
FACHBEITRAG

https://doi.org/10.1007/s13222-017-0267-4
Datenbank Spektrum (2017) 17:277–287

SQL/JSON Standard: Properties and Deficiencies

Dušan Petković1

Received: 27 June 2017 / Accepted: 9 September 2017 / Published online: 24 October 2017
© Springer-Verlag GmbH Deutschland 2017

Abstract Recently, a new era of application development
is emerging, which is based upon the ease of access to mod-
ern compute resources, such as mobile devices. This access
can be supported using JSON (Java Script Object Nota-
tion). Therefore, the support of storage and query access
for JSON documents in the context of relational DBMSs
is necessary. For this reason, the SQL standardization com-
mittee published a proposal called SQL/JSON. In this paper
we discuss the JSON features specified in the proposal and
show to what extent different relational database systems
have integrated them.

At the end of the paper we describe the main drawbacks
of the proposal and the ways to solve them. From our point
of view, the following should be specified in one of the fu-
ture proposals of SQL/JSON: JSON documents should be
first-class objects in SQL (native storage). Handling JSON
documents as first-class objects in SQL would provide the
potential for greater capability for users and for better per-
formance. The support of modification of parts of a JSON
document using the SQL UPDATE statement is necessary.
Direct access of external JSON data should be supported,
too.

1 Introduction

JSON (JavaScript Object Notation) is a simple data for-
mat used for data interchange. The structure of JSON con-
tent follows the syntax structure for JavaScript. Generally,

� Dušan Petković
petkovic@fh-rosenheim.de

1 University of Applied Sciences,
Hochschulstr. 1, 83024 Rosenheim, Germany

a JSON string contains either an array of values or an object,
which is a list of name/value pairs. An array is surrounded
by a pair of square brackets and contains a comma-sep-
arated list of values. An object is surrounded by a pair of
curly brackets and contains a comma-separated list of name/
value pairs. A name/value pair consists of a field name (in
double quotes), followed by a colon (:), followed by the
field value (in double quotes).

Fig. 1 shows a group of JSON documents with the name
info, which describe persons. The name of the person, her
affiliation and her friends are described. The corresponding
names (“who”, “friends” and “where”) are called properties.
For instance, a single person, Fred, works for Microsoft and
has friends Lili and Hank.

1.1 SQL/JSON Standard

The SQL/JSON standard is published as “change proposal”
in March, 2014 in two documents. The first part of the
change proposal [14] provides an introduction to JSON and
discusses SQL operators, which can be used to construct
JSON documents stored as character or binary strings. The
second part specifies how JSON data can be queried in SQL
[15].

The members of the committee based their work on the
following objectives:

● The language should be minimal
● JSON should be handled using built-in functions
● The query language should be exclusively designed for

this purpose

K

278 Datenbank Spektrum (2017) 17:277–287

 {"info":{"who": "Fred" ,"where": "Microsoft" ,

 "friends":[{"name":"Lili","rank":5}, {"name":"Hank","rank":7}]}}

 {"info":{"who": "Tom", "where": "IBM", "friends": [{ "name":

 "Sharon", "rank": 2}, {"name": "Monty", "rank": 3}] }}

 {"info":{"who":"Jack", "friends": [{ "name": "Connie" }] }}

 {"info":{"who":"Joe","friends":[{"name":"Doris"},{"rank":1}]}}

 {"info": {"who":"Mabel","where":"PostgresSQL","friends":[{"name":"Buck","rank": 6}]}}

 {"info":{"who": "Louise", "where": "Hanna" }}

Fig. 1 A group of JSON documents (stored in the ora_json_table table)

1.2 Why Integration of JSON in RDBMSs is
Necessary?

There are several reasons why it is necessary to integrate
JSON in relational database systems:

● Storage of semi-structured data
● Databases provide reduced administrative costs
● Increased developer productivity

Relational tables contain structured data. The advantage
of JSON is that it can contain both structured and semi-
structured data. By supporting storage of JSON documents,
a relational database extends its capabilities and integrates
structured and semi-structured data together.

When JSON objects are stored individually and are used
for separate programs, each program has to administrate
its own data. In case of JSON support through a relational
database system, the system manages all data. The same is
true for security and transaction management, because the
system takes over the management of security and transac-
tion processing.

Integrating JSON in relational DBMSs increases produc-
tivity, because the database system supports a lot of tasks
that otherwise must be implemented by programmers.

1.3 Integration Features Discussed

The grouping of the SQL/JSON features in this paper is
different than in the SQL/JSON standard. The reason is
that integration of data exchange formats, such as JSON
and XML in relational DBMSs can be generally discussed
in relation to the following questions:

● How data are stored in tables?
● How data are presented in relational form?
● How relational data can be published in the particular for-

mat?
● How data is queried?
● Which indexing techniques can be applied to that data?

Note that indexing techniques are not an issue in the
SQL standardization process. For this reason, we will not
discuss it further.

