
Dunja MladenićJožef Stefan Institute | IJS
Dunja Mladenić
About
437
Publications
122,095
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,044
Citations
Publications
Publications (437)
News headlines can be a good data source for detecting the barriers to the spreading of news in news media, which can be useful in many real-world applications. In this study, we utilize semantic knowledge through the inference-based model COMET and the sentiments of news headlines for barrier classification. We consider five barriers, including cu...
Industrial revolutions have historically disrupted manufacturing by introducing automation into production. Increasing automation reshapes the role of the human worker. Advances in robotics and artificial intelligence open new frontiers of human-machine collaboration. In this chapter, we first describe Industry 5.0, human-machine collaboration, and...
News media is one of the most effective mechanisms for spreading information internationally, and many events from different areas are internationally relevant. However, news coverage for some news events is limited to a specific geographical region because of information spreading barriers, which can be political, geographical, economic, cultural,...
News headlines can be a good data source for detecting the news spreading barriers in news media, which may be useful in many real-world applications. In this paper, we utilize semantic knowledge through the inference-based model COMET and sentiments of news headlines for barrier classification. We consider five barriers including cultural, economi...
Quality control is a crucial activity performed by manufacturing enterprises to ensure that their products meet quality standards and avoid potential damage to the brand’s reputation. The decreased cost of sensors and connectivity enabled increasing digitalization of manufacturing. In addition, artificial intelligence enables higher degrees of auto...
Detection of news propagation barriers, being economical, cultural, political, time zonal, or geographical, is still an open research issue. We present an approach to barrier detection in news spreading by utilizing Wikipedia-concepts and metadata associated with each barrier. Solving this problem can not only convey the information about the cover...
We present a methodology to support the analysis of culture from text such as news events and demonstrate its usefulness on categorizing news events from different categories (society, business, health, recreation, science, shopping, sports, arts, computers, games and home) across different geographical locations (different places in 117 countries)...
Identifying political bias in news headlines holds significant importance as it influences the dissemination and consumption of news stories. However, employing conventional methods to do so poses a formidable challenge, as the short headline text is often complex and lacks sufficient syntactic and semantic context. Existing approaches fail to ackn...
Industry 4.0 aims to optimize the manufacturing environment by leveraging new technological advances, such as new sensing capabilities and artificial intelligence. The DRAEM technique has shown state-of-the-art performance for unsupervised classification. The ability to create anomaly maps highlighting areas where defects probably lie can be levera...
Quality control is a crucial activity performed by manufacturing companies to ensure their products conform to the requirements and specifications. The introduction of artificial intelligence models enables to automate the visual quality inspection, speeding up the inspection process and ensuring all products are evaluated under the same criteria....
News reporting on events that occur in our society can have different styles and structures as well as different dynamics of news spreading over time. News publishers have the potential to spread their news and reach out to a large number of readers worldwide. In this paper we would like to understand how well they are doing it and which kind of ob...
The purpose of this study is to analyse COVID-19 related news published across different geographical places, in order to gain insights in reporting differences. The COVID-19 pandemic had a major outbreak in January 2020 and was followed by different preventive measures, lockdown, and finally by the process of vaccination. To date, more comprehensi...
Predicting the political polarity of news headlines is a challenging task that becomes even more challenging in a multilingual setting with low-resource languages. To deal with this, we propose to utilise the Inferential Commonsense Knowledge via a Translate-Retrieve-Translate strategy to introduce a learning framework. To begin with, we use the me...
Human-centricity is the core value behind the evolution of manufacturing towards Industry 5.0. Nevertheless, there is a lack of architecture that considers safety, trustworthiness, and human-centricity at its core. Therefore, we propose an architecture that integrates Artificial Intelligence (Active Learning, Forecasting, Explainable Artificial Int...
Quality control allows companies to verify the products’ conformance to requirements and specifications and thus build customer satisfaction and the brand's reputation. Artificial Intelligence enables higher degrees of visual inspection automation, reducing inspection times while ensuring all products are evaluated under the same criteria. This res...
We propose using a two-layered deployment of machine learning models to prevent adversarial attacks. The first layer determines whether the data was tampered, while the second layer solves a domain-specific problem. We explore three sets of features and three dataset variations to train machine learning models. Our results show clustering algorithm...
In this research, we develop machine learning models to predict future sensor readings of a waste-to-fuel plant, which would enable proactive control of the plant's operations. We developed models that predict sensor readings for 30 and 60 minutes into the future. The models were trained using historical data, and predictions were made based on sen...
Quality control is a crucial activity performed by manufacturing enterprises to ensure that their products meet quality standards and avoid potential damage to the brand's reputation. The decreased cost of sensors and connectivity enabled increasing digitalization of manufacturing. In addition, artificial intelligence enables higher degrees of auto...
