
VideoFlow: A Flow-Based Generative Model for Video

Manoj Kumar 1 Mohammad Babaeizadeh 2 Dumitru Erhan 1 Chelsea Finn 1 Sergey Levine 1 Laurent Dinh 1

Durk Kingma 1

Abstract
Generative models that can model and predict se-
quences of future events can, in principle, learn
to capture complex real-world phenomena, such
as physical interactions. In particular, learning
predictive models of videos offers an especially
appealing mechanism to enable a rich understand-
ing of the physical world: videos of real-world
interactions are plentiful and readily available,
and a model that can predict future video frames
can not only capture useful representations of the
world, but can be useful in its own right, for prob-
lems such as model-based robotic control. How-
ever, a central challenge in video prediction is
that the future is highly uncertain: a sequence
of past observations of events can imply many
possible futures. Although a number of recent
works have studied probabilistic models that can
represent uncertain futures, such models are either
extremely expensive computationally (as in the
case of pixel-level autoregressive models), or do
not directly optimize the likelihood of the data. In
this work, we propose a model for video predic-
tion based on normalizing flows, which allows for
direct optimization of the data likelihood, and pro-
duces high-quality stochastic predictions. To our
knowledge, our work is the first to propose multi-
frame video prediction with normalizing flows.
We describe an approach for modeling the latent
space dynamics, and demonstrate that flow-based
generative models offer a viable and competitive
approach to generative modeling of video.

1. Introduction
Exponential progress in the capabilities of computational
hardware, paired with a relentless effort towards greater
insights and better methods, has pushed the field of
machine learning from relative obscurity into the main-

1Google Brain 2University of Illinois at Urbana-Champaign.
Correspondence to: Manoj Kumar <mechcoder@google.com>.

stream. Progress in the field has translated to improve-
ments in various capabilities, such as classification of im-
ages (Krizhevsky et al., 2012), machine translation (Vaswani
et al., 2017) and super-human game-playing agents (Mnih
et al., 2013; Silver et al., 2017), among others. However,
the application of machine learning technology has been
largely constrained to situations where large amounts of
supervision is available, such as in image classification or
machine translation, or where highly accurate simulations
of the environment are available to the learning agent, such
as in game-playing agents. An appealing alternative to
supervised learning is to utilize large unlabeled datasets,
combined with predictive generative models. In order for a
complex generative model to be able to effectively predict
future events, it must build up an internal representation of
the world. For example, a predictive generative model that
can predict future frames in a video would need to model
complex real-world phenomena, such as physical interac-
tions. This provides an appealing mechanism for building
models that have a rich understanding of the physical world,
without any labeled examples. Videos of real-world in-
teractions are plentiful and readily available, and a large
generative model can be trained on large unlabeled datasets
containing many video sequences, thereby learning about a
wide range of real-world phenoma. Such a model could be
useful for learning representations for further downstream
tasks (Mathieu et al., 2016), or could even be used directly
in applications where predicting the future enables effective
decision making and control, such as robotics (Finn et al.,
2016). A central challenge in video prediction is that the
future is highly uncertain: a short sequence of observations
of the present can imply many possible futures. Although a
number of recent works have studied probabilistic models
that can represent uncertain futures, such models are either
extremely expensive computationally (as in the case of pixel-
level autoregressive models), or do not directly optimize the
likelihood of the data.

In this paper, we study the problem of stochastic prediction,
focusing specifically on the case of conditional video pre-
diction: synthesizing raw RGB video frames conditioned
on a short context of past observations (Ranzato et al., 2014;
Srivastava et al., 2015; Vondrick et al., 2015; Xingjian et al.,
2015; Boots et al., 2014). Specifically, we propose a new
class of video prediction models that can provide exact

ar
X

iv
:1

90
3.

01
43

4v
2

 [
cs

.C
V

]
 1

0
Ju

n
20

19

VideoFlow: A Flow-Based Generative Model for Video

likelihoods, generate diverse stochastic futures, and accu-
rately synthesize realistic and high-quality video frames.
The main idea behind our approach is to extend flow-based
generative models (Dinh et al., 2014; 2016) into the set-
ting of conditional video prediction. Although methods
based on variational autoencoders (Babaeizadeh et al., 2017;
Denton & Fergus, 2018; Lee et al., 2018), and pixel-level
autoregressive models (Hochreiter & Schmidhuber, 1997;
Graves, 2013; van den Oord et al., 2016b;c; Van Den Oord
et al., 2016) have previously been studied for stochastic pre-
dictive generation, flow-based models have received com-
paratively much less attention, and to our knowledge have
been applied only to generation of non-temporal data, such
as images (Kingma & Dhariwal, 2018), and to audio se-
quences (Prenger et al., 2018). Conditional generation of
videos presents its own unique challenges: the high dimen-
sionality of video sequences makes them difficult to model
as individual datapoints. Instead, we learn a latent dynam-
ical system model that predicts future values of the flow
model’s latent state. This induces Markovian dynamics on
the latent state of the system, replacing the standard uncondi-
tional prior distribution. We further describe a practically ap-
plicable architecture for flow-based video prediction models,
inspired by the Glow model for image generation (Kingma
& Dhariwal, 2018), which we call VideoFlow.