1.4 Roadmap

The rest of the paper is organized as follows. Sect. 2 dis-
cusses general features described in the SQL/JSON stan-
dard. Sect. 3 describes the specification of the storage of
JSON data in relational tables, while Sect. 4 explains how
JSON data can be presented in relational form. The next
section discusses how the standard solved a problem of
publishing of content of relational tables as JSON. Sect. 6
describes the SQL/JSON query functions and gives several
examples, how they can be used. Sect. 7 gives a concise de-
scription of the support of SQL/JSON in IBM DB2, Oracle
and SQL Server. At the end, in the summary, we discuss the
deficiencies of the proposal, and the ways how they could
be improved in one of future versions of the SQL/JSON
standard.

1.5 Related Work

The SQL/JSON proposal is published in two papers [14,
15]. The former describes general properties of the SQL/
JSON specification, while the latter discusses SQL/JSON
query functions.

Besides IBM DB2, Oracle and SQL Server, which are
described in Sect. 7, PostgreSQL also supports integration
of JSON functions in its database server, but the entire
implementation does not have any resemblance to the SQL/
JSON standard [10, 11].

Vendors of NoSQL data stores have used JSON as a data
format for the document object model. Another approach is
to add a middleware between JSON and the corresponding
database system. An example of such a system is Sinew
[13].

The topic of several articles is JSON integration in
RDBMSs. Liu et al. [5] present three architectural prin-
ciples for schema-less development within RDBMSs. The

K

Datenbank Spektrum (2017) 17:277–287 279

same author investigates, how JSON data model can be
added to a RDBMS [6]. The similar idea, but discussed
from the different aspect is shown in [4].

2 SQL/JSON: General Features

In this section we will describe several general topics from
the SQL/JSON standard, which are applied to all (or sev-
eral) SQL/JSON functions described in the rest of this pa-
per:

● Lax and strict modes
● JSON input and output clauses
● IS JSON predicate
● SQL NULLs, JSON nulls and SQL/JSON nulls

2.1 Lax and Strict Modes

JSON documents can have a “sloppy” structure, meaning
that several JSON values could be omitted in a document.
(JSON value could be an object, array, number, string, or
one of the literals.) For this reason, SQL/JSON introduces
two modes: lax and strict. The motivation to introduce these
modes is that the strictmode should be used to examine data
from a strict schema perspective, i. e. when the document
diverges from the schema. Therefore, the strict mode raises
an error if the data does not strictly adhere to the require-
ments of the corresponding path expression. (See also the
description of error handling at the beginning of Sect. 6.)
On the other hand, the laxmode converts errors to an empty
SQL/JSON sequence. (see Examples 9 and 10 show the use
of both modes.)

Note that the standard does not specify which mode is
the default mode. In other words, the keywords lax and
strict are mandatory syntax in the specification. This allows
implementations to choose their own default value.

In addition, the lax mode handles a JSON array of size
one as a singleton, and vice versa. In other words, if an
operation requires an array but the operand is not an array,
then the operand is implicitly “wrapped” in an array. Also,
if an operation requires a non-array, but the operand is an
array, then the operand is implicitly “unwrapped” into a se-
quence. For this reason, SQL/JSON introduces several op-
tions, which handle wrapping and unwrapping of an array.
The corresponding options will be discussed in Sect. 6.3.

2.2 JSON Input and Output Clauses

To use JSON meaningfully, it is necessary to include syn-
tax for specifying that input arguments of an SQL/JSON
function are JSON values (instead of ordinary values of
a relational table). In the same way, the control of the out-

put of JSON data should be supported. For this reason,
SQL/JSON introduces two clauses: JSON input and JSON
output clause.

The syntax for the input clause (see also Example 3) is
as following:

<JSON input clause> ::=

FORMAT <JSON input representation>

where <JSON input representation> is implementation de-
fined representation of JSON. (Two well-known JSON rep-
resentation are BSON [3] and Avro [1]).

The syntax for the output clause (see also Example 9) is:

<JSON output clause> ::=

RETURNING <data type>
[FORMAT <JSON output representation>]

where <JSON output representation> specifies the encoding
format for the output value.

2.3 IS JSON Predicate

Before JSON data are integrated in a relational database, it
is recommended to check whether the data in the document
fulfills all syntax rules. The SQL/JSON standard specifies
the IS JSON predicate to check this constraint. (The JSON
document, which fulfills the given syntax rules, is called
well-formed.)

Additionally, SQL/JSON does not specify whether field
names of a JSON object must be unique for that object.
This means that a well-formed JSON object can have mul-
tiple members with the same field name. For this reason,
the standard introduces the WITH UNIQUE KEYS con-
straint, to determine that object fields must be unique for
the particular JSON object. That way, JSON data will be
considered as well-formed only if none of its objects have
duplicate field names.

On the other hand, the specification of the keywords
WITHOUT UNIQUE KEYS means that objects of the cor-
responding JSON document can have duplicate field names
and still be considered as well-formed.

