematic diagram showing the sol−gel processing of BBG58 (Reproduced with permission from ref 58. Copyright 2015 American
Chemical Society).

Figure 3. Production methods for preparation of BBG-polymeric scaffolds for various applications.10,26,63−65,69−71
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relevant for applications in contact with bone tissue as the
formation of HA is the marker that characterizes strong
bonding of a material to bone. Initially, the glass converts to
HA via a surface reaction. The degradation and conversion of
BBG to HA in SBF occur by dissolution of ions into the
solution and the reaction of calcium ions from the glass with
phosphate ions from the solution to form ACP and then a
crystalline HA layer on the glass surface.26

The continuous dissolution−precipitation reaction results in
the growth of the HA layer gradually inward from the
surface.1,11,53 This reduces the volume until complete
conversion of the BBG to HA.58 This process is controlled
by diffusion of calcium and phosphate ions to the reaction
interface or reaction of calcium and phosphate ions at the
interface.13

The mixture of trigonal planar [BO3] and tetrahedral [BO4]
units in BBGs is less durable than tetrahedral SiO2 units in
silicate glasses due to reduction of network connectiv-
ity.10,58,69,74 Therefore, 13-93B3 BG, for example, degrades
more quickly than silicate glasses and converts more
completely into HA.10,26,52,72,74 Liang et al.36 observed a
white layer formation on their BBGs only after 10 min of
immersion in SBF, and after 7 days, complete conversion to
HA had been achieved. SEM and XRD analyses usually
demonstrate a visible HA layer after 24 h in SBF for BBG. In
comparison, for silicate glasses, the HA layer was still not
visible after 7 days in SBF.57 Glasses based on the B2O3−
CaO−Na2O−P2O5 system with a wide compositional range
(36−61 mol % B2O3) were reported to rapidly convert to
bone-like mineral (CaP) in SBF.56 Figure 4 shows unconverted
microfibrous borate glass (BG) (53.8 B2O3, 20.0CaO, 12.1
K2O, 4.6 Na2O, 4.6 MgO, 3.8 P2O5 in wt %) and partially
converted microfibrous borate glass after immersion in SBF for
4 days.75

3.2. Degradation Behavior of BBGs. A scaffold for tissue
engineering has to sustain its structural integrity and
mechanical strength until tissue formation has occurred.
Therefore, controlling the degradation behavior of scaffolds
is critical in tissue engineering applications.53 Pramanik et al.75

indicated that for BBGs, the % weight loss of the scaffold was
most rapid in the first day and increased with SBF immersion
time. Another study illustrated that after 1 week in SBF, more
than 90% of the glass degraded to form poorly crystallized
HA.76 Additionally, the % weight loss for 13-93B3 scaffolds
was drastically higher than for the silicate 13-93 and 45S5
scaffolds.36,52 Figure 5 shows the difference of % weight loss of
13-93 and 13-93B3 BG scaffolds.52

According to the study of Liu et al., after 1 day in SBF,
approximately 35% of boron ions of the scaffold were released.
After 7 days, approximately 80 wt % of boron was released
which reached 90 wt % release after a week.9 Figure 6 shows
the time-dependent concentration of boron ion release from
13-93B3 microfibers in SBF.9

Gu et al.49 found that increasing the B2O3 content increased
the degradation rate, but the capacity of the scaffolds to
support the proliferation of osteogenic cells during conven-
tional culture in vitro decreased. After 3 days in SBF, a higher
concentration of calcium ions was released from 13-93B3 than
from 45S5 BG microfibers. Within 7−14 days, 13-93B3
microfibers degraded almost fully and converted to ACP,
whereas only 15% degradation occurred in the 45S5 BG
microfibers. After this, ACP on 13-93B3 microfibers crystal-
lized more slowly to HA than the ACP on 45S5 BG

microfibers.9 Studies also indicated that the scaffolds with
partial conversion to HA were more favorable for cell viability.
Therefore, the relatively slow crystallization feature of BBGs
may be perceived as an advantage for improved biocompat-
ibility.36

Figure 4. SEM images of microfibrous BBG (arrows indicate
extrafibrillar calcium phosphate globules) before and after immersion
in SBF for 4 days75 (Reproduced with permissions from ref 75.
Copyright 2015 Royal Society of Chemistry).

