~4 University of Alberta

0

S

Program Design and Animation in the Enterprise Parallel
Programming Environment

by

Greg Lobe
Duane Szafron
Jonathan Schaeffer

Technical Report TR 93-04
March 1993

Program Design and Animation in the Enterprise
Parallel Programming Environment

Greg Lobe
Duane Szafron
Jonathan Schaeffer

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{greg, duane, jonathan}@cs.ualberta.ca

ABSTRACT

TheEnterpriseprogramming environment supports the development of applications that run
concurrently on a network of workstations. This paper describes the object-oriented components
of Enterprise implemented in Smalltalk-80, and their seamless integration with the procedural
components, implemented in C. The object-oriented user-interface supports a new
anthropomorphic model for parallel computation that eliminates much of the perceived complexity
of parallel programs. The object-oriented animation component implements a new animation
architecture that supports synchronous and asynchronous events. This allows a user to view the
dynamic interactions of the parallel components of a distributed application to simplify performance
monitoring and debugging. Tlinterpriseexperience highlights the strengths of object-oriented
methodologies both for expressing user models and for implementing related components.

Keywords: Object-oriented, Smalltalk, programming environment, user-interface, animation, distribut
computing

-1- Enterprise Technical Report TR93-04

1. Introduction

This paper describes how object-oriented techniques were used to design and implement
components of thEnterpriseprogramming environmenEnterprisesupports the development of
distributed applications, written in the C programming language, that run on a network of
workstations.Enterpriseis a good example of an embedded application where object-oriented and
traditional code co-exist. Object-orientation was used in the design of the parallel programming
model and Smalltalk-80 (ST-80) was used for the user-interface and program animation
components. The rest of the system was written in C.

Parallelism adds an extra dimension of complexity to the design, implementation, and
debugging of programs. With multiple processes running on multiple processors (dozens,
hundreds or more), the user often has difficulty understanding a parallel computation using
conventional sequential tools. Visualization and animation are needed to grasp the often intricate
and non-deterministic interactions between components. Most importantly, however, a simple
model is needed to bring order to an often chaotic collection of asynchronous processes.

In Enterprise the interactions of processes in a parallel computation are described by using
an analogy based on the parallelism in a business organization. Most parallel computations can be
structured hierarchically, with "higher-level" management processes performing executive
functions, and "lower-level" subordinate processes carrying out designated tasks. Since business
enterprises efficiently coordinate many asynchronous individuals and groups, the analogy is
beneficial to designing, understanding and reducing the complexity of parallel programs.
Inconsistent parallel terminology (master-slave, pipelines, divide-and-conquer, etc.) is replaced
with more familiar business termassetalleddepartmentsreceptionistsindividuals divisions
representativesetc.). Every sequential procedure that is to be executed concurrently is assigned an
asset type that determines its parallel behavior. The user code for each of these procedures is
sequential C, but a procedure call to such an asset is automatically translated to a message send b
Enterprise

Consider the following user C code, assuming filnat is an asset in the user's program:

result = func(x, y);
/* other C code */
a = result;

WhenEnterprisetranslates this code to run on a network of workstations, the parameieag
are packed into a message and sent to the process that executes thenassdihe caller
continues executing and only when it accesses the result of the functiom eatlesul t) does it
block and wait for the resulEnterprisealso supports passing parameters by reference.

-2- Enterprise Technical Report TR93-04

Enterpriseconsists of three components: an object-oriented graphical interface, a pre-
compiler, and a run-time executive. The user specifies the application parallelism by drawing a
hierarchicalenterprisethat consists of assets. At run-time, each asset corresponds to a process.
Sequential procedure calls in C are translated into message sends across a network by the pre
compiler. The run-time executive controls program execution (process/processor assignment,
establishing communication links, monitoring the network load). More information about
Enterpriseincluding the anthropomorphic parallel programming model, the system implementation
and a user appraisal can be found in [LMP92], [SSW92] and [Par93].

The graphical interface and tlterpriseanthropomorphic model are used for program
design. However, they can also used be used to monitor or replay an execution. The interface
animates the states of the assets (processes) and the messages that are sent between them. Th
facilities are currently being expanded to include performance monitoring and debugging features.