Our empirical results show that VideoFlow achieves results
that are competitive with the state-of-the-art in stochastic
video prediction on the action-free BAIR dataset, with quan-
titative results that rival the best VAE-based models. Vide-
oFlow also produces excellent qualitative results, and avoids
many of the common artifacts of models that use pixel-level
mean-squared-error for training (e.g., blurry predictions),
without the challenges associated with training adversarial
models. Compared to models based on pixel-level autore-
gressive prediction, VideoFlow achieves substantially faster
test-time image synthesis 1, making it much more practical
for applications that require real-time prediction, such as
robotic control (Finn & Levine, 2017). Finally, since Vide-
oFlow directly optimizes the likelihood of training videos,
without relying on a variational lower bound, we can evalu-
ate its performance directly in terms of likelihood values.

2. Related Work
Early work on prediction of future video frames focused
on deterministic predictive models (Ranzato et al., 2014;
Srivastava et al., 2015; Vondrick et al., 2015; Xingjian et al.,
2015; Boots et al., 2014). Much of this research on de-
terministic models focused on architectural changes, such
as incorporating pixel transformations (Finn et al., 2016;
De Brabandere et al., 2016; Liu et al., 2017) and predictive

1We generate 64x64 videos of 20 frames in less than 3.5 sec-
onds on a NVIDIA P100 GPU.

coding architectures (Lotter et al., 2017), as well as differ-
ent generation objectives (Mathieu et al., 2016; Vondrick &
Torralba, 2017; Walker et al., 2015). With models that can
successfully model many deterministic environments, the
next key challenge is to address stochastic environments by
building models that can effectively reason over uncertain
futures. Real-world videos are always somewhat stochastic,
either due to events that are inherently random, or events
that are caused by unobserved or partially observable fac-
tors, such as off-screen events, humans and animals with
unknown intentions, and objects with unknown physical
properties. In such cases, since deterministic models can
only generate one future, these models either disregard po-
tential futures or produce blurry predictions that are the
superposition or averages of possible futures.

A variety of methods have sought to overcome this challenge
by incorporating stochasticity, via three types of approaches:
models based on variational auto-encoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014), generative adversar-
ial networks (Goodfellow et al., 2014), and autoregressive
models (Hochreiter & Schmidhuber, 1997; Graves, 2013;
van den Oord et al., 2016b;c; Van Den Oord et al., 2016).
Among these models, techniques based on variational au-
toencoders have been explored most widely (Babaeizadeh
et al., 2017; Denton & Fergus, 2018; Lee et al., 2018). These
models use latent random variables to represent stochastic
events. They are trained by maximizing the evidence lower
bound using an inference network, which estimates the pos-
terior distribution over these latent variables and is typically
conditioned on the current or future frames, such that the
whole model resembles a sequence-level autoencoder. Un-
like our proposed method, none of these models maximize
the log-likelihood directly, since they rely on optimizing the
evidence lower bound.

To our knowledge, the only prior class of video predic-
tion models that directly maximize the log-likelihood of
the data are auto-regressive models (Hochreiter & Schmid-
huber, 1997; Graves, 2013; van den Oord et al., 2016b;c;
Van Den Oord et al., 2016), which can be applied to model
the joint distribution of raw video pixels by means of an
autoregressive model that generates the video one pixel at a
time (Kalchbrenner et al., 2017). However, synthesis with
such models is typically inherently sequential, making syn-
thesis substantially inefficient on modern parallel hardware.
Prior work has aimed to speed up training and synthesis with
such auto-regressive models (Reed et al., 2017; Ramachan-
dran et al., 2017). However, Babaeizadeh et al. (2017) show
that the predictions from these models are sharp but noisy
and that the proposed VAE model produces substantially
better predictions, especially for longer horizons. In con-
trast to autoregressive models, we find that our proposed
method exhibits faster sampling, while still directly optimiz-
ing the log-likelihood and producing high-quality long-term

VideoFlow: A Flow-Based Generative Model for Video

predictions.

3. Preliminaries: Flow-Based Generative
Models

Flow-based generative models (Dinh et al., 2014; 2016)
have received comparatively little attention in the research
community. However, these models have a unique set
of advantages: exact latent-variable inference, exact log-
likelihood evaluation, and efficiency in terms of both infer-
ence and synthesis. The basic principles behind flow-based
generative models were first described by Deco & Brauer
(1995), but were re-discovered and more fully developed
in a modern context by Dinh et al. (2014) as Non-linear
Independent Component Estimation (NICE), with further
refinements and extensions proposed by Dinh et al. (2016)
(RealNVP). To our knowledge, in the domain of image gen-
eration, prior work has only applied such models to generate
static images (Kingma & Dhariwal, 2018) or sound (Prenger
et al., 2018), while we propose a dynamics-enabled normal-
izing flow model in our work. Here, we first summarize the
foundations of modern normalizing flow models.

Let D = {x(i)}Ni=1 be our dataset of i.i.d. observations
of a random variable x with an unknown true distribution
p∗(x). Our data consist of 8-bit videos, with each dimen-
sion rescaled to the domain [0, 255/256]. We add a small
amount of uniform noise to the data, u ∼ U(0, 1/256.),
matching its discretization level (Dinh et al., 2016; Kingma
& Dhariwal, 2018). Let q(x) be the resulting empirical
distribution corresponding to this scaling and addition of
noise. Note that additive noise is required to prevent q(x)
from having infinite densities at the datapoints, which can
result in ill-behaved optimization of the log-likelihood; it
also allows us to recast maximization of the log-likelihood
as minimization of a KL divergence.