2.4 SQL NULLs, JSON nulls and SQL/JSON nulls

JSON has a value “null”. Unlike SQL NULLs, this value
stands alone in its own type. When a JSON text is parsed
to move it into the SQL/JSON model, a JSON null is con-
verted to an “SQL/JSON null”. This is a value used by the
database server, but it is not an SQL NULL, because there
is no SQL data type information associated with it. Even
though a JSON null or its internal representation (“SQL/
JSON null”) is not an SQL NULL, there are cases, in which

K

280 Datenbank Spektrum (2017) 17:277–287

they are converted from one to another. In this paper, we
will use the phrases, “SQL NULLs”, “JSON nulls” and
“SQL/JSON nulls”, depending on the context.

3 Storing JSON Documents

Generally, there are three different ways in which data pre-
sented in a particular format can be stored in relational
form:

● As raw documents
● Decomposed into relational columns
● Using native storage

In case that JSON documents are stored using either
VARCHAR, CLOB or BLOB data type, an exact copy of
the data is stored. In this case, JSON documents are stored
“raw”—that is, in their character or binary string form. The
raw form allows insertion of JSON documents in an easy
way. The retrieval of such a document is very efficient if
the entire document is retrieved. To retrieve parts of the
documents, special types of indices are helpful.

To decompose a document into separate columns of one
or more tables, its schema is used. In this case, the hierar-
chical structure of the document is preserved, while order
among elements is ignored. Note that storing JSON doc-
uments in decomposed form can be applied in rare cases,
where the corresponding schema exists.

Native storage means that JSON documents are stored in
their parsed form. In other words, the document is stored in
an internal representation that preserves the content of the
data. Using native storage makes it easy to query informa-
tion based on the structure of the document. On the other
hand, reconstructing the original form of the document is
difficult, because the created content may not be an exact
copy of the document.

The specified solution in the proposal is a “light-weight”
one, meaning that JSON documents are specified in a rela-
tional table using SQL standard data types, such as VAR-
CHAR, BLOB and CLOB. Therefore, this solution corre-
sponds to the form of storing documents in a “row” form.
As the SQL standardization committee members quote, the
primary reason for taking this approach is to improve the
chances of its quick adoption into the SQL standard, as
well as the rapid implementation by vendors of relational
database systems.

4 Projecting JSON Documents in Relational Form

There are two different issues concerning presentation of
JSON: JSON documents can be projected in relational form
and relational data stored in a table can be published as
JSON documents. (The former will be discussed in this
section, while the latter is topic of Sect. 5.) One common
reason for projecting JSON documents in relational form is
that existing legacy applications, packaged business appli-
cations or reporting software do not always support JSON
format. In that case, it is useful to convert JSON documents
into rows and columns of relational tables.

The SQL/JSON standard introduces the JSON_TABLE
function to project JSON data in relational form. As all
other SQL/JSON functions, this one uses SQL/JSON path
language, to specify the part of the document, which should
be projected. This means that the function uses a row pattern
to describe the rows that are selected from a JSON value,
and column patterns to describe the columns.

The proposal supports different clauses, which allow
users to project JSON documents in the simple form (i. e.
with no nesting) as well as with nesting.

Example 1

SELECT jt.* FROM ora_json_table,
JSON_TABLE(person_and_friends, 'lax $.info'

COLUMNS("Person" VARCHAR2(20) PATH 'lax $.who',
"Affiliation" VARCHAR2(20) PATH 'lax $.where')) AS jt;

PERSON AFFILIATION
-------------------- --------------------
Fred Microsoft
Tom IBM
Jack
Joe
Mabel PostgresSQL
Louise Hanna

The COLUMNS clause of the JSON_TABLE function al-
lows users to explicitly define how the output table looks
like. The names of particular columns can be specified, too.
The path expression in the PATH option uses the SQL/JSON
path language to specify which part of the JSON document
should be projected to the given column name. (The syntax
of the SQL/JSON path language can be found in [15].)

The previous example shows the way to project simple
data with no nesting. If the nested data should be displayed,
the NESTED PATH clause must be used.

K

Datenbank Spektrum (2017) 17:277–287 281

Example 2

SELECT jt.* FROM ora_json_table,
JSON_TABLE(person_and_friends, 'lax $.info'

COLUMNS ("Person" VARCHAR(20) PATH 'lax $.who',
NESTED PATH 'lax $.friends[*]'
COLUMNS ("name" VARCHAR2(20) PATH 'lax $.name',

"rank" VARCHAR2(20) PATH 'lax $.rank'))) as jt;

PERSON NAME RANK

Fred Lili 5
Fred Hank 7
Tom Sharon 2
Tom Monty 3
Jack Connie
Joe Doris
Joe 1
Mabel Jack 6
Louise

Generally, the NESTED PATH clause:

● Supports the nested COLUMNS clause to allow the nest-
ing within the data

● Provides syntax to support both inner and outer join cases
between parent and child COLUMNS clauses

● Allows more than one nested COLUMNS clause at any
depth

The proposal contains two other clauses:

● FOR ORDINALITY clause
● PLAN clause

The FOR ORDINALITY clause specifies the ordinality
column. The ordinality column allows sequential number-
ing of rows, starting with 1. Therefore, this clause is similar
to the SQL analytic function called ROW_NUMBER. The
PLAN clause is used to express the desired output plan.