This paper presents an Artificial Intelligence approach to mining context and emotions related to olfactory cultural heritage narratives, in particular to fairy tales. We provide an overview of the role of smell and emotions in literature, as well as highlight the importance of olfactory experience and emotions from psychology and linguistic perspe...
This paper presents an Artificial Intelligence approach to mining context and emotions related to olfactory cultural heritage narratives, particularly to fairy tales. We provide an overview of the role of smell and emotions in literature, as well as highlight the importance of olfactory experience and emotions from psychology and linguistic perspec...
The cultural heritage domain in general and silk textiles, in particular, are characterized by large, rich and heterogeneous data sets. Silk heritage vocabulary comes from multiple sources that have been mixed up across time and space. This has led to the use of different terminology in specialized organizations in order to describe their artefacts...
Artificial intelligence models are increasingly used in manufacturing to inform decision making. Responsible decision making requires accurate forecasts and an understanding of the models’ behavior. Furthermore, the insights into the models’ rationale can be enriched with domain knowledge. This research builds explanations considering feature ranki...
Artificial Intelligence models are increasingly used in manufacturing to inform decision-making. Responsible decision-making requires accurate forecasts and an understanding of the models' behavior. Furthermore, the insights into models' rationale can be enriched with domain knowledge. This research builds explanations considering feature rankings...
Modern cross-lingual document retrieval models are capable of finding documents relevant to the query. However, they do not have the capabilities for explaining why the document is relevant. This paper proposes a novel learning-to-rank model named LM-EMD that uses the multilingual BERT language model and Earth Mover’s Distance (EMD) to measure the...
News reporting, on events that occur in our society, can have different styles and structures, as well as different dynamics of news spreading over time. News publishers have the potential to spread their news and reach out to a large number of readers worldwide. In this paper we would like to understand how well they are doing it and which kind of...
The purpose of this study is to analyse COVID-19 related news published across different geographical places, in order to gain insights in reporting differences. The COVID-19 pandemic had a major outbreak in January 2020 and was followed by different preventive measures, lockdown, and finally by the process of vaccination. To date, more comprehensi...
Quality control is a crucial activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and pr...
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predic...
This research work describes an architecture for building a system that guides a user from a forecast generated by a machine learning model through a sequence of decision-making steps. The system is demonstrated in a manufacturing demand forecasting use case and can be extended to other domains. In addition, the system provides the means for knowle...
Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufact...
The cultural heritage domain in general and silk textiles, in particular, are characterized by large, rich and heterogeneous data sets. Silk heritage vocabulary comes from multiple sources that have been mixed up across time and space. This has led to the use of different terminology in specialized organizations in order to describe their artefacts...
The paper proposes a novel architecture for explainable artificial intelligence based on semantic technologies and artificial intelligence. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The explanations provided result from knowledge fusion regarding concepts describing features relevant...
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predic...
Quality control is a key activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and provid...
In this work we study how company co-occurrence in news events can be used to discover business links between them. We develop a methodology that is able to process raw textual data, embed it into a numerical form, and extract a meaningful network of connections. Each news event is considered as a node on the graph and we define the similarity betw...
While increasing empirical evidence suggests that global time series forecasting models can achieve better forecasting performance than local ones, there is a research void regarding when and why the global models fail to provide a good forecast. This paper uses anomaly detection algorithms and explainable artificial intelligence (XAI) to answer wh...
This research work describes an architecture for building a system that guide a user from a forecast generated by a machine learning model through a sequence of decision-making steps. The system is demonstrated in manufacturing demand forecasting use case and can be extended to other domains. In addition, the system provides means for knowledge acq...
Since the start of the COVID-19 pandemic, much research has been published highlighting how artificial intelligence models can be used to diagnose a COVID-19 infection based on medical images. Given the scarcity of published images, heterogeneous sources, formats, and labels, generative models can be a promising solution for data augmentation. We p...
Quality control is a key activity performed by manufacturing enterprises to ensure products meet quality standards and avoid potential damage to the brand's reputation. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing. In addition, artificial intelligence enables higher degrees of automation, redu...
There is a lack of a single architecture specification that addresses the needs of trusted and secure Artificial Intelligence systems with humans in the loop, such as human-centered manufacturing systems at the core of the evolution towards Industry 5.0. To realize this, we propose an architecture that integrates forecasts, Explainable Artificial I...
Smart assistants in manufacturing can guide and aid on decision-making while also provide means to collect additional insights and information available to the users. A general approach for building a smart assistant that provides users with machine learning forecasts and a sequence of decision-making options is presented in this work. The system p...
While increasing empirical evidence suggests that global time series forecasting models can achieve better forecasting performance than local ones, there is a research void regarding when and why the global models fail to provide a good forecast. This paper uses anomaly detection algorithms and Explainable Artificial Intelligence (XAI) to answer wh...