Figure 5. % Weight loss of silicate 13-93 and borate 13-93B3 scaffolds
in SBF52 (Reproduced with permissions from ref 52. Copyright 2012
Elsevier).
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For silicate glasses, the addition of modifier oxides always
changes bridging oxygen atoms to nonbridging oxygen atoms
which reduces network connectivity. In the case of BBGs, first,
the interconnectivity rises with the addition of modifier cations
due to their interaction with negatively charged BO4
tetrahedra. If more modifier cations are added to the BBG,
the BO4 groups change back to BO3 groups, and therefore the
number of nonbridging oxygen ions increases and the network
connectivity is reduced. This is called the borate anomaly in
the literature.29,61 A high amount of modifiers with lower
network connectivity reduces chemical durability and increases
the dissolution rate.29

The incorporation of different ions in BGs is important to
alter the BG degradation behavior and bioactivity. For
example, the substitution of calcium ions by magnesium ions
distorts the matrix structure, as magnesium is a smaller ion
than calcium. Even small concentrations of magnesium ions
can increase the stability of ACP. Therefore, poorly crystallized
HA was reported to form on 13-93B3 scaffolds due to
magnesium ion incorporation.9,69 Although magnesium ions
decrease HA’s crystallinity, this effect could support bone
growth and attachment considering that magnesium ions
encourage osteoblast formation, differentiation, and adhesion,
thus supporting bone regrowth. Magnesium ions should also
improve the attachment of bone to the biomaterial’s
surface.19,44

When BBGs are immersed in a phosphate solution, the pH
increases abruptly with time and eventually reaches a plateau
which may favor the in vitro formation of HA. The change of
pH value from 7 to 10 indicates the ion exchange between the
hydrogen in phosphate buffer solution and the BG surface.66

Sodium and calcium ions exchange with hydrogen ions at the
initial dissolution stage, which leads to a pH increase.29,52,75

For BBGs, a higher % weight loss of the glass sample leads to a
higher pH of the phosphate solution as a function of time.11

The studies indicate that the pH of the solution increases more
rapidly when the B2O3 content of the glass increases.72

Deliormanli et al.53 prepared BBG scaffolds with different
strut sizes by 3D printing. As shown in Figure 7, after soaking
of BBG scaffolds in SBF for 30 days, a pH increase up to 9.26
and 8.56 with strut diameters of ∼130 μm and ∼300 μm,
respectively, was observed. This shows that the strut size of
BBG scaffolds has a strong influence on ion dissolution rates.
Smaller particles form more apatite and degrade more
completely than larger particles. Another study performed by

Zhang et al.78 showed that the particle size had a strong
influence on the pH changes during BG degradation in SBF.
During 3D printing, larger particles showed a smaller increase
in pH but clearer reaction layers than smaller particles.53 In in
vivo conditions, the ions would probably diffuse farther, which
may lessen ionic concentrations and increase BBG’s rate of
degradation, ultimately diminishing relatively high pH
changes.10

3.3. Cell Biology Characterization of BBGs. The
concentration of ions released from BBGs may have a
significant impact on cell proliferation.41 Boron is present in
the daily diet constituting an essential trace element in the
human body. Trace quantities of boron are required for
optimal health. Furthermore, boron dissolves rapidly in the
body fluid and can be excreted in the urine.13 Boron has a
positive influence on embryogenesis, immune function, and
psychomotor skills.12 Moreover, the controlled release of
boron during degradation of BBGs can improve bone repair,
since small concentrations of boron are reported to favor bone
growth.9 However, some studies show that trace metallic
elements are potentially cytotoxic.51,79 High concentrations of
boron can have a significant negative impact on the brain and
reproductive health.66 One of the concerns related to the
medical use of BBGs is the release of borate ions during
degradation of the glass.80 Studies indicate that increase of the
amount of borate ions in glass reduces cell density.81 Brown et
al.82 showed that above a threshold concentration of ∼16 mM,
borate ions leaching out of glasses (56.1B2O3−26.9CaO−
24.4Na2O−2.1P2O5 mol %) inhibited the proliferation of
MC3T3-E1 cells. Even a concentration of 2 mM boron ions
led to a reduction of 40% of the cell density. Parallel with this,
in another study, BBG scaffolds (52%B2O3−12%CaO−6%
P2O5−14%Na2O−16%ZnO−xTiO2) were incorporated with
5, 15, and 20 mol % of titanium oxide ions and the % viability
of MC3T3-E1 cells was evaluated. Cell culture studies
indicated that the % cell viability decreased after treatment
with BBG scaffolds over a 30 day period. To be able to observe
the source of reduction of % cell viability, MTT tests were
conducted with various concentrations of sodium and boron
ions, separately. MTT tests revealed that the % cell viability
decreased gradually with the increase of released boron
concentration from 500 to 2000 ppm, while sodium ions
showed no such toxicity. Figure 8 shows % cell viability after
incubating cells in different concentrations of boron and
sodium ions.41