Let pθ(x) be our model of the data with parameters θ. Max-
imization of the log-likelihood w.r.t. θ, is then equivalent
to minimization the KL divergence w.r.t. the parameters θ:
DKL(q(x)||pθ(x)). This objective measures the expected
per-datapoint compression cost in nats or bits (depending
on the base); see Dinh et al. (2016).

In flow-based generative models (Dinh et al., 2014; 2016),
we model the data as if it was first generated from a latent
space pθ(z), then transformed to x through an invertible
transformation:

z ∼ pθ(z) (1)
x = gθ(z) (2)

where z is the latent variable and pθ(z) has a simple,
tractable density, such as a spherical multivariate Gaussian
distribution: pθ(z) = N (z; 0, I). The function gθ(..) is
invertible, also called bijective, such that given a datapoint

x, latent-variable inference is done by z = fθ(x) = g−1
θ (x).

We will omit subscript θ from fθ and gθ.

We focus on functions where f (and, likewise, g) is com-
posed of a sequence of invertible transformations: f =
f1 ◦ f2 ◦ · · · ◦ fK . Under the change of variables of Eq. (2),
the probability density function (PDF) of the model given a
datapoint can be written as:

log pθ(x) = log pθ(z) + log |det(dz/dx)| (3)

= log pθ(z) +

K∑
i=1

log |det(dhi/dhi−1)| (4)

where h0 , x and hK , z. The scalar value
|det(dhi/dhi−1)| is the absolute value of the determinant
of the Jacobian matrix (dhi/dhi−1), also called the Jaco-
bian determinant. This value is the change in log-density
when going from hi−1 to hi under transformation fi. While
computation of the Jacobian determinant is expensive in the
general case, its value can be surprisingly simple to com-
pute for certain choices of transformations, as explored in
prior work (Deco & Brauer, 1995; Dinh et al., 2014; 2016;
Rezende & Mohamed, 2015; Kingma et al., 2016; Kingma
& Dhariwal, 2018). The basic idea used in this work, is to
choose transformations whose Jacobian dhi/dhi−1 is a tri-
angular matrix, diagonal matrix or a permutation matrix. For
permutation matrices, the Jacobian determinant is one. For
triangular and diagonal Jacobian matrices L = dhi/dhi−1,
the determinant is simply the product of diagonal terms,
such that:

log |det(L)| =
∑
j

log |Lj,j | (5)

where log() takes the element-wise logarithm, and Lj,j is
the j-th element on the diagonal of matrix L.

4. Proposed Architecture
We propose a generative flow for video, extending the re-
cently proposed Glow (Kingma & Dhariwal, 2018) and
RealNVP (Dinh et al., 2016) architectures.

In our model, we break up the latent space z into separate
latent variables per timestep: z = {zt}Tt=1. The latent
variable zt at timestep t is an invertible transformation of a
corresponding frame of video: xt = gθ(zt). Furthermore,
like in (Dinh et al., 2016; Kingma & Dhariwal, 2018), we
use a multi-scale architecture (Fig. 1): the latent variable zt
is composed of a stack of multiple levels: where each level
l encodes information about frame xt at a particular scale:
zt = {z(l)t }Ll=1, one component z(l)t per level.

VideoFlow: A Flow-Based Generative Model for Video

x

z(1) z(2)

. . .

z(L−1) z(L)z

Figure 1: The flow model uses a multi-scale architecture
using several levels of stochastic variables. At each level,
the input is passed through K flows to output a stochastic
variable and the input to the next series of flow. The final
series of flow just output the final stochastic variable.

4.1. Autoregressive latent dynamics model

As in equation (1), we need to choose a form of latent prior
pθ(z). We use the following autoregressive factorization for
the latent prior:

pθ(z) =

T∏
t=1

pθ(zt|z<t) (6)

where z<t denotes the latent variables of frames prior to the
t-th timestep: {z1, ..., zt−1}. We specify the conditional
prior pθ(zt|z<t) as having the following factorization:

pθ(zt|z<t) =

L∏
l=1

pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) (7)

where z(l)<t is the set of latent variables at previous timesteps
and at the same level l, while z

(>l)
t is the set of latent vari-

ables at the same timestep and at higher levels. See figure 2
for a graphical illustration of the dependencies.

We let each pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) be a conditionally factorized

Gaussian density:

pθ(z
(l)
t |z

(l)
<t, z

(>l)
t) = N (z

(l)
t ;µ, σ) (8)

where (µ, log σ) = NNθ(z
(l)
<t, z

(>l)
t) (9)

where NNθ() is a deep residual network (He et al., 2015)
described in section 4.3.

4.2. Invertible neural networks

As explained in the section 3, the observed variables x are
modeled as an invertible function of the latent variable z.
We let each individual frame in the video be modeled as
function (a normalizing flow) of the set of corresponding
latent variable: xt = gθ(zt) = gθ({z(l)t }Ll=1); see figure 1
for an illustration. For this flow gθ, we use the multi-scale
Glow architecture as introduced in (Kingma & Dhariwal,
2018), which builds upon the multi-scale flow introduced
in (Dinh et al., 2016). We refer to (Dinh et al., 2016; Kingma
& Dhariwal, 2018) for more details.

Note that in our architecture we have chosen to let the prior
pθ(z), as described in eq. (6), model temporal dependencies
in the data, while constraining the flow gθ to act on separate
frames of video. We have experimented with using 3-D con-
volutional flows, but found this to be computationally overly
expensive compared to an autoregressive prior; in terms of
both number of operations and number of parameters.