5 Publishing Relational Data as JSON

The main reason to publish relational data as JSON docu-
ments is Internet. JSON is a format, which is generally used
in Web applications. If available data is given in relational
form, but should be used for Web applications, publishing
these data as JSON documents is an established method.
The group of four standardized SQL/JSON functions:

● JSON_OBJECT
● JSON_OBJECTAGG
● JSON_ARRAY
● JSON_ARRAYAGG

can be used for this purpose. (These four functions are
called constructor functions, because they can be used to
construct JSON objects or JSON arrays.)

5.1 JSON_OBJECT

The construction of new JSON objects is necessary, mainly
to use them within the corresponding application. The
SQL/JSON standard proposes a built-in function called
JSON_OBJECT that constructs JSON objects from explicit
name/value pairs; the names in those name/value pairs must
be tables’ columns, while the values may be specified as
SQL literals or as any other SQL expressions, including
subqueries.

Example 3

-- create table and insert two rows
CREATE TABLE department (dept_no INT,

dept_name CHAR(20), location CHAR(20));
INSERT INTO department VALUES (1, 'Marketing', 'Seattle');
INSERT INTO department VALUES (2, 'Production', 'Boston');
-- json_object()
SELECT JSON_OBJECT

('deptno' : d.dept_no FORMAT JSON, 'deptname' : d.dept_name
FORMAT JSON) AS departments
FROM deparment AS d;

Output: {“deptno”: 1, “deptname”: "Marketing" }
{“deptno”: 2, “deptname”: "Production" }

The query in Example 3 returns one row for each depart-
ment selected in the SELECT statement. That row contains
a single column, which contains a serialization of a JSON
object having the department number and name.

5.2 JSON_OBJECTAGG

JSON documents are usually schema-less. For this reason,
it is not always possible to construct a JSON object by
explicitly specifying the names of the contained name/
value pairs. In such a case, it may be desirable to con-
struct a JSON object as an aggregation of information in
a relational table. The SQL/JSON standard specifies the
JSON_OBJECTAGG functions to perform this functional-
ity. The output of Example 4 is a single row of one column,
which contains a serialization of the corresponding JSON
object.

Example 4

SELECT JSON_OBJECTAGG (dept_name, dept_no)
from department;

Output: {"Marketing":1, "Production":2}

Additionally, the JSON_OBJECTAGG function can be
used to group parts of a relational table according to the
values in one or more columns.

Example 5

SELECT d.dept_no, JSON_OBJECTAGG (dept_name, dept_no)
FROM department AS d

GROUP BY d.dept_no;

K

282 Datenbank Spektrum (2017) 17:277–287

5.3 JSON_ARRAY and JSON_ARRAYAGG

Analogously to the JSON_OBJECT function, SQL/JSON
specifies the JSON_ARRAY function. This function con-
structs a JSON array, each element of which is taken from
the rows selected in the query. JSON_ARRAY comes in
two flavours: One produces the result from an explicit
list of values. The other produces its results from a query
expression invoked within the function.

Example 6

SELECT JSON_ARRAY (dept_no, dept_name)
FROM department;

Output:
[1,"Marketing"]
[2,"Production"]

This query returns one row for each department recorded
in the table; that row contains a single column that con-
tains a serialization of a JSON array having the department
number and name.

The last publishing function, JSON_ARRAYAGG,
constructs a JSON array as an aggregate, similar to
JSON_OBJECTAGG. This function supports an optional
ORDER BY clause that allows the result of the query to be
ordered, before the selected data is extracted to be placed
in the corresponding JSON array.

6 Querying JSON

Before we start to discuss SQL/JSON query functions, we
will explain how the standard handles errors concerning
path expressions. (While all SQL/JSON query functions
use path expressions, error handling can be specified in
function’s path expressions).

Note that the SQL/JSON standard groups errors in two
groups: structural and non-structural. Structural errors con-
cern the structure of the document; for example, accessing
an array element or an object member that does not exist.
Non-structural ones are conventional errors, such as divi-

 {“who”: "Fred" ,"where": "Microsoft" ,

 "friends":[{"name":"Lili","rank":5}, {"name":"Hank","rank":7}]}

 {"who": "Tom", "where": "IBM", "friends": [{ "name":

 "Sharon", "rank": 2}, {"name": "Monty", "rank": 3}] }

 {"who":"Jack", "friends": [{ "name": "Connie" }] }

 {"who":"Joe","friends":[{"name":"Doris"},{"rank":1}]}

 {"who":"Mabel","where":"PostgresSQL","friends":[{"name":"Jack","rank": 6}]}

 {"who": "Louise", "where": "Hanna" }

Fig. 2 Slightly modified document from Fig. 1 (stored in the json_table table)

sion by zero. In this paper we will discuss only structural
errors.