Figure 6. Concentration of boron ion released from 13-93B3 fibers
into SBF at 37 °C as a function of time9 (Reproduced with
permissions from ref 9. Copyright 2013 Springer).

Figure 7. pH of SBF solution for 13-93B3 particles with two different
particle sizes53 (Reproduced with permissions from ref 53. Copyright
2013 Springer).
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In a few other studies, boron ion release from borosilicate
glasses was investigated. These studies are also beneficial to
determine the effect of boron ions on cell proliferation.72,83 Fu
et al.72 studied the effect of boron concentration released from
13 - 9 3B2 BG (2 2CaO− 6Na 2O− 8MgO− 8K 2O−
18SiO2,36B2O3−2P2O5) extracts on bone marrow mesenchy-
mal stem cell (BMSC) and MLO-A5 cell viability. The tested
boron concentrations were 0.650, 1.301, 2.601, and 5.204 mM.
In agreement with the other studies, a gradual decrease of %
cell viability with the increase of boron concentration was
observed. While the highest boron concentration of 5.204 mM
was found to be toxic, 0.65 mM boron concentration was
nontoxic for the seeded cells. Finally, Liu et al.83 indicated that
release of boron ions from 13-93B2 glass with a concentration
lower than 105.1 ppm was nontoxic, and it induced
proliferation of BMSC. When the concentration units are
converted, the results of all authors are observed to be in the
same range and support each other, indicating that there is a
maximal boron concentration that can be beneficial (in vitro).
Overall, all available data indicates that it is critical to design

BBG scaffolds with a suitable boron ion release rate to induce
proliferation of cells. The toxic effect on cells could be reduced
by partial conversion of the BBG to HA prior to cell culture or
the use of more dynamic cell culture conditions. For reduction
of cytotoxicity, Chen et al.84 coated borate glass (53 wt %
B2O3, 20 wt % CaO, 6 wt % Na2O, 5 wt % MgO, 12 wt % K2O,
and 4 wt % SrO) with hydroxycarbonate apatite by immersing
borate glass in a buffer solution 4.2 mM NaHCO3, 1 mM
KH2PO4/K2HPO4, and 2.5 mM CaCl2 under dynamic
conditions. Although some boron concentrations show toxicity
in the mentioned static in vitro conditions, the same
concentrations have very good performance in dynamic
conditions, which was proven with many in vivo studies
conducted, and these are discussed in the following section.82

The reason for this is the dilution of local boron
concentrations in a dynamic environment.

4. APPLICATIONS OF BBGS
The two main areas of research in which BBGs are being
considered are bone repair and wound healing.85 As early
research indicated that BBGs were highly bioactive, bone
regeneration applications were started to be investigated in the
early 2000s.25,28 After a decade, Jung et al.86 observed wound
healing capability of BBGs. After this, BBGs were heavily
investigated for skin regeneration. Some other potential

applications in soft tissue engineering have emerged such as
nerve,33,68 muscle,86 and cartilage regeneration.82

Hard Tissue Applications (Bone Regeneration). Many
studies have reported that BBGs could contribute to regenerate
bone with no cytoxicity in vivo.51,58,79,80 The controlled release
of boron during degradation of BBGs can improve bone repair
since small concentrations of boron favor osteogenesis.9 The
ion release and degradation rates of 13-93B scaffolds have been
reported to trigger bone formation and resorption.9 Calcium
and other ions released during BBG conversion activate
osteogenic gene expression. Interestingly, BBGs simulate
angiogenesis which sustains transportation of precursor cells,
oxygen, growth factors and essential nutrients, and, thus, the
growth and maintenance of new bone can be estab-
lished.11,19,55