A separate concern is that of temporal border effects. Due
to memory limits, we found it only feasible to perform SGD
with a small number of sequential frames per gradient step.
In case of 3-D convolutions, this would make the temporal
dimension considerably smaller during training than during
synthesis; this would change the model’s input distribution
between training and synthesis, which often leads to various
artifacts. This temporal border effect is not present in our
architecture. Using 2-D convolutions in our flow fθ, and
with autoregressive priors, allows us to synthesize arbitrarily
long sequences with introducing temporal border effects.

4.3. Residual Network Architecture

Here we’ll describe the architecture for the residual network
NNθ() that maps z

(l)
<t, z

(>l)
t to (µ(l)

t , log σ
(l)
t). Let h(>l)

t

be the tensor representing z
(>l)
t after the split operation

between levels in the multi-scale architecture. We apply a
1 × 1 convolution over h(>l)

t and concatenate this across
channels to each latent from the previous time-step and
the same-level independently. In this way, we obtain
((Wh

(>l)
t ; z

(l)
t−1), (Wh

(>l)
t ; z

(l)
t−2) . . . (Wh

(>l)
t ; z

(l)
t−n)).

We transform these values into (µ(l)
t , log σ

(l)
t) via a stack of

residual blocks. We obtain a reduction in parameter count
by sharing parameters across every 2 time-steps via 3-D
convolutions in our residual blocks.

Each 3-D residual block consists of three layers. The first
layer has a filter size of 2x3x3 with 512 output channels
followed by a ReLU activation. The second layer has two
1× 1× 1 convolutions via the Gated Activation Unit (Van
Den Oord et al., 2016; van den Oord et al., 2016a). The
third layer has a filter size of 2 × 3 × 3 with the number
of output channels determined by the level. This block is
replicated three times in parallel, with dilation rates 1, 2 and
4, after which the results of each block, in addition to the
input of the residual block, are summed.

The first two layers are initialized using a Gaussian distri-
bution and the last layer is initialized to zeroes. In that way,
the residual network behaves as an identity network during
initialization allowing stable optimization. After applying a
sequence of residual blocks, we use the last temporal activa-
tion that should capture all context. We apply a final 1× 1

convolution to this activation to obtain (∆z
(l)
t , log σ

(l)
t). We

then add ∆z
(l)
t to z

(l)
t−1 to a temporal skip connection to out-

VideoFlow: A Flow-Based Generative Model for Video

x0 x1 . . . xT

z
(1)
0

z
(2)
0

z
(3)
0

z
(1)
1

z
(2)
1

z
(3)
1

z
(1)
T

z
(2)
T

z
(3)
T

. . .

. . .

. . .

z0 z1 zT

Figure 2: The input at each timestep xt is encoded
into multiple levels of stochastic variables (z

(1)
t , . . . , z

(L)
t).

We model those levels through a sequential process∏
t

∏
l p(z

(l)
t | z

(l)
<t, z

(>l)
t).

put µ(l)
t . This way, the network learns to predict the change

in latent variables for a given level.

5. Quantitative Experiments
We evaluate the performance of VideoFlow on a toy Stochas-
tic Movement Dataset (Babaeizadeh et al., 2017) and the
BAIR robot pushing dataset (Ebert et al., 2017). We provide
ablations of the key components of our model to quantify
their effect. Finally, we provide quantitative comparisons to
previous state-of-the-art stochastic video generation base-
lines. The full set of hyperparameters of the VideoFlow
model is described in the supplementary material.

Dataset Bits-per-pixel
BAIR action free 1.87

Table 1: We report the average bits-per-pixel across 10 target
frames with 3 conditioning frames for the BAIR action-free
dataset.

5.1. Video modelling with the Stochastic Movement
Dataset

We use VideoFlow to model the Stochastic Movement
Dataset used in prior work (Babaeizadeh et al., 2017). In
this dataset, the first frame of every video consists of a shape
placed near the center of a 64x64x3 resolution gray back-
ground with its type, size and color randomly sampled. The
shape then randomly moves in one of eight directions, (up,
down, left, right, up-left, upright, down-left, down-right)

Figure 3: We condition the VideoFlow model with the frame
at t = 1 and display generated trajectories at t = 2 and
t = 3 for three different shapes.

with constant speed. Babaeizadeh et al. (2017) show that
conditioned on the first frame, their latent variable stochas-
tic model is able to generate all plausible trajectories of the
shape while a deterministic model just averages out all eight
possible directions in pixel space.

Since the shape moves with a uniform speed, we should be
able to model the position of the shape at the (t+ 1)th step
using only the position of the shape at the tth step. More
specifically, given the frame at t = 1, i.e if the shape is
at the center, the model should learn a distribution over 8
positions to generate the frame at t = 2. Given a frame
at any other t the model should learn a deterministic posi-
tion of the shape for t + 1. Using this insight, we extract
random temporal patches of 2 frames from each video of
3 frames. We then use the VideoFlow model to maximize
the log-likelihood of the second frame given the first, i.e
the model looks back at just one frame. We observe that
the bits-per-pixel on the holdout set reduces to a very low
values between 0.05 and 0.09 bits-per-pixel across multiple
hyperparameter runs. We then generate videos conditioned
on the first frame with the shape at the center. On inspec-
tion of these videos, we observe that the model consistently
predicts the future trajectory of the shape to be one of the
eight random directions.

5.2. Video Modeling with the BAIR Dataset

We use the action-free version of the BAIR robot pushing
dataset (Ebert et al., 2017) that contain videos of a Sawyer
robotic arm with resolution 64x64. In the absence of actions,
the task of video generation is completely unsupervised with
multiple plausible trajectories due to the partial observability
of the environment and stochasticity of the robot actions.