This paper describes the design of Breerpriseinterface and its animation capabilities.
Several research contributions and lessons were derived fraintidriseproject:

1. a new anthropomorphic model for parallel computation,

2. a new object-oriented, application-independent animation architecture containing both
synchronous and asynchronous components,

3. evidence that programming languages that support multiple inheritance are essential for the
proper representation of those object-oriented applications that depend on real-world
models or analogies,

4. how object-oriented techniques can be used in designing software development
environments that support non-object-oriented programming languages,

5. how object-oriented software can be integrated with non-object-oriented software and

6. how context-sensitive hierarchical direct manipulation user-interfaces can simplify user
models, focus user attention and prevent errors.

2. Designing Programs Using Enterprise

This section presents a simple example of Henterprisecan be used to construct a
distributed program. Consider a program (called Simulation) that displays a group of fish
swimming across a display screen. This problem was contributed by a research group in our
Department and is obviously more complex than portrayed by the following description. There are
three fundamental operations in the prograiodel PolyConvandSplit) with the following
functionality and pseudo-code.

-3- Enterprise Technical Report TR93-04

 The main procedureModel, computes the location and motion of each object in a
simulation frame, stores the results in a file, cRldéyConvto process the frame and goes
to the next frame.

Model ()

for each frane

{

/* conpute location and noti on of objects */
Pol yConv(frane);

}
}

» PolyConvreads a simulation frame from the disk file and performs some data format
transformations, viewing transformations, projections, sorts and back-face removal. It
then callsSplit, passing it a transformed frame and a sequence number.

Pol yConv(frame)

/* performtransformati ons and projections */
Split(frame, polygons);

» Split performs hidden surface removal and anti-aliasing and then stores the rendered image
in a file.

Split(frame, polygons)

/* hidden surface renoval and anti-aliasing */

}

Examining the structure of the program shows tatlel consists of a loop that, for each frame in
the simulation, performs some work on the frame and PallgConwwith the results.PolyConv
manipulates the image received fréfodel and callsSplit Split does the final polishing of the
frame and writes the final image to disk.

An Enterpriseuser manipulates icons that represent high-level program components called
assets An asset represents a single C procedure/function, calleatignproceduretogether with
a collection of support procedures used by the entry procedure, all contained in a single file. A
program will consist of several assets. In this example, there will be three a4sels!,
PolyConvandSplit

When Enterpriseis started, th&nterprisewindow contains a single view called the
Enterprise View It contains the icon for a singtaterpriseasset that represents the new program.
Associated with each asset is a context sensitive pop-up menu. For example, if the user selects
Namefrom the asset menu of teaterprise and types the worBimulationinto the dialog box that
appears, thenterprisewould be named&imulationand appear as in Figure 1. Note that the
Enterpriseuser-interface is implemented in ST-80 which uses the host windowing system. The

-4 - Enterprise Technical Report TR93-04

figures in this report were generated on the Macintosh implementation Bhtkepriseuser-
interface and look slightly different in X windows [GKM90] or Sun OpenWindows [Sun91].

s[J==Enterprise: Simulation :CEHE
|

Simulatio
vl
[——— y

Figure 1: A new program called Simulation

If the user then selecExpandfrom the asset menu, teaterprise icon will expand to reveal
the singleindividual that it contains. To name this asset, the user séleateefrom the asset
menu of thendividual and types the worlllodelinto the dialog box that appears.

The user could enter all of the code Model PolyConvandSplitinto this singlendividual
and run the program sequentially. However, there is no reasorebgl should wait until
PolyConvcompletes the first simulation frame to start processing the second frame. Similarly,
PolyConvdoes not need to wait f@plit. In the parallel processing community this type of
parallelism is often called a pipeline. Using E@erpriseanalogy, these three routines act like an
assembly or production line and are representedlimg.a Therefore, if the user seledtse from
the asset menu dModel it is re-classified aslne. After re-classification, thendividual appears
as dine consisting of aeceptionistand one subordinatedividual. Figure 2 shows thHeée where
the numeral 1 indicates the number of subordinate assetslimethe

E[J==Enterprise: Simulation :CE0IE
|
vl
<] 12]

Figure 2: A sequential program that contaifis@calledModel.