As mentioned above, the buildup of an HA layer on
biomaterials in vitro suggests the bioactive potential of BBGs
in vivo.11 Shorter conversion times in vitro could indicate more
rapid healing which has been illustrated in bone defect models,
in vivo.1,56,61 Radiographic images of Xie et al.80 showed that
13-93B3 scaffolds were mostly reabsorbed and replaced by a
large amount of new bone while calcium sulfate was
completely reabsorbed and replaced by a modest amount of
new bone. BBG scaffolds with controlled and complete
degradation behavior were biocompatible and had higher
bioactivity in comparison to silicate-based BGs. BBGs also
supported the growth and differentiation of human mesen-
chymal stem cells enhancing their suitability for bone tissue
engineering.80 In another study, microfibrous silicate 13-93
and borate 13-93B3 scaffolds were implanted in rat calvarial
defects. After 12 weeks, it was shown that while 13-93 fibers
were only partially converted to HA, 13-93B3 fibers were fully
converted.49

It has also been reported that BBGs form strong bonds with
titanium.37,88,89 BBGs also have a potential preventive effect on
bisphosphonate-related osteonecrosis of the jaw, receiving
increasing research interest. Real-time quantitative polymerase
chain reaction studies have indicated that zoledronic acid and
BBG (53.8 B2O3−20.0 CaO−12.1 K2O−4.6 Na2O−4.6
MgO−3.8 P2O5 in wt %, GL1550) led to increase osteogenic
and angiogenic gene expressions of BMSC and human
endothelial (HUVEC) cells, respectively, compared to the
control group (with no zoledronic acid or BBG treatment).77

The compositional flexibility of BBGs enables the possibility
to add biologically active ions to its structure.70 For instance,
calcium and silicon ions stimulate osteoblast differentiation.4,14

Strontium is known to favor bone growth.70,90 Zhang et al.90

produced 9 mol % strontium ion incorporated 13-93B3 bone
cements. Strontium incorporated BBG was observed to
improve the osteogenic differentiation of human bone marrow
derived mesenchymal stem cells in vitro compared with
pristine 13-93B3 incorporated bone cements. Copper exhibits
angiogenic properties.43 Rahaman et al.73 produced scaffolds
using 4% copper oxide incorporated 13-93B3 BG. These
scaffolds were incorporated into a rat calvarial defect model.
Copper incorporated scaffolds led to higher bone growth
compared with pure 13-93B3 scaffolds. A higher amount of
bone formation for copper incorporated scaffolds was
attributed to their angiogenic properties provided by the
presence of copper ions. Graphene platelets have been also
incorporated into BBG scaffolds. The results indicated that
addition of 5% graphene led to the optimum in vitro response
with induction of electrical conductivity which was measured

Figure 8. Absorbance values of preosteoblastic MC3T3-E1 cells
cultured on different concentrations of boron and sodium ions41

(Reproduced with permissions from ref 41. Copyright 2021 Wiley).
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as 0.06 S/cm. Authors stated that such electrically conductive
scaffolds are promising candidates for bone tissue engineering
applications.1 Table 1 shows a summary of BBG based systems
reported in the literature incorporating different dopants and
intended for bone tissue engineering applications.
Osteomyelitis, which is the serious bacterial infection of

bone, may occur at any age; however, diabetic patients are
found to be particularly susceptible.87 This infectious disease is
very difficult to cure, and the treatment for osteomyelitis
includes removal of the infected area of the bone followed by a
long duration of intravenous antibiotic treatment. However,
intravenous delivery may be inefficient to reach avascular areas
in the infected bone. Therefore, local delivery of high doses of
antibiotics may be preferable in the treatment of osteomyelitis.
Antibiotic-loaded calcium sulfate is commercially available for
clinical use in the treatment of osteomyelitis. Calcium sulfate
has shown to be predictable and high release rates of
antibiotics due to its high degradation rate; however, it is
found to be inadequate for bone regeneration.87 As an
alternative, silicate glasses are being increasingly considered
for the treatment of bone infection. For instance, the silicate
BG known as BoneAlive (S53P4) with a composition of
(53SiO2−20CaO−4P2O5−23Na2O in wt %) was approved for
clinical use in 2006 for the treatment of bone infections.99,100