Handling structural errors in a path expression depends
whether the lax or strict mode is specified. In the lax mode,
structural errors are converted to an empty SQL/JSON se-
quence, by default, and are handled by the following forms
of the ON EMPTY clause:

● NULL ON EMPTY—returns NULL (the default behav-
ior)

● ERROR ON EMPTY—raise an error
● DEFAULT “string” on EMPTY—displays the given

string
● EMPTY ARRAY ON EMPTY—displays empty array
● EMPTY OBJECT ON EMPTY—displays empty object

If a path expression is specified in the strict mode, the
structural errors become “hard” errors, meaning that re-
ported errors are sent back to the invoking routine. To con-
trol “hard” errors, the standard specifies the ON ERROR
clause, which has the following forms:

● ERROR ON ERROR—Raise the error
● NULL ON ERROR—Return null instead of raising the

error (the default behavior)
● TRUE ON ERROR—Return true instead of raising the

error. This form of the clause is available only for the
JSON_EXISTS function (see Example 7).

● FALSE ON ERROR—Return false instead of raising the
error. This form of the clause is available only for the
JSON_EXISTS function.

● EMPTY ON ERROR—Return an empty array ([]) in-
stead of raising the error. This form of the clause is avail-
able only for the JSON_QUERY function.

● DEFAULT “string” ON ERROR—Return the specified
string instead of raising the error (see Example 10).

● EMPTY ARRAY ON ERROR—displays empty array
● EMPTY OBJECT ON ERROR—displays empty object

The standard specifies the following functions (condi-
tions), which are used to query JSON documents:

K

Datenbank Spektrum (2017) 17:277–287 283

● JSON_EXISTS
● JSON_VALUE
● JSON_QUERY

We will use the JSON document shown in Fig. 2 as
a running document in the rest of the paper.

6.1 JSON_EXISTS

The JSON_EXISTS condition takes a path expression and
checks if such path selects one or multiple values in the
JSON documents. Therefore, with this condition the user
can find the rows in which the JSON documents satisfy
a given predicate. The condition returns true if the JSON
value exists and false if the JSON value does not exist.
(This also means that false will be returned, if the value is
not a well-formed JSON document.)

Example 7

SELECT person_and_friends
FROM json_table
WHERE JSON_EXISTS (person_and_friends, 'strict $.friends');

SELECT person_and_friends
FROM json_table
WHERE JSON_EXISTS (person_and_friends, 'strict $.friends'
TRUE ON ERROR);

The first statement in Example 7 queries the table and re-
turns JSON data that consists of all objects which con-
tain the property called “friends”. In this case, the ON ER-
ROR clause is not specified. Therefore, the JSON_EXISTS
condition returns false for values that are not well-formed
JSON documents. (While the json_table table contains only
well-formed documents, this condition returns true for all
documents stored in the table, and displays all of them.)

To explain the second statement in Example 7, let us sup-
pose that the json_table table contains one more row, for
instance the string: “This is not a well-formed JSON docu-
ment”. Because the TRUE ON ERROR clause is specified
in the second query, the JSON_EXISTS condition returns
true also for values that are not well-formed JSON data.
Therefore, the string above will be displayed in the result,
too.

6.2 JSON_VALUE

The JSON_VALUE function extracts a scalar value from
a JSON document. The function has two arguments: expres-
sion and path, where expression is the name of a column
that contains JSON data and path is a SQL/JSON path
expression that specifies the property to extract.

Example 8

SELECT JSON_VALUE(person_and_friends,'lax $.where') AS company
FROM json_table
WHERE JSON_VALUE(person_and_friends, 'lax $.who') = 'Fred';

Output: Microsoft

The following two examples show error handling for the
strict and lax modes.

Example 9

SELECT JSON_VALUE(person_and_friends,'strict $.where'
RETURNING VARCHAR(25)
NULL ON ERROR)
AS company FROM json_table;

COMPANY

Microsoft
IBM

PostgresSQL
Hanna

Example 9 shows the use of the strict mode. In this case, the
explicit error handling is specified using the ON ERROR
clause (NULL ON ERROR), meaning that in error case
SQL NULL is displayed.

In the case of the lax mode, one of the forms of the ON
EMPTY clause is used for error handling.

Example 10

SELECT JSON_VALUE(person_and_friends, 'lax $.where'
RETURNING VARCHAR(25)
DEFAULT 'empty' ON EMPTY)

AS company FROM json_table;

COMPANY

Microsoft
IBM
empty
empty
PostgresSQL
Hanna

The RETURNING clause in Example 10 specifies the data
type of the value returned by the function. Users can ap-
ply either the RETURNING clause or the PASSING clause.
The RETURNING clause returns the result to the calling
program, while the PASSING clause is used to pass addi-
tional parameters to the SQL/JSON path expression.

6.3 JSON_QUERY

The JSON_QUERY function returns extracts of an object
or an array from a JSON document. The syntax of this
function is analogous to the syntax of the JSON_VALUE
function.