If the user selectExpandfrom the asset menu dfodel it is expanded to reveal its two
components. Since we want three components, the user sAl@édisfter from the last

-5- Enterprise Technical Report TR93-04

component's menu to add a third asset and then names the newPadg€snvandSplit The
user can then seleCodefrom the menu of each asset in turn and enter the C source code into the
text editor window that appears, as shown in Figure 3.

Enterprise: Simulation

LY

S[J==—= Edit Code: PolyConv =[E

[FPolyCony asset ¥

#define MAX_POLYGONS 100

[> i

PolyConv{frame)
Int frame;
I
|
I
I —— -
2 | —) > |

Figure 3: Editing the C source code RolyConv.

The double-line rectangle representsehterprise The dashed-line rectangle represents the
line and each icon represents a component. The first componergdsmionistthat shares the
name Model with theline that contains it. All calls tolane are received by theceptionist The
other two components are subordinatividuals

If the user select€ompilefrom the Enterpriseview menu, thé&nterprise pre-compiler
inserts the parallelization code, compiles the program and reports any errors in a window. The
user can then sele&xecutefrom theEnterpriseview menu andnterprisefinds as many
processors as are necessary to start the program, initiates the processes and monitors the load ¢
the machines.

One of the strengths of tliEnterprisemodel is that it is easy to experiment with alternate
parallelization techniques without changing the C source code. Each asset represents at least one

-6 - Enterprise Technical Report TR93-04

process. If a call is made to timelividual Split, it is executed by a process and if a subsequent call

is made td&plit before the first call is complete, the second call must wait for the first call to finish.
However, if theSplit asset iseplicatedthen multiple processes can be used to execute multiple
calls concurrently. For example, if the user sel®#plicatefrom the asset menu &plit and

enters 1 and 5 as minimum and maximum replication factors in the dialog box that appears, then
Splitis replicated as shown in Figure 4.

E[J=== Enterprise: Simulation :CEHE
Al

Figure 4: A replicated asset.

WhenPolyConvcalls Split, a process is initiated and if a subsequent call is ma8elib
before the first call is done then a second process is initiated (if there is an available machine).
Replication can be dynamic Enterpriseso that as many processors as are available on the
network may be used, subject to a lower and upper bound supplied by the user. Several other
asset kinds are supportedbyterpriseand they can be combined in arbitrary hierarchies.

-7- Enterprise Technical Report TR93-04

3. The User-Interface Implementation

The Enterpriseuser-interface has been implemented in ST-80, version 4.0. It may be used to
construct programs on any machine that is supported by ST-80 including a broad rangé“of Unix
workstations as well as Macintoshes and IBM X86 or compatible machines. However, since the
rest of theEnterpriseprogramming environment is Unix dependent, features suCloapileand
Executeonly work on Unix workstations. Under Unix, the ST-80 interpreter runs as a single task
under X windows.

The history of théenterpriseuser-interface is an interesting one and illustrates some of the
tradeoffs that can occur when deciding whether or not to use object-oriented technology and how
to integrate it with an existing software lega®&nterpriseis based on a predecessor programming
environment calledFrameworks [SSG91] that was completely implemented in C. The
Frameworksenvironment had a primitive graphical user-interface that lacked the anthropomorphic
model and required the user to do more drawing. Wheiktiterpriseproject was started, a
decision was made to create an object-oriented graphical user-interface that could more easily
represent the new high-level parallel programming model.

Since the researchers had some experience with the object-oriented languages, Smalltalk and
C++, both were considered for implementing the user-interface. C++ was chosen for three
reasons: it has faster run-time performance than Smalltalk, it should be easier to integrate a C++
user-interface with existing C code since it is a superset of C and, unlike ST-80, there are no
licensing restrictions on the distribution of a C++ user-interface. Smalltalk/V was disqualified
since it does not currently run under Unix.

The Interviews [LVC89] user-interface class library was used to reduce development time.
Unfortunately, 6 person-months were spent trying to implement the user-interface using Interviews
without success. Although individual widgets were relatively easy to build, the complexity of
Interviews resulted in a learning curve that was too steep. Although an experienced Interviews
programmer may have been able to complete the task in this time, our programmer could not.