BBGs may show an advantage for bone infection treatment
over silicate glasses, as they convert more rapidly and
completely to HA than silicate glasses; however, no
commercial product based on BBGs for osteomyelitis treat-
ment is available.54 BBGs can be loaded with antibacterial
drugs such as gentamicin,54,101 teicoplanin,87,102 and vanco-
mycin.56,80,103 In the study of Liu et al.,76 the release of
vancomycin from Na2O−K2O−MgO−CaO−B2O3−P2O5 scaf-
folds increased rapidly initially, and after 3−4 days almost
100% of the drug was released from the BBG scaffolds. On the
other hand, when cements were formed with the combination
of chitosan, drug release was completed over 25 days. In this
study, 87% of a rabbit tibia defect was recovered over 2
months.104 Xie et al.80 also used BBG (54B2O3−22CaO−
Na2O−8K2O−8MgO−2P2O5 mol %) as a degradable local
antibiotic delivery system for the treatment of chronic
osteomyelitis. The BBGs were investigated as vancomycin
carriers and delivery systems for eradication of osteomyelitis in
rabbits. Bisphosphonate has also been loaded on a BBG carrier

and results indicated that the drug-loaded BBG was efficient at
inducing mineralization during in vitro and in vivo studies.77

Studies indicate that ion doping has been found to be
efficient against bacteria.38,94,95,98 Silver oxide, tellurium oxide,
cerium oxide, titanium oxide, zinc oxide, and gallium ions have
been incorporated in various BBGs, and their antibacterial
properties and cytocompatibility have been assessed. Adb-
Allah et al.95 indicated that 2 mol % tellurium oxide doped 13-
93B3 had higher antibacterial activity against Staphylococcus
aureus (S. aureus) than 2 mol % zinc oxide, titanium oxide, and
cerium oxide doped BBG. These BBGs showed low toxicity on
human fibroblast cells. Mutlu et al.98 indicated that zinc oxide
doping had a higher inhibitory effect against S. aureus (Gram-
positive) bacteria than gallium doping. On the other hand, the
two dopants had similar antibacterial effect against Escherichia
coli (Gram-negative) bacteria. This effect was attributed to
different thickness and cell wall structure of the two bacterial
species, which made Escherichia coli more susceptible to
damage from gallium ion doped 13-93B3 than S. aureus.
Singh et al.105 incorporated 30 vol % piezoelectric

Na0.5K0.5NbO3 (NKB) and BaTiO3 phases in 1393B3 BBG
powder to improve antibacterial properties and cellular
response. The antibacterial activity increased by approximately
53% and 54% against S. aureus bacteria for BaTiO3 and NKB
incorporated 13-93B3 glasses. This was explained as being due
to electrostatic repulsion between BBG and the negatively
charged bacterial membrane. The growth rate of MG-63
osteoblast cells was also enhanced after treatment with
negatively polarized BaTiO3 and NKB incorporated BBG.
Negatively charged surfaces enhanced the adhesion and
proliferation of the osteoblast cells.
BBGs have been incorporated also in PMMA,10,69,70

chitosan,26 polycaprolactone (PCL),34,64 gelatin,63 and PVA
forming bioactive composites.66 This strategy led to
production of bone scaffolds with improved mechanical
properties. Table 2 shows the list of BBG-incorporated
polymeric matrices that have been developed for bone tissue
healing.
4.2. Soft Tissue Engineering. BBGs are attracting

increasing interest for soft tissue engineering applica-
tions.33,56,58 There is special interest in the exploitation of
BBGs for chronic wound healing.51,73 Wound healing occurs in
four stages including hemostasis, inflammation, cell prolifer-

Table 2. Studies of BBGs (All Melt-Derived) Incorporated Polymeric Matrices for Bone Healing

composition findings

20, 30, 40% 13-93B3 in PMMA
cement

5, 33, 100 μm BBG successfully added in PMMA69

20, 30, 40% 13-93B3 in PMMA
cement

Modulus and compressive strength of 3 GPa and 130 MPa, respectively were achieved10

10, 20, 30% SrBG in PMMA cement Modulus and compressive strength of 3.15 GPa and 90 MPa, respectively were achieved. % viability of MC3T3-E1 cells
after treatment with cements showed biocompatibility of the composite70

13-93B3 in chitosan-based scaffold Injectable scaffolds were successfully prepared.
Compressive strength of up to 30 MPa was obtained.
Up to 50% of the scaffolds degraded in 30 days26

13-93B3 scaffold with PCL coating Compressive strength of 240 MPa was achieved64

13-93B particles coated with WS2
incorporated PCL/PLGA

0.1−2 wt % WS2 particles improved strength and in vitro bioactivity. Up to 1 wt % WS2 nanoparticles improved % MC3T3-
E1 cell viability65