Example 11

SELECT JSON_VALUE (T.person_and_friends, 'lax $.who') AS Who,
JSON_QUERY (T.person_and_friends, 'lax $.friends') AS Friends

FROM json_table T
WHERE JSON_EXISTS (t.person_and_friends, 'lax $.friends');

Output:
Who Friends .
Fred [{"name":"Lili","rank":5},{"name":"Hank","rank":7}]

Tom [{"name":"Sharon","rank":2},{"name":"Monty","rank":3}]

etc.

Example 11 shows the use of JSON_VALUE, JSON_
QUERY and JSON_EXISTS. The first function displays

K

284 Datenbank Spektrum (2017) 17:277–287

a scalar value, the second one an array (with several ob-
jects), while the JSON_EXISTS condition is used to choose
the rows, which fulfil the given condition.

The SQL/JSON standard introduces another clause,
WITH ARRAY WRAPPER, to handle the case, where the
result of the JSON_QUERY function is a scalar rather than
an array or object. This clause wraps the results using an
array wrapper.

Example 12

SELECT JSON_QUERY(person_and_friends, 'lax $.friends.name'
WITH ARRAY WRAPPER)

AS company FROM json_table;
Output:

["Lili","Hank"]
["Sharon","Monty"]
["Connie"]
["Doris"]
["Jack"]
[]

Note that if the array wrapper is applied to the empty
sequence, it produces an empty array. The alternative
to WITH ARRAY WRAPPER is WITHOUT ARRAY
WRAPPER, which is the default value. Additionally, WITH
ARRAY WRAPPER has two different forms: WITH UN-
CONDITIONAL ARRAY WRAPPER and WITH CON-
DITIONAL ARRAY WRAPPER. The difference is that
CONDITIONAL supplies the array wrapper if the result
of path expression is anything other than a singleton SQL/
JSON array or object. (The default is UNCONDITIONAL.)

7 SQL/JSON: Implementations

In the meantime, several relational DBMSs have imple-
mented parts of the SQL/JSON standard. In this section we
will give a concise description, which parts of the standard
are implemented in the following systems:

● IBM DB2
● Oracle
● SQL Server

The detailed description of these implementations can be
found in [9].

7.1 IBM DB2

IBM has integrated JSON only in its system called DB2 for i
[2]. Version 7.1 of this system supports storage of JSON
data, while the successive version contains implementation
of the JSON_TABLE function. The functions IS JSON and
JSON_EXISTS were implemented in the newest version of
this database system (Version 7.3).

The JSON_TABLE function supports lax and strict
modes in the same way as they are described in the
standard. JSON_EXISTS and JSON_TABLE support the
following standardized error handling options: FALSE ON
ERROR, TRUE ON ERROR, UNKNOWN ON ERROR
and ERROR ON ERROR.

7.2 Oracle

7.2.1 General Features

Oracle has implemented almost the whole specification of
the SQL/JSON standard, in the way as the corresponding
features are specified in the proposal [7]. (Several slight
differences from the standard will be described below.)

Oracle 12c Release 1 was the first version, where the
SQL/JSON integration has been implemented. Release 2
additionally contains the implementation of the publishing
functions. Oracle supports the lax and strict mode. The de-
fault mode for JSON in Oracle Database is lax. All clauses
for handling errors in the strict mode are supported (ON
ERROR clause). Oracle does not support the standardized
ON EMPTY clause of the lax mode.

Oracle supports the FORMAT JSON option, as well
as the RETURNING clause. For JSON_VALUE, the data
types VARCHAR2 or NUMBER in a RETURNING clause
can be specified. For JSON_QUERY, only VARCHAR2 can
be used. If the RETURNING clause is not specified, the de-
fault (VARCHAR2(4000)) is applied.

The RETURNING clause also accepts two non-standard-
ized keywords, PRETTY and ASCII. If both are used, the
PRETTY keyword must come before ASCII. The effect
of keyword PRETTY is to pretty-print the returned data
by inserting newline characters and indenting the output.
The default behavior is not to pretty-print. The effect of
the ASCII option is to automatically escape all non-ASCII
Unicode characters. ASCII is allowed only for Oracle SQL
functions JSON_VALUE and JSON_QUERY. PRETTY is
allowed only for JSON_QUERY.

The IS JSON predicate is supported in the same way, as
it is specified in SQL/JSON. Also, the unique key constraint
is supported with the WITH UNIQUE KEY clause.

7.2.2 Storing and Projecting JSON Documents

The SQL standard data types VARCHAR, BLOB and
CLOB are used to store JSON documents.

Oracle supports the standardized JSON_TABLE func-
tion. Simple reports (with no nesting) as well as nested re-
ports (using the NESTED PATH option) can be done with
Oracle. The FOR ORDINALITY clause is implemented,
too. Oracle does not support the PLAN clause.