Since the user-interface was lagging behind the pre-compiler and executive, we then decided
to try Motif [You92]. However, two person-months of work on Motif (by a different
programmer) yielded results that were no better.

At this point, we decided to try ST-80 in spite of its perceived problems. A graduate student
who had previously taken a one semester course in object-oriented computing that included ST-80
as a component then produced a working prototype of the user-interface in three weeks! Of course
the final user-interface (with animation) as described in this paper took much longer (about four

™ Unix is a trademark of Bell Laboratories.

-8- Enterprise Technical Report TR93-04

months). The execution speed of the user-interface is well within our performance requirements
and it was quite easy to integrate the ST-80 user-interface with the C pre-compiler and executive.

The rest of this section describes the way the user-interface was implemented in ST-80.

3.1 The User-Interface Control M odel

Since a program may display many ST-80 windows, the ST-80 interpreter polls the
windows, asking each in turn if it wants control. The default behavior is that a window takes
control whenever the cursor is inside of it.

The Model View Controller (MVC) paradigm [LP91] is used where the model is an instance
of classEnterprise the view is arenterpriseWindovand the controller is aanterpriseController
TheEnterpriseControllebehaves exactly the same as a defaaititroller except when the program
is animated and this will be described in Section 4.

The model is responsible for knowing @sterprise(program). The window is responsible
for displaying theenterpriseusing the values stored by the model. Views are composite objects
that can contain sub-views, but the location and size of a sub-view within its parent view is
maintained by a wrapper object. That is, sub-views are contained in wrappers, which are
themselves contained in a parent view. An instan&ntdrpriseWindovwontains two wrapped
sub-views, areEnterpriseview and aServiceview. TheEnterpriseview displays thenterprise
(program) and th&erviceview displays theerviceassets used by tlemterprise TheService
view can be hidden when it is not usetkrviceassets are described in [LMP92].

When a mouse button is pressed, the window passes control to the view that contains the
cursor. The view then determines which asset (if any) was selected. The selected asset is one
whose bounds (rectangle) contains the cursor point. However, since assets may be nested in ¢
hierarchical structure, many assets may contain the cursor point. The selected asset is defined a
the innermost one that contains the cursor point. For example, in Figure 4, the cursor is inside of
the individual PolyCony which is inside thédine (dashed lineModel, which is inside the
enterprise(double line) named Simulation. In this case the cursor point is considered to be inside
PolyConv

If an asset is selected, a context sensitive menu is displayed. The menu contains only those
operations that are currently valid for the selected asset. For example, if an asset is expanded,
then theCollapseoperation would appear in the menu, butBEx@andoperation would not. In
this way, it is impossible for a user to select an invalid operation. If no asset is selected, then the
menu for theEnterpriseview is displayed.

This approach simplifies the user's mental model of the programming environment since it
reduces the number of operations the user sees [LSW87]. It is in stark contrast to pull-down

-9- Enterprise Technical Report TR93-04

menus where the user is presented with a plethora of choices some of which have subtle
differences and some of which do not even apply to the user-interface component being
considered. For example, if the user cho@aspilefrom an asset's menu, only the code for the
asset is compiled. If the user choo€esnpilefrom theEnterpriseview menu, then all assets are
compiled. Furthermore, tHexecutecommand does not even appear in an asset menu. In a pull-
down systemCompile AsseCompile ProgranandExecutevould all appear in the menus.

How does a view determine which of its assets is selected? A traditional non-object-oriented
approach would be for a view to maintain a list of its assets and their locations and to compute the
selected asset based on this information. However, since assets can be nested, some othe
structural information would be required as well. Assets can be expanded to reveal their
components or collapsed to hide their internal details. As assets are expanded and collapsed, theil
locations change and must be updated. In the object-oriented world, each asset should be
responsible for knowing its own location and its structure (its parent asset and the other assets it
contains). The view itself only needs to know énéerprise

Even when it is assumed that assets are responsible for knowing their locations, there are
several approaches for determining the selected asset and transferring control to it so that its menu
can be displayed and the appropriate action taken.