Particles coated with PCL/PLGA/
hexagonal boron nitride

Compressive strength of 3.23 MPa was achieved after addition of 0.2 wt % boron nitride. Samples were found
biocompatible with MC3T3-E1 cells106

13-93B3 in gelatin with citric acid
scaffold

Highly bioactive injectable scaffolds were successfully achieved63

13-93B3 with platelet rich plasma
scaffold

Incorporation of platelet rich plasma improved bone healing, in vivo71
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ation (cell migration, angiogenesis, re-epithelialization, pro-
duction of extracellular matrix), and maturation of the
tissue.107−109 Angiogenesis enables transport of oxygen,
nutrients, and growth factors which are critical for the
wound healing process.110 A basic characteristic of nonhealing
wounds is reduction of vessel formation around the wound
area; therefore, promotion of angiogenesis is key for
healing.111,112 It is very challenging to achieve angiogenesis
in complex and thick tissues.113 As mentioned earlier, boron
has been shown to stimulate angiogenesis.14 This effect has
been related to stimulation of specific growth factors around
the wound by the ionic dissolution products of BBGs.66,112

Boron takes part in the synthesis of extracellular matrix and
stimulates secretion of collagen and proteins.112 Previous
studies have shown that in a dose-dependent manner, boron
can stimulate HUVEC proliferation and migration associated
with the MAPK signal pathway.31 Moreover, boron promotes
keratinocyte migration which also triggers the wound healing
process.108,114 Wound healing is also promoted by up-
regulation of the vascular endothelial growth factor
(VEGF).73 It is also an antiseptic which aids the wound
healing process.51 All of these studies indicate that boron has
an important role in many different stages of wound healing.
Microfibrous 13-93B3 scaffolds exhibit rapid and full

degradation, slow crystallization of ACP, and a higher
concentration of dissolved calcium ions in SBF in comparison
to 45S5 BG.9 In the final stages of the wound healing cascade,
calcium ions are required in epidermal cell migration and
regeneration, although the exact healing process has not been
established. Importantly, the calcium ion concentration at the
wound site should be compatible with events in the healing
cascade.9 Figure 9 shows release rates of calcium ions from 13-
93B and 45S5 BG fibers.9

As can be seen from Figure 9, calcium ion release rate is
much higher for 13-93B3 than for 45S5 BG microfibers. This
may partly explain higher wound healing capacity of 13-93B3
than silicate glasses.9 However, there are still questions about
the exploitation of mineralizing glasses in soft tissue repair, e.g.,
the formation of HA layer on the BBG surface may not be
required in wound healing.27,61 In contrary, some studies
indicate that formation of an HA layer in the wound area

triggers healing factors such as the antigen hematopoietic form
precursor (CD44), the vascular endothelial growth factor
(VEGF) precursor, and the vascular cell adhesion protein
precursor, which lead to the assembly of epidermal cells at the
site of injury. This eventually supports new tissue forma-
tion.115,116,85 Zhou et al.115 treated full-thickness dermal
wounds on Sprague−Dawley rat skin with borate 13-93B3
and silicate 45S5 microfibers. In parallel with this, Lin et al.117

also implanted 13-93B3 and 4S5S BG microfibers in
subcutaneous tissue of Sprague−Dawley rats, and a higher
microvascular density was observed for 13-93B3 treated
groups. As shown in Figure 10, wounds treated with 13-
93B3 microfibers led to more rapid wound healing than 45S5
BG microfibers.115

For healing skin wounds, Mirragen a commercial product
made of 13-93B3 glass microfibers has been approved by the
U.S. Food and Drug Administration (FDA) in 2016.10,47,48

These microfibers have a cotton candy like structure imitating
a fibrin clot microstructure.118 Human trials indicated that
chronic wounds, such as diabetic foot ulcers and bedsores,
healed in 6−10 weeks after application of Mirragen micro-
fibers.119−121 This technology is described to be an effective
treatment for wounds which exhibit no healing with conven-
tional treatment options.120,122 Other advantages of these
nanofibers are stated to be their easy handling and possibility
to fit irregularly shaped wounds.120