K

Datenbank Spektrum (2017) 17:277–287 285

7.2.3 Publishing Relational Data

All standardized projecting functions: JSON_OBJECT,
JSON_ARRAY, JSON_OBJECTAGG and JSON_ARRAY
AGG are supported. Additionally, Oracle has implemented
two SQL NULL handling clauses: NULL ON NULL and
ABSENT on NULL. The former converts the SQL NULL
value to JSON null. For the latter, there is no corresponding
output for SQL NULL on input.

7.2.4 Querying JSON Documents

All three functions, JSON_EXISTS, JSON_VALUE and
JSON_QUERY, are supported in the same way as they are
specified in the SQL/JSON standard. Three wrapper clauses
(WITH UCONDITIONAL ARRAY WRAPPER, WITH-
OUT ARRAY WRAPPER, WITH CONDITIONAL AR-
RAY WRAPPER) are supported, too. (They can be used
only with JSON_QUERY and JSON_TABLE functions.)
The clauses EMPTY ARRAY ON ERROR and EMPTY
OBJECT ON ERROR are not supported by Oracle.

Oracle supports an alternative way to query JSON docu-
ments using dot notation that resembles an attribute dot no-
tation for an abstract data type in object-relational DBMSs.
(The examples can be found in [9].)

7.3 SQL Server

7.3.1 General Features

SQL Server 2016 is the first version of this database system,
which supports JSON. Microsoft has implemented only
a part of standardized functions and predicates [8, 12]. None
of general features described in Sect. 2 are implemented
in SQL Server. The system supports the non-standardized
function ISJSON, which have the same semantic meaning
as IS JSON.

7.3.2 Storing and Projecting JSON Documents

SQL Server stores JSON documents in a row form. There-
fore, JSON objects can be stored as values of the NVAR-
CHAR data type.

Projecting JSON documents in relational form is sup-
ported by SQL Server, but in a non-standardized way. SQL
Server supports the OPENJSON function to project JSON
documents as relational data. This function is a table-val-
ued function that analyzes a given text to find an array of
JSON objects. All objects found in the array are searched
and, for each of them, the system generates a row in the
output result.

7.3.3 Publishing Relational Data

SQL Server supports the non-standardized FOR JSON
clause at the end of the SELECT statement to publish
relational data as JSON documents. In that case, every row
will be formatted as one object, with values generated as
value objects and column names used as key names. This
clause has two options, AUTO and PATH. With the former,
the format of the JSON output is automatically determined
based on the order of columns in the SELECT list and their
source tables.

In the PATH mode, column names or column aliases are
treated as expressions that indicate how the values are being
mapped to JSON. (An expression consists of a sequence of
nodes, separated by /. For each slash, the system creates
another level of hierarchy in the resulting document.) In
contrast to AUTO mode, using the PATH mode allows users
to maintain full control over the format of the JSON output.

7.3.4 Querying JSON

SQL Server supports two standardized functions that
are used to query JSON documents: JSON_VALUE and
JSON_QUERY. The syntax and semantics of both func-
tions is identical to the syntax and semantics described in
the SQL/JSON standard.

SQL Server does not support the standardized func-
tion JSON_EXISTS. The functionality of this function can
be implemented in some cases using JSON_VALUE and
JSON_QUERY functions in the WHERE clause of the
SELECT statement.

8 Summary

Before discussing the properties and deficiencies of SQL/
JSON, we will give a short explanation in relation to JSON
and XML. JSON as well as XML are data format languages,
but there are several differences between them. There are
three general properties (simplicity, extensibility and inter-
operability), which can be used to evaluate any data format
language.

Concerning simplicity, JSON is much simpler than
XML, because it has a smaller grammar. In case of exten-
sibility, JSON is not extensible, while XML is extensible,
meaning that in XML one can define new tags or attributes
to represent data in it. In relation to data formats, interoper-
ability means that a format can transfer data between many
different systems. Concerning this characteristic, JSON has
the same interoperability potential as XML.

K

286 Datenbank Spektrum (2017) 17:277–287

As we already stated, the first proposal of SQL/JSON
standard is “light-weighted”. One of the reasons for this
decision is to allow vendors of RDBMSs to implement the
proposed features in their systems as soon as possible.

On the other hand, there are several negative impacts in
relation to this decision. The main problem is that several
important features are not specified. From our point of view,
the following three are the most important, and should be
specified in one of the future versions of the SQL/JSON
standard:

● JSON documents should be first-class objects in SQL
(native storage)

● The syntax of the SQL UPDATE statement should be ex-
tended to allow updating of parts of a JON document

● Direct access of external JSON data should be supported

8.1 Native Storage of JSON Documents

The current SQL/JSON standard proposes the storage of
JSON documents using the VARCHAR, CLOB or BLOB
standard data types. “Native storage” means to store JSON
documents as a unit and to create a model that is closely
aligned with JSON. This model should include arbitrary
levels of nesting and complexity and should be automat-
ically mapped by the system into the underlying storage
mechanism.