The following naive approach was tried first. The ST-80 implementation of MVC provides a
default behavior that passes control to the innermost view that contains the cursor. This is
implemented by maintaining a list of scheduled controllers (the controller of each window). Each
of the scheduled controllers is sent a message in a polling loop. If a controller's view has the
cursor, it takes control and asks its view if one of its sub-views wants control. If one does, the
controller gives control to the sub-view's controller, otherwise it keeps control itself. The sub-
view's controller behaves the same way. Thus, the controller for the innermost sub-view that
contains the cursor gets control.

Since assets are views, the method that determines if a sub-view wants control was re-
implemented. This was necessary since ST-80 assumes that sub-views are always displayed. If
an asset is collapsed or has no components, the method returns the asset itself. Otherwise the
method invokes the original method that recursively finds a component of the asset that wants
control. Once a controller has control and knows that none of its sub-views wants control, it
displays its menu and it processes the user's choice.

Unfortunately, this approach failed. There were times when the wrong menus would be
displayed. Clicking on an asset would bring up the menu for one of its components, its parent, or
even one of its parent's parents. Clicking at the same location again would sometimes display the
same menu, but would sometimes display the right one or a completely different one. It seemed

-10 - Enterprise Technical Report TR93-04

like the wrong controller was taking control. This behavior was caused by two different
phenomena. First, each asset asked the cursor for its location. When the cursor was moved
between the times that two assets queried it, each would receive a different point. Second, the
control method was not actually as simple as described previously. The method in the controller
that asks sub-controllers if they want control is sent from a loop. The loop iterates until the asset
no longer has the cursor. When a menu was displayed, the active control loop was initiated from a
controller in a loop that was initiated from a controller in a loop, etc. When the active controller
finished processing the user's choice, that loop would not end. The next time the user clicked the
mouse the controller would assume that it had the cursor (because it was active), would find that
no sub-view wanted control, and would display its own menu.

Our second approach alleviated this problem. Emterpriseview determines the
coordinates of the cursor and asks engerprisewhich asset should be selected. €heerprise
either returns the selected asset ordhdefinedObjectil, if no asset contains the cursor point.
In the former case, the selected asset is given control to display its menu and perform the selected
action. In the latter case, tEmterpriseview displays its own menu and performs the selected
action.

When theanterpriseor any other asset is passed the cursor point and asked for the selected

asset, it behaves recursively as follows. If the point is outside its bounds it angwdfshe

point is inside its bounds and it does not contain any component assets or it contains component
assets but they are not currently displayed, then it returns itself. Otherwise, the asset asks each o
its component assets in turn to identify the selected asset until one answers an asset or all respon
with nil. The asset then returns this result. Before asking each component asset, the asset asks th
wrapper of the component to change the coordinates of the cursor point to the local coordinates of
the component.

3.2 Drawing Assets

When an asset receives a display message, it draws itself. Any asset that contains component
assets can be either collapsed or expanded. Assets that are collapsed or do not have componen
are displayed in the same way. First the asset draws its icon. Then it displays its hame in the
lower left corner of the icon. If the asset is replicated, the replication is indicated by drawing lines
above and to the right of the icon to simulate a stack of icons, and by displaying the number of
replications outside of the top right corner of the icon.

An expanded asset first draws a rectangular border. The size of the rectangle is computed by
asking each component for its size and adding room for space between the components. Next a
display message is sent to each component so that it draws itself. The parent asset then draws th:

-11- Enterprise Technical Report TR93-04

connections between the components. Finally the replication is indicated in the same way as it is
for collapsed assets.

The basic drawing behavior is implemented in fssetclass and eacAssetsubclass
provides a method for drawing its own icon. In addition, different line styles are used for the
borders of expanded assets. For exangiterpriseassets use two lines separated by one pixel,
line assets use a dashed double width line, @ntsion assets use a double width wavy line. The
method that draws the border is overridden in these assets to use the appropriate behavior.
Similarly, the method that draws connections is overridden to draw the appropriate connections for
the variousAssetsub-classes.

3.3 Communicating with the Other Enterprise Components

Although the user-interface is implemented in ST-80, the otherBmterprise system
components are implemented in C. The user-interface communicates with the pre-compiler and the
executive through Unix pipes and text files. This section describes the technique for connecting to
the external Unix processes, the organization of the directories containing C source and object code
files for a program, and three other kinds of text files that are used to communicate with the other
Enterprisecomponents.