VideoFlow: A Flow-Based Generative Model for Video

Figure 4: B: baseline, A: Temporal Skip Connection, C: Dilated Convolutions + GATU, D: Dilation Convolutions
+ Temporal Skip Connection, E: Dilation Convolutions + Temporal Skip Connection + GATU. We plot the holdout
bits-per-pixel on the BAIR action-free dataset for different ablations of our VideoFlow model.

For each video we extract the first 13 frames and take a
random temporal patch of 4 frames due to memory con-
straints. Using Equation 6, we then train our VideoFlow
model to maximize the log-likelihood of the 4th frame given
the context of 3 previous frames; the residual network in
section 4.3 looks back n = 3 frames. This stochastic ob-
jective gives is an unbiased estimator of the log-likelihood
of frame 4 to 13, conditioned on the first three frames. We
constrained the range to the first 13 frames in order to be
compatible with the results with previous models of this
dataset (Babaeizadeh et al., 2017; Lee et al., 2018). We set
apart 512 videos from the training set as a validation set on
which hyper-parameters are optimized.

For evaluation, we use the first 3 frames as ground-truth
conditioning frames. For each of the remaining 10 target
frames, we compute the bits-per-pixel given the window of
3 previous frames. We then average this across all the 10
target frames and the test set.

5.3. Ablation Studies

Through an ablation study, we experimentally evaluate the
importance of the following components of our VideoFlow
model: (1) the use of temporal skip connections, (2) the
use Gated Activation Unit (GATU) instead of ReLUs in the
residual network (section 4.3), and (3) the use of dilations
in NNθ().

We start with a VideoFlow model with 256 channels in
the coupling layer, 16 steps of flow and remove the com-
ponents mentioned above to create our baseline. We use
four different combinations of our components (described in
Fig. 4) and keep the rest of the hyperparameters fixed across

those combinations. For each combination we plot the mean
bits-per-pixel on the holdout BAIR-action free dataset over
300K training steps for both affine and additive coupling
in Figure 4. For both the coupling layers, we observe that
the VideoFlow model with all the components provide a
significant boost in bits-per-pixel over our baseline.

We also note that other combinations—dilated convolutions
+ GATU (C) and dilated convolutions + the temporal skip
connection —improve over the baseline. Finally, we expe-
rienced that increasing the receptive field in NNθ() using
dilated convolutions alone in the absence of the temporal
skip connection or the GATU makes training highly unsta-
ble.

5.4. Comparison with stochastic video-generation
baselines

We compare against two state-of-the-art stochastic video
generation models, SAVP-VAE (Lee et al., 2018) and SV2P
(Babaeizadeh et al., 2017). We use the implementation of
these models in the open-source Tensor2Tensor (Vaswani
et al., 2018) library. We train these baseline video models to
predict ten frames given three conditioning frames, ensuring
that all the video models have seen a total of 13 frames
during training.

Both these models use variations of temporal VAEs which
optimize a lower bound on the log-likelihood and hence are
not directly comparable to our model. To make a quantita-
tive comparison with the baselines, we follow the metrics
proposed in prior work (Babaeizadeh et al., 2017; Lee et al.,
2018). For a given set of conditioning frames in the BAIR
action-free test-set, we generate 100 videos from each of the

VideoFlow: A Flow-Based Generative Model for Video

Figure 5: For a given set of conditioning frames on the BAIR action-free we sample 100 videos from each of the stochastic
video generation models. We choose the video closest to the ground-truth on the basis of PSNR, SSIM and VGG perceptual
metrics and report the best possible value for each of these metrics. All the models were trained using ten target frames but
are tested to generate 27 frames. For all the reported metrics, higher is better.

stochastic models. We then compute the closest of these gen-
erated videos to the ground truth according to three different
metrics, PSNR (Peak Signal to Noise Ratio), SSIM (Struc-
tural Similarity) (Wang et al., 2004) and cosine similarity
using features obtained from a pretrained VGG network
(Dosovitskiy & Brox, 2016; Johnson et al., 2016). 2. We
report our findings in Figure 5. This metric helps us under-
stand if the true future lies in the set of all plausible futures
according to the video model (and the implicit embedding
space of each of the metrics).

In prior work, (Lee et al., 2018) and (Babaeizadeh et al.,
2017) do not train a stochastic decoder to learn the variance
in pixel space, rather they use a deterministic decoder and
effectively treat this variance as a hyperparameter. They
search for the variance on a grid of extremely small val-
ues on a log-scale using a two stage training procedure.
They show that this greatly improves training stability and
removes pixel-level noise during generation.

We can remove pixel-level noise in our VideoFlow model
resulting in higher quality videos at the cost of diversity
by sampling videos at a lower temperature, analogous to
the low-temperature procedure in (Kingma & Dhariwal,
2018). For a network trained with additive coupling layers,
we can sample the tth frame xt from P (xt|x<t) with a
temperature T simply by scaling the standard deviation of
the latent gaussian distribution P (zt|z<t) by a factor of T.
To achieve a balance between quality and diversity, we tune
the temperature using the maximum VGG similarity across
100 video samples with the ground-truth as a metric3. We

2Our baselines are also tuned using this VGG-based cosine
similarity metric on a search grid available in the appendix

3The temperature was tuned on a linear scale between 0.1 and
1.0 on the validation set.

report results with a temperature of 1.0 and the optimal
temperature in Figure 5.