The benefit of native JSON storage in a database is that
the JSON documents are stored in a parsed format and
therefore accessible without using parsing. (Excessive pars-
ing on a web server or application server easily leads to
performance problems or out-of-memory situations on the
servers.) Therefore, the main benefits of native storage for
JSON are achieving greater capability for users and better
performance.

The proposal already specifies several constructor func-
tions (see Sect. 5). Additionally, several operators should be
specified to produce JSON values. These operators should
be semantically equivalent to the list of operators proposed
for the SQL/XML standard.

A possible (minimal) list of these operators is given be-
low:

● JSON_ CONCAT— takes two JSON documents, com-
bines them, and returns a JSON document

● JSON_KEYCOUNT—returns the number of keys in
a JSON document

● JSON_KEYS—returns the list of key names
● JSON_CONTAINS—tests whether a JSON document

contains another document
● JSON_EXISTENCE—tests whether a string (JSON

value) appears as a key or array element

8.2 Updating Parts of JSON Documents

The current proposal allows users to update only an en-
tire JSON document. The update of the whole document
has significant performance disadvantages. For this reason,
modification of parts of a JSON document, where these
parts are specified in the SET clause of the SQL UPDATE
statement is necessary.

The existing standard introduced already the syntax for
SQL/JSON path expressions. This syntax can be used to
specify the parts of the document, which has to be modified.
In that case, the syntax of the SQL UPDATE statement
could have the following form:

UPDATE table_name SET json_column =

JSON_UPDATE(json_column , path_expr)
WHERE condition;

where path_expr is a SQL/JSON path expression.

8.3 Access of External JSON Documents

Access to JSON documents in the present proposal requires
that the JSON data must be stored in relational tables. In
other words, none of the specified SQL/JSON functions
have parameters that reference external JSON data. The
only way to access external data is to insert them into char-
acter or binary string and load that string in a row of a re-
lational table.

One way to solve this problem is to use the standardized
specification for management of external data (SQL/MED).
Another is, to define the syntax of an external (read-only,
index-free) table, where JSON data is stored. After that, the
data could by inserted in the JSON column using the SQL
INSERT statement.

References

1. Avro (2017) Avro. http://avro.apache.org/. Accessed 25 Aug 2017
2. Bestgen, R. – Using DB2 for i with XML and JSON, schd.ws/

hosted_files/commons17/6d/26AD
3. BSON. http://bsonspec.org/. Accessed 25 Aug 2017
4. Chasseur C, Li Y, Patel J (2013) Enabling JSON document stores

in relational systems. Sixteenth International Workshop on the Web
and Databases, New York, 23.6.2013.

5. Liu CH, Hammerschmidt B, McMahon D (2014) JSON data man-
agement supporting schema-less development in RDBMS. Pro-
ceedings of the 2014 International Conference on Management of
Data, Snowbird, 22.06.2014-27.06.2014, pp 1247–1258

6. Liu CH, Hammerschmidt B, McMahon D, Li Y, Chang HJ (2016)
Closing the functional and performance gap between SQL and
noSQL. Proceedings of the 2016 International Conference on Man-
agement of Data, San Fransisco, 26.06.2016-01.07.2016.

7. Oracle Help Center (2017) JSON in oracle database. http://docs.
oracle.com/database/121/ADXDB/json.htm#ADXDB6246. Ac-
cessed 25 Aug 2017

K

Datenbank Spektrum (2017) 17:277–287 287

8. Petković D (2016) SQL server 2016, A Beginner’s Guide. McGraw-
Hill, New York

9. Petković D (2017) JSON integration in relational database systems.
Int J Comput Appl 168(5):14–19

10. PostgreSQL (2017) PostgreSQL 9.4, JSON types. www.postgresql.
org/docs/9.4/static/datatype-json.html. Accessed 25 Aug 2017

11. PostgreSQL (2017) PostgreSQL 9.4, JSON functions. www.
postgresql.org/docs/9.4/static/functions-json.html. Accessed 25
Aug 2017

12. Microsoft (2017) SQL server: JSON data. https://docs.microsoft.
com/en-us/sql/relational-databases/json/json-data-sql-server. Ac-
cessed 25 Aug 2017

13. Tahara D (2014) Sinew: a new SQL system for multi-structured
data. Proceedings of the 2014 International Conference on Man-
agement of Data, Snowbird, 22.06.2014-27.06.2014.

14. Zemke F, Hammerschmidt B, Kulkarni K, Liu Z, McMahon D,
Melton J, Michels J, Özcan F, Pirahesh H (2014) ANSI SQL/JSON:
part 1. https://www.wiscorp.com/pub/DM32.2-2014-00024R1_
JSON-SQL-Proposal-1.pdf. Accessed 25 Aug 2017

15. Zemke F, Hammerschmidt B, Kulkarni K, Liu Z, McMahon D,
Melton J, Michels J, Özcan F, Pirahesh H (2014) ANSI SQL/
JSON: part 2 : querying JSON. www.wiscorp.com/pub/DM32.2-
2014-00025r1-sql-json-part-2.pdf. Accessed 27 Aug 2017

K