Graph, Event and Preference Files

A graph file describes a singenterpriseprogram. It specifies the hierarchical structure of
the assets, replication factors, compile and link options, and any user machine preferences. The
assets are listed in a depth-first order. For each asset there is a line with its name, type, replication
factor and options for ordering, debugging and optimization. If the asset has internal components
there is also a count of components. Following this are four lines that specify the compile, link
and run options. If the asset has components, these lines are followed by their descriptions in the
same format. Appendix A contains a description oBheerprisegraph file format.

Graph files are created and edited by the user-interface. When the user selS8etgsthe
Compile or Runcommands from th&nterpriseview menu, theenterpriseis asked to store a
representation of itself in a graph file whose name istiterprisename with a ".e" appended.

Each asset type knows how to write a description of itself and if it has components, it asks its
components to write themselves as well. Alternately, when the user wants to load a previously
saved program, the graph file is read and as it is parsed, assets are created and displayed t
represent the saved program.

The pre-compiler uses the information contained in a program's graph file to identify
procedure/function calls to assets and replaces them with message sends and receives. The rur

-12 - Enterprise Technical Report TR93-04

time executive uses the graph file to determine how many processes to launch, the execution role of
each process and the appropriate communication links between these processes.

Event files are created by the run-time executive's monitor process while a program is
running and are used later, to animate the program. The events they contain are described in more
detail in Section 4. Appendix B contains a description oEtiterpriseevent file format.

Enterprisemaintains a preferences file. When the user-interface first starts, it looks in the
current directory for a file nameHnterprise.prefs If the file exists, it is read and global
preferences are set from its contents. For example, the user's text editor is specified by a line of the
form EDITOR= editor name

Enterprise Directories for Managing Source Code

When a new program is creatdginterprisecreates a new sub-directory of the current
directory with the same name as the program. It then creates other sub-directories of this new
directory to organize the files used by the program. The following sub-directories are created:

Assets This directory holds the C source code for all of the assets. Each asset's code is
stored in a file ending with a ".e". The pre-compiler parses these files and produces
corresponding files ending with ".c". For example, the user's code for an asset
named Model will be stored inModel.e The pre-compiler produces the
corresponding fildviodel.c

Source This directory holds C source code for internal procedures used by assets.

Include This directory holds header files for all code in the Assets and Source directories.
TheEnterprisepre-compiler and the C compiler search this directory when processing
#include directives.

Data If the user specifies input and output files from the run parameters dialog box to re-
direct program input or output, they will be stored here.

Obj This directory holds sub-directories that contain the object ".0" files for each machine
type on the network. This feature is necessary to support the execution of
applications on a network of heterogeneous computers.

Bin All executable programs produced Byterprisewill be stored here. A separate
executable program is required for each type of computer on the network.

Sys This directory holds all of the system generated data files for the program, such as the
graph and event files.

- 13- Enterprise Technical Report TR93-04

External Processes

The user-interface launches external processes for compiling code, running a program and
(possibly) for editing code. The user may use a standard ST-80 editor or, when the user-interface
is running on Unix, a non-ST-80 editor may be selected. Several editors can be active at the same
time (one for each asset). If the ST-80 editor is used, no new process is launched. Instead, a newn
ST-80 window is created and the window is added to the list of active windows. It is given
control by the ST-80 interpreter whenever its window has the cursor. If an external editor is used,
an X window is created. The editor becomes an X windows task that executes concurrently with
the ST-80 interpreter.

The CompileandRuncommands are only usable with the Unix version of the user-interface
since the pre-compiler and executive currently require Unix. Both commands launch an external
process and establish communications with it. ST-80 simplifies this task by providing a
UnixProcessclass. A message is sent to this class specifying the name of a Unix program, an
array of arguments for the command and a block. The block is evaluated with the external process
as an argument. This provides a mechanism for referencing the process from ST-80 after it has
been created. When the message is sent, the process is created and two pipes are established, o
connected to the process' standard input and the other connected to both its standard output anc
standard error. These pipes are represented as ST-80 streams that are contained in the instance
ExternalConnectiothat is returned by the message.

