• Home
  • ETH Zurich
  • Institute of Molecular Systems Biology
  • Duncan Holbrook-Smith
Duncan Holbrook-Smith

Duncan Holbrook-Smith
ETH Zurich | ETH Zürich · Institute of Molecular Systems Biology

About

12
Publications
3,999
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
574
Citations
Citations since 2016
8 Research Items
555 Citations
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100

Publications

Publications (12)
Article
Full-text available
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enab...
Preprint
Although the genetic code of the yeast Saccharomyces cerevisiae was sequenced 25 years ago, the characterization of the roles of genes within it is far from complete. The lack of a complete mapping of functions to genes hampers systematic understanding of the biology of the cell. The advent of high-throughput metabolomics offers a unique approach t...
Article
Full-text available
Chemical probes are important tools for understanding biological systems. However, because of the huge combinatorial space of targets and potential compounds, traditional chemical screens cannot be applied systematically to find probes for all possible druggable targets. Here, we demonstrate a novel concept for overcoming this challenge by leveragi...
Preprint
Full-text available
Seventy years following the discovery of peroxisomes, their proteome remains undefined. Uncovering the complete peroxisomal proteome, the peroxi-ome, is crucial for understanding peroxisomal activities and cellular metabolism. We used high- content microscopy to uncover the peroxi-ome of the model eukaryote – Saccharomyces cerevisiae . This strateg...
Article
The plant cell wall is a complex network of polysaccharides and proteins that provides strength and structural integrity to plant cells, as well as playing a vital role in growth, development, and defense response. Cell wall polysaccharides can be broadly grouped into three categories: cellulose, pectins, and hemicelluloses. Dynamic interactions be...
Chapter
Strigolactones are a class of terpenoid-based plant hormones that are best known for their role in the suppression of axillary branching. However, strigolactones also play a role as stimulants for the germination of parasitic plants of the genera Striga and Orobanche. This dual role for strigolactones as endogenous hormones and interspecies signali...
Article
Full-text available
Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecolo...
Article
Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is t...
Article
Full-text available
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one...
Article
Full-text available
Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG)...
Article
Strigolactones are terpenoid-based plant hormones that act as communication signals within a plant, between plants and fungi, and between parasitic plants and their hosts. Here we show that an active enantiomer form of the strigolactone GR24, the germination stimulant karrikin, and a number of structurally related small molecules called cotylimides...

Network

Cited By