BBGs were also incorporated in polymeric scaffolds for
wound healing applications. For example, 13-93B3 with 5 mol
% SrO particles in PVA hydrogel were produced. BBG acted as
a filler and a cross-linking agent and improved mechanical
properties. For these scaffolds, a compressive modulus of 0.12
MPa and an elastic modulus of 0.4 MPa were achieved. Boron
ion release was less than 100 ppm which is lower than toxic
levels.66 In another study, 10, 20, 40 wt % of 13-93B3 particles
were added in methyl cellulose hydrogel. Methyl cellulose
(MC) was cross-linked with manuka honey, which is a natural
and biocompatible cross-linker of cellulose. It also has
additional benefits such as antibacterial activity and wound
healing capability. Samples were 3D printed with a nozzle size
of 20G and a pressure of 550 kPa. The printing speeds were
optimized depending on the BBG loading and the optimized
printing speeds were 2 and 4.5 mm/s for MC and 40 wt %
BBG/MC scaffolds, respectively. A compressive strength of 15
kPa was obtained for 40 wt % BBG incorporated samples with

Figure 9. Calcium ion release rates from 13-93B3 and 45S5 BG
microfibers in SBF showing significantly higher concentration of
calcium concentration after 7 days from 13-93B39 (Reproduced with
permissions from ref 9. Copyright 2013 Springer).

Figure 10. Skin wounds of Sprague−Dawley rats with no treatment
(control) and groups treated with 45S5 BG and 13-93B3 microfiber
wound dressings for 0, 3, and 9 days115 (Reproduced with
permissions from ref 115. Copyright 2016 Elsevier).
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a pore size of 0.9 mm. This was found to be three times higher
than that of the pristine MC hydrogel. Incorporation of BBG
in the system improved printability of the scaffolds. In vitro
studies with human dermal fibroblasts (hDFs) showed the
biocompatibility of the 3D printed scaffolds for wound
healing.67 Overall, incorporation of BBGs in polymers is
observed to slow down boron ion release rate, prevent toxicity,
and also improve mechanical properties. It is however
remarkable that BBG containing inks for 3D bioprinting
have not been extensively investigated to date.
The research so far indicates that by incorporation of

different dopants (biologically active ions), the wound repair
capability of BBG scaffolds can be enhanced.14,30,40,43,44

However, dopant concentration is critical, as above certain
concentrations, the dopants may lead to toxicity to the
cells.39,123 First, addition of copper ions to BBGs has many
advantages. The addition of copper ions could impair the
crystallization of ACP to HA, which has been found to be
advantageous for cell proliferation.29 Copper ions have been
shown to stimulate the proliferation of endothelial cells during
in vitro culture.12 Studies indicate that copper ions induce a
hypoxia mimicking condition, which leads to the upregulation
of the expression of VEGF, which is the growth factor playing a
critical role in the formation of blood vessels.14 Therefore, it is
indicated that copper ions stimulate angiogenesis, as
mentioned above.12 Zhao et al.44 applied up to 3 wt % copper
ion doped 13-93B3 microfiber wound dressings in full
thickness skin defects in rodents. After 14 days, the healed
skin samples were analyzed by computed tomography after
staining with Microfil. The results indicated the drastic increase
of vessel formation with the incorporation of copper ions in
13-93B3 scaffolds.44 Figure 11 shows 3D reconstructive images
indicating blood vessel formation after application of the
wound dressings.44

Antimicrobial properties of scaffolds have been reported
after doping BBGs with copper, zinc, gallium, and silver
ions.14,39,89,124 Table 3 shows an overview of BBG scaffolds
which have been doped with various biologically active ions for
soft tissue engineering applications.
Earlier, Poon et al.123 indicated that silver ions may also

harm fibroblast and keratinocyte cells while killing bacteria.
Naseri et al.39 studied the effect of silver ion doped BBG
(60B2O3−36CaO−(4 − x)P2O5−xAg2O), on P. aeruginosa
bacteria as well as fibroblasts and kerotinocytes. The results
indicated a dose-dependent reduction of bacteria after the
silver doped BBG treatment. On day 4 of cell culture