Demand forecasting is a crucial component of demand management, directly impacting manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate 21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a real-world use case scenario. The products’ data were obtained from a Eu...
The increasing digitalization of the manufacturing domain requires adequate knowledge modeling to capture relevant information. Ontologies and Knowledge Graphs provide means to model and relate a wide range of concepts, problems, and configurations. Both can be used to generate new knowledge through deductive inference and identify missing knowledg...
The implementation of Artificial Intelligence (AI) systems in the manufacturing domain enables higher production efficiency, outstanding performance, and safer operations, leveraging powerful tools such as deep learning and reinforcement learning techniques. Despite the high accuracy of these models, they are mostly considered black boxes: they are...
The increasing adoption of artificial intelligence requires accurate forecasts and means to understand the reasoning of artificial intelligence models behind such a forecast. Explainable Artificial Intelligence (XAI) aims to provide cues for why a model issued a certain prediction. Such cues are of utmost importance to decision-making since they pr...
Time is now and now is the time. Digitalization is spreading in our work and daily life. To take the best out of digitalization, we should be ready to use it consciously to shape our tomorrow. We are looking to understand the opportunities and challenges of the digital transformation and predict at least some of the consequences. Here we focus main...
The increasing adoption of artificial intelligence requires accurate forecasts and means to understand the reasoning of artificial intelligence models behind such a forecast. Explainable Artificial Intelligence (XAI) aims to provide cues for why a model issued a certain prediction. Such cues are of utmost importance to decision-making since they pr...
The increasing adoption of artificial intelligence requires accurate forecasts and means to understand the reasoning of artificial intelligence models behind such a forecast. Explainable Artificial Intelligence (XAI) aims to provide cues for why a model issued a certain prediction. Such cues are of utmost importance to decision-making since they pr...
There is a lack of a single architecture specification that addresses the needs of trusted and secure Artificial Intelligence systems with humans in the loop, such as human-centered manufacturing systems at the core of the evolution towards Industry 5.0. To realize this, we propose an architecture that integrates forecasts, Explainable Artificial I...
The paper proposes a novel architecture for explainable AI based on semantic technologies and AI. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The provided explanations combine concepts describing features relevant to a particular forecast, related media events, and metadata regarding e...
A general approach for building a smart assistant that guides a user from a forecast generated by a machine learning model through a sequence of decision-making steps is presented. We develop a methodology to build such a system. The system is demonstrated on a demand forecasting use case in manufacturing. The methodology can be extended to several...
Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufact...
Demand forecasting is a crucial component of demand management. While shortening the forecasting horizon allows for more recent data and less uncertainty, this frequently means lower data aggregation levels and a more significant data sparsity. Sparse demand data usually results in lumpy or intermittent demand patterns, which have sparse and irregu...
Motivation
In the age of big data, the amount of scientific information available online dwarfs the ability of current tools to support researchers in locating and securing access to the necessary materials. Well-structured open data and the smart systems that make the appropriate use of it are invaluable and can help health researchers and profess...
This paper presents a novel approach of using machine learning algorithms based on experts’ knowledge to classify web pages into three predefined classes according to the degree of content adjustment to the search engine optimization (SEO) recommendations. In this study, classifiers were built and trained to classify an unknown sample (web page) in...
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19...
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19...
In recent years, a great amount of research has been done in predictive modeling in the domain of healthcare. Such research is facilitated by the existence of various biomedical vocabularies and standards which play a crucial role in understanding healthcare information. In addition, the Unified Medical Language System (UMLS) links together biomedi...
The documentation, dissemination, and enhancement of Cultural Heritage is of great relevance. To that end, technological tools and interactive solutions (e.g., 3D models) have become increasingly popular. Historical silk fabrics are nearly flat objects, very fragile and with complex internal geometries, related to different weaving techniques and t...
The availability of open educational resources is growing at an increasingly fast pace since its first promotion by UNESCO in 2002. Today, large variability of opportunities for free and online educational resources are available and accessible by everyone from all around the world who has access to the Internet. An Internet user may exploit number...
We present results of collaborative work bringing together semantic technologies, machine learning and cultural heritage to enable advanced search and visualization of textual descriptions of museum artifacts related to silk fabrics. Proposed is a multilingual txt analysis approach where the developed domain-specific multilingual thesaurus and doma...
We present results of collaborative work bringing together semantic technologies, machine learning and cultural heritage to enable advanced search and visualization of textual descriptions of museum artifacts related to silk fabrics. Proposed is a multilingual txt analysis approach where the developed domain-specific multilingual thesaurus and doma...
In education we can find different open educational resource (OER) providers that are serving resources in different modalities , formats and languages. These providers can be the actual resource creators or re-distributors that redirect the user to the actual provider. In recent work, we developed a recommendation engine which provides content-bas...