For SAVP-VAE, we notice that the hyperparameters that
perform the best on these metrics are the ones that have dis-
appearing arms. For completeness, we report these numbers
as well as the numbers for the best performing SAVP models
that do not have disappearing arms. Our model with optimal
temperature performs better or as well as the SAVP-VAE
model on the VGG-based similarity metrics, which corre-
late well with human perception (Zhang et al., 2018) and
SSIM. Our model with temperature T = 1.0 is also compe-
tent with state-of-the-art video generation models on these
metrics. PSNR is explicitly a pixel-level metric, which the
VAE models incorporate as part of its optimization objec-
tive. VideoFlow on the other-hand models the conditional
probability of the distribution of frames, hence as expected
it underperforms on PSNR.

We also computed the variational bound of the bits-per-
pixel loss, via importance sampling, from the posteriors
for the SAVP-VAE and SV2P models. Neither of these
models estimate a pixel-level variance, which is required
for estimating the loss; we estimated the optimal pixel-level
variance for both models. We obtain high values of bits-
per-pixel, larger than 6, for these models. We attribute this
to the optimization objective of these models: they do not
optimize the variational bound on the log-likelihood directly
due to the presence of a β 6= 1 term in their objective and
scheduled sampling (Bengio et al., 2015).

5.5. Generation time

For our model used to demonstrate qualitative results us-
ing additive coupling layers, sampling 20 frames of 64x64
resolution takes less than 3.5 seconds on an NVIDIA P100

VideoFlow: A Flow-Based Generative Model for Video

GPU. To our knowledge, the fastest autoregressive model
for video (Reed et al., 2017) that models log-likelihood
directly generates a frame every 3 seconds4.

5.6. Out-of-sequence detection

We use our trained VideoFlow model, conditioned on 3
frames as explained in Section 5.2, to detect the plausi-
bility of a temporally inconsistent frame to occur in the
immediate future. To do this, we condition the model on
the first three frames of a test-set video X<4 to obtain a
distribution P (X4|X<4) over its 4th frame X4. We then
compute the likelihood of the tth frame Xt of the same
video to occur as the 4th time-step using this distribution.
i.e, P(X4 = Xt|X<4) for t = 4 . . . 13. We average the
corresponding bits-per-pixel values across the test set and
report our findings in Figure 6. We find that our model
assigns a monotonically decreasing log-likelihood to frames
that are more far out in the future and hence less likely to
occur in the 4th time-step.

Secondly, for the distribution P (X4|X<4) obtained from
each test-set video as explained above, we then randomly
sample another video from the test-set and choose it’s 4th
frame which we describe as X

′

4. We then compute the mean
bits-per-pixel obtained by P(X4 = X

′

4|X<4) across the test
set. We repeat this experiment 1000 times and observe the
mean across the 1000 trials to be 8.876 with a standard error
of 0.002. Our results reflect the intuition that the frames
from a different video should be less likely to occur in the
4th timestep than the same video but from a different time-
step.

6. Qualitative Experiments
We demonstrate qualitative results by generating videos con-
ditioned on input frames and interpolations in latent space
for both datasets. The qualitative results can be viewed
at this website. In the generated videos, a border of blue
represents the conditioning frame, while a border of red
represents the generated frames.

6.1. Effect of temperature

We study the effect of temperature on the quality of gener-
ated videos in Figure 7. For each temperature, we sample
100 videos from the model. We then compute the max co-
sine similarity across these 100 videos based on features
obtained from a pretrained VGG network with the ground
truth as described in Section 5.4. We display the worst and
best videos according to this metric. On inspection, we
observe that even our “worst” videos across temperatures
according to this metric are temporally cohesive and the

4An important caveat is that code and hardware differences
make these numbers not directly comparable.

Figure 6: For a given test video, we compute the likelihood
of the tth target frame Xt belonging to P(X4 = Xt|X<4)
for t = 4 . . . 13 using our model to detect temporal anoma-
lies. We average the corresponding bits-per-pixel across the
test-set and plot error bars.

robot arm looks sharp and realistic. We believe that though
these videos are of high quality and are physically plausible,
they are far from the ground truth, which itself represents
just one plausible future in VGG feature space.

At lower temperatures, the arm exhibits slow motion with
the background objects remaining static and clear while
at higher temperatures, the arm moves much more rapidly,
with the background objects becoming much noisier. We ob-
tain a tradeoff between these two properties at a temperature
of 0.5 via our qualitative experiments.

6.2. Longer predictions

We generate 100 frames into the future using our model
trained on 13 frames with a temperature of 0.5. We display
our results in Figure 8. On the top, even 100 frames into the
future, the generated frames remain in the image manifold
maintaining temporal consistency.

We additionally display a failure mode on the bottom. In
the presence of occlusions, the arm remains super-sharp but
the background objects become noisier and blurrier. We
hypothesize that this can be due to following reason. Our
VideoFlow model has a bijection between the zt and xt

meaning that the latent state zt cannot store information
other than that present in the frame xt. This, in combina-
tion with the Markovian assumption in our latent dynamics
means that the model can forget objects if they have been
occluded for a few frames. In future work, we would ad-
dress this drawback by incorporating longer memory in our
VideoFlow model; for example by parameterizing NNθ()

https://sites.google.com/corp/view/videoflow/home

VideoFlow: A Flow-Based Generative Model for Video

Figure 7: We generate videos with temperatures 0.1, 0.5 and
1.0. For each temperature, we display generated frames at
different time-steps into the future.