experiments, 0.375 and 0.75 mg/mL of BBG treatment with
0.5 mol % of silver ions, % keratinocyte cell viability increased,
whereas 1.5 mg/mL of BBG treatment led to a decline of %
cell viability. The study also indicated that 0.3 and 0.5 mol %
doping of BBG led to kerotinocyte migration and promoted
wound healing. Gallium and zinc ions increase immune
tolerance both in vitro and in vivo.14,40,98 Deliormanlı et al.43
implanted porous BBG scaffolds in the connective tissue of the
subcutaneous area of Sprague−Dawley rats, and the histo-
logical study indicated that incorporation of up to 5 wt % of
cerium oxide ions into the 13-93B3 network significantly
increased blood vessel formation. Despite its antibacterial
properties, incorporation of up to 3 wt % of gallium ions into
13-93B3 scaffold was shown to reduce angiogenesis in a rat
subcutaneous implant model. In the same study, doping 13-
93B3 with 3 wt % vanadium ions was also proven to reduce
angiogenesis.
In a few studies, nerve regeneration capabilities of BBGs

were also studied. Marquardt et al.33 incorporated 13-93B3 in
aligned fibrin microfibers and examined the viability of
embryonic chick dorsal root ganglia (DRG). The study
indicated that the % cell viability increased with the
incorporation of BBG. Additionally, neural extensions were
observed which indicated the potential use of BBG for neural
tissue engineering applications. Gupta et al.68 incorporated 50
wt % 13-93B3 in PCL fibers for neural regeneration. In the
study, different dopants were also incorporated in 13-93B3 to
determine their effect on DRG outgrowth. The results
indicated that 0.4 wt % iron, 1 wt % gallium, and 5 wt %
zinc ion incorporated 13-93B3/PCL fibers led to significant
neurite outgrowth. Another promising application of BBG is in
muscle regeneration. Jia et al.125 studied the effect of 13-93B3
on muscle healing. 13-93B3 extracts were observed to
stimulate secretion of CX43 and IG-1 from C2C12 cells.
Also, in vivo studies were carried out with Sprague−Dawley
rats with 7 mm of tibialis anterior muscle defects. Examination
of the defect region under confocal laser scanning microscopy
after BBG treatment led to improved vascularization compared
with 45S5 BG powder. In the literature, cartilage tissue
engineering is also suggested as a potential application of
BBGs; however, to the authors knowledge, so far there are no
research outcomes reported in this field.82,86

5. CONCLUSION
In several applications, BBGs are advantageous over silicate
glasses due to a faster conversion rate to amorphous CaP. On
the other hand, despite fast conversion to CaP, BBG converts
to HA more slowly than silicate glasses, indicating their
suitability for soft tissue repair. This slow conversion also
increases the in vitro cell viability. BBGs of different
compositions have been found to stimulate angiogenesis and
osteogenesis. These effects are enhanced by doping BBGs with
different ions. The following ions have been investigated in
BBGs: copper, magnesium, strontium, cerium, silver, gallium,
tellurium, vanadium, cobalt, iron, titanium, and iodine, with
studies leading to different outcomes.
Most BBGs investigated so far have been produced by the

melt-quenching route; however, production of BBGs via sol−
gel processing may be preferable, as this leads to a greater
surface area and porosity which ultimately increases bioactivity.
However, analysis of the literature indicates that to date the
sol−gel route has seldomly been applied for the preparation of
BBGs. Therefore, greater research efforts are required to

Figure 11. 3D reconstructive images showing formation of blood
vessels with no treatment (control), after application of 13-
93B3(BG), and 3 wt % copper ions incorporated 13-93B3 (3Cu-
BG) microfibers in full thickness skin defects in rodents 14 days after
surgery44 (Reproduced with permissions from ref 44. Copyright 2015
Elsevier).
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manufacture sol−gel processed BBGs with ion doping.
Research so far also lacks sufficient work on 3D printing to
prepare BBG scaffolds, which needs to be exploited further for
preparation of patient-specifically designed scaffolds, especially
scaffolds with sufficient mechanical properties for bone tissue
engineering. In this context, biopolymer/BBG composite
scaffolds have also received limited attention, even if they
promise to be an effective approach to expand the applications
of BBGs in soft tissue repair, applying techniques such as
electrospinning and exploiting the angiogenesis porperties of
BBGs. Moreover, although BBG scaffolds show promise for
nerve regeneration, the field is in its infancy. Other promising
research fields for BBGs are muscle and cartilage tissue
engineering. Therefore, more research efforts are required to
explore these potential application fields for new compositions
of BBGs. Research should further focus on composites by
smart combinations of biopolymers and BBGs. We expect that
this review has provided a state-of-the art overview of the field
of BBGs, and will prompt more studies regarding new
compositions and applications of BBGs in tissue engineering
and other biomedical applications.
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