Figure 8: We generate 100 frames into the future with a
temperature of 0.5. The top and bottom row correspond to
generated videos in the absence and presence of occlusions
respectively.

as a recurrent neural networks instead of residual networks
in our autoregressive prior (eq. 9). Training on larger tempo-
ral patches could also potentially be made feasible by using
more memory-efficient backpropagation algorithms for in-
vertible neural networks, as initially explored by (Gomez
et al., 2017).

6.3. Likelihood vs Quality

We show correlation between training progression (mea-
sured in bits per pixel) and quality of the generated videos
in Figure 9. We display the videos generated by condition-
ing on frames from the test set for three different values of
bits-per-pixel on the test-set. As we approach lower bits-per-
pixel, our VideoFlow model learns to model the structure of
the arm with high quality as well as its motion resulting in
high quality video.

Figure 9: We provide a comparison between training pro-
gression (measured in the mean bits-per-pixel objective on
the test-set) and the quality of generated videos.

6.4. Latent space interpolation

BAIR robot pushing dataset: We encode the first input
frame and the last target frame into the latent space using
our trained VideoFlow encoder and perform interpolations.
We find that the motion of the arm is interpolated in a tempo-
rally cohesive fashion between the initial and final position.
Further, we use the multi-level latent representation to in-
terpolate representations at a particular level while keeping
the representations at other levels fixed. We find that the
bottom level interpolates the motion of background objects
which are at a smaller scale while the top level interpolates
the arm motion.

Stochastic Movement Dataset: We encode two different
shapes with their type fixed but a different size and color
into the latent space. We observe that the size of the shape
gets smoothly interpolated. During training, we sample the
colors of the shapes from a uniform discrete distribution
which is reflected in our experiments. We observe that all
the colors in the interpolated space lie in the set of colors in
the training set.

7. Code for reproducing results
Our code to reproduce the experimental results is available
in the publicly available Tensor2Tensor repository

8. Conclusion and Discussion
We describe a practically applicable architecture for flow-
based video prediction models, inspired by the Glow model
for image generation (Kingma & Dhariwal, 2018), which
we call VideoFlow. We introduce a latent dynamical sys-

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/video/next_frame_glow.py

VideoFlow: A Flow-Based Generative Model for Video

Figure 10: We display interpolations between a) a small
blue rectangle and a large yellow rectangle b) a small blue
circle and a large yellow circle

Figure 11: We display interpolations between the first input
frame and the last target frame of two test videos in the
BAIR robot pushing dataset.

tem model that predicts future values of the flow model’s
latent state replacing the standard unconditional prior distri-
bution. Our empirical results show that VideoFlow achieves
results that are competitive with the state-of-the-art VAE
models in stochastic video prediction. Finally, our model
optimizes log-likelihood directly making it easy to evaluate
while achieving faster synthesis compared to pixel-level au-
toregressive video models, making our model suitable for
practical purposes. In future work, we plan to incorporate
memory in VideoFlow to model arbitrary long-range de-
pendencies and apply the model to challenging downstream
tasks.

References
Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., and

Levine, S. Stochastic variational video prediction. arXiv
preprint arXiv:1710.11252, 2017.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks. In Advances in Neural Information Process-
ing Systems, pp. 1171–1179, 2015.

Boots, B., Byravan, A., and Fox, D. Learning predictive
models of a depth camera & manipulator from raw exe-
cution traces. In International Conference on Robotics
and Automation (ICRA), 2014.

De Brabandere, B., Jia, X., Tuytelaars, T., and Van Gool, L.
Dynamic filter networks. In Neural Information Process-
ing Systems (NIPS), 2016.

Deco, G. and Brauer, W. Higher order statistical decor-
relation without information loss. Advances in Neural
Information Processing Systems, pp. 247–254, 1995.

Denton, E. and Fergus, R. Stochastic video generation with
a learned prior. arXiv preprint arXiv:1802.07687, 2018.

Dinh, L., Krueger, D., and Bengio, Y. Nice: non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. arXiv preprint arXiv:1605.08803,
2016.

Dosovitskiy, A. and Brox, T. Generating images with per-
ceptual similarity metrics based on deep networks. In
Advances in Neural Information Processing Systems, pp.
658–666, 2016.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. Self-
supervised visual planning with temporal skip connec-
tions. arXiv preprint arXiv:1710.05268, 2017.

Finn, C. and Levine, S. Deep visual foresight for planning
robot motion. In International Conference on Robotics
and Automation (ICRA), 2017.

Finn, C., Goodfellow, I., and Levine, S. Unsupervised
learning for physical interaction through video prediction.
In Advances in Neural Information Processing Systems,
2016.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without
storing activations. In Advances in Neural Information
Processing Systems, pp. 2211–2221, 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

VideoFlow: A Flow-Based Generative Model for Video

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural computation, 9(8):1735–1780, 1997.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, pp. 694–711. Springer,
2016.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Dani-
helka, I., Vinyals, O., Graves, A., and Kavukcuoglu, K.
Video pixel networks. International Conference on Ma-
chine Learning (ICML), 2017.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10236–10245, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. Proceedings of the 2nd International Conference
on Learning Representations, 2013.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improved variational in-
ference with inverse autoregressive flow. In Advances in
Neural Information Processing Systems, pp. 4743–4751,
2016.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
25, pp. 1106–1114, 2012.

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and
Levine, S. Stochastic adversarial video prediction. arXiv
preprint arXiv:1804.01523, 2018.

Liu, Z., Yeh, R., Tang, X., Liu, Y., and Agarwala, A. Video
frame synthesis using deep voxel flow. International
Conference on Computer Vision (ICCV), 2017.

Lotter, W., Kreiman, G., and Cox, D. Deep predictive coding
networks for video prediction and unsupervised learning.
International Conference on Learning Representations
(ICLR), 2017.

Mathieu, M., Couprie, C., and LeCun, Y. Deep multi-scale
video prediction beyond mean square error. International
Conference on Learning Representations (ICLR), 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A flow-
based generative network for speech synthesis. CoRR,
abs/1811.00002, 2018. URL http://arxiv.org/
abs/1811.00002.

Ramachandran, P., Paine, T. L., Khorrami, P., Babaeizadeh,
M., Chang, S., Zhang, Y., Hasegawa-Johnson, M. A.,
Campbell, R. H., and Huang, T. S. Fast generation
for convolutional autoregressive models. arXiv preprint
arXiv:1704.06001, 2017.

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert,
R., and Chopra, S. Video (language) modeling: a baseline
for generative models of natural videos. arXiv preprint
arXiv:1412.6604, 2014.

Reed, S., Oord, A. v. d., Kalchbrenner, N., Colmenarejo,
S. G., Wang, Z., Belov, D., and de Freitas, N. Paral-
lel multiscale autoregressive density estimation. arXiv
preprint arXiv:1703.03664, 2017.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In Proceedings of The 32nd Interna-
tional Conference on Machine Learning, pp. 1530–1538,
2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML-14), pp.
1278–1286, 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Srivastava, N., Mansimov, E., and Salakhudinov, R. Unsu-
pervised learning of video representations using lstms. In
International Conference on Machine Learning, 2015.

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and
Kavukcuoglu, K. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals,
O., Graves, A., et al. Conditional image generation with
PixelCNN decoders. In Advances in Neural Information
Processing Systems, pp. 4790–4798, 2016a.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu,
K. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016b.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt,
L., Graves, A., and Kavukcuoglu, K. Conditional im-
age generation with PixelCNN decoders. arXiv preprint
arXiv:1606.05328, 2016c.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

http://arxiv.org/abs/1811.00002
http://arxiv.org/abs/1811.00002

VideoFlow: A Flow-Based Generative Model for Video

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, Ł., Kalchbrenner,
N., Parmar, N., et al. Tensor2tensor for neural machine
translation. arXiv preprint arXiv:1803.07416, 2018.

Vondrick, C. and Torralba, A. Generating the future with
adversarial transformers. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Vondrick, C., Pirsiavash, H., and Torralba, A. Anticipating
the future by watching unlabeled video. arXiv preprint
arXiv:1504.08023, 2015.

Walker, J., Gupta, A., and Hebert, M. Dense optical flow
prediction from a static image. In International Confer-
ence on Computer Vision (ICCV), 2015.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE transactions on image processing,
2004.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong,
W.-K., and Woo, W.-c. Convolutional lstm network: A
machine learning approach for precipitation nowcasting.
In Advances in Neural Information Processing Systems,
2015.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. arXiv preprint, 2018.

A. VideoFlow - BAIR Hyperparameters
A.1. Quantitative - Bits-per-pixel

To report bits-per-pixel we use the following set of hyperpa-
rameters. We use a learning rate schedule of linear warmup
for the first 10000 steps and apply a linear-decay schedule
for the last 150000 steps.

Hyperparameter Value
Flow levels 3

Flow steps per level 24
Coupling Affine

Number of coupling layer channels 512
Optimier Adam

Batch size 40
Learning rate 3e-4

Number of 3-D residual blocks 5
Number of 3-D residual channels 256

Training steps 600K

A.2. Qualitative Experiments

For all qualitative experiments and quantitative comparisons
with the baselines, we used the following sets of hyperpa-
rameters.

Hyperparameter Value
Flow levels 3

Flow steps per level 24
Coupling Additive

Number of coupling layer channels 392
Optimier Adam

Batch size 40
Learning rate 3e-4

Number of 3-D residual blocks 5
Number of 3-D residual channels 256

Training steps 500K

B. Hyperparameter grid for the baseline
video models.

We train all our baseline models for 300K steps using the
Adam optimizer. Our models were tuned using the maxi-
mum VGG cosine similarity metric with the ground-truth
across 100 decodes.

SAVP-VAE and SV2P: We use three values of latent loss
multiplier 1e-3, 1e-4 and 1e-5. For the SAVP-VAE model,
we additionally apply linear decay on the learning rate for
the last 100K steps.
SAVP-GAN: We tune the gan loss multiplier and the learn-
ing rate on a logscale from 1e-2 to 1e-4 and 1e-3 to 1e-5
respectively.

Figure 12: We compareP(X4 = Xt|X<4) and VGG cosine
similarity between X4 and Xt for t = 4 . . . 13

VideoFlow: A Flow-Based Generative Model for Video

C. Correlation between VGG perceptual
similarity and bits-per-pixel

We plot correlation between cosine similarity using a pre-
trained VGG network and bits-per-pixel using our trained
VideoFlow model. We compare P(X4 = Xt|X<4) as done
in Section 5.6 and the VGG cosine similarity between X4

and Xt for t = 4 . . . 13. We report our results for every
video in the test set in Figure 6. We notice a weak corre-
lation between VGG perceptual metrics and bits-per-pixel
with a correlation factor of −0.51.