The user can elect to compile and link the entire program or to compile part of the asset
hierarchy. In either case, if the program has been changed, the user-interface first writes out the
graph file. TheEnterprisepre-compiler process is then started and a window is created to display
all text that is sent to thEexternal Connectios output stream. The event polling loop in the
controller for theEnterpriseview monitors the stream. Whenever new text is available, it is
displayed in this window. If there is no new text, the polling loop just continues normally. The
user can interact with the system normally and may even cancel the compile. When the compile is
finished, the window is left open so that the user can review the compiler messages. Programs are
run in a similar manner except output is displayed in another window.

3.4 The Asset Inheritance Hierarchy

Section 3.2 described the way that assets are drawn and the approach relied heavily on
inheritance. In fact, inheritance is used extensively throughout the user-interface, but the asset
hierarchy can be used to illustrate its importance. The asset kinds form a natural inheritance graph
as shown in Figure 5. A solid triangle in the upper left corner of a class denotes an abstract
superclass as described in [WWW090]. The abstract dasgf is the root of the inheritance tree.
Universal responsibilities like naming are defined and implemented in this class.

-14 - Enterprise Technical Report TR93-04

‘ Asset

Codable

Replicable Deletable Expandable
Asset Asset Asset Asset

Receptionist Service Representative Addable Enterprise
Asset Asset Asset Asset Asset
Individual Department Line
Asset Asset Asset

Division
Asset

Figure 5: The asset inheritance graph.

Below theAssefclass is a level of abstract superclasses that define several responsibilities
that are shared by several of the leaf asset class€addbleAssehbas an external file of C source
code associated with it which can be edited and compilddephlcableAsseatan be replicated and
transformed to an asset of a different typeDéletableAsseatan be deleted from its parent asset.

An ExpandableAssdtas component assets so it can be expanded or collapsétidAbleAsset
can have components added to it after it has been created.

The rest of the asset classes are concrete subclass@eptionistAsséias code, but can't
be replicated, deleted, or expanded.RépresentativeAssbas code and can be replicated but
can't be deleted or expanded. WdividualAssets like aRepresentativeAsseatxcept that it be
deleted. ADivisionAssetis like anindividualAsset except that it can be expanded. A
ServiceAsséhas code and can be deleted, but it can't be replicated or expandedA&sebr
DepartmentAsseatan be replicated, deleted, or expanded, but has no codent@mpriseAsseis
expandable, has no code, can't be replicated and can't be deleted.

Unfortunately, ST-80 is restricted to tree inheritance so several compromises were made in
transforming this inheritance structure to a tree. The result is shown in Figure 6. A comparison of
Figures 5 and 6 illustrates clearly that support for multiple inheritance is essential for applications
with real-world models. The lack of multiple inheritance was the most difficult obstacle that
needed to be overcome in using ST-80 forBhterpriseproject.

-15- Enterprise Technical Report TR93-04

name
compile
replicate
coerce
delete

expand
collapse

Expandable
Asset

run
~delete
~replicate

~coerce
Individual Addable Enterprise
Asse Asset Asset
Service Receptionist Division
Asset Asset Asset

~replicate .

~coerce Department Line

Asset Asset

Figure 6: The asset inheritance tree.

ReplicableAsseindDeletableAssetere merged witsset The rounded rectangles contain
the main messages defined by each class and the symbol ~ means that a message was overridde
because it should not exist for a class. For exampleRéiceptionistAssetlass overrides the
replicate, coerce, and delete methods. Divesion class was made a subclas&rpandableAsset
instead ofindividualAsset The code editing methods were then re-implementBavisionAsset
In addition to these changes, thssetclass was made a subclass of the ST-80 pre-defined class
CompositeVievgo that all assets could inherit the behavior of visual objects that have sub-parts.

4. Program Animation

Enterpriseprogram animation is used to monitor a program's performance and to identify
parallel programming and logic errors at the message (asset) level. The user can examine the
amount of parallelism, when and where synchronization occurs, which machines are being used
and their load, the lengths of message queues, and the state of each process during execution
Currently, there are no debugging facilities for setting breakpoints or examining the values of
variables. Animation consists of displaying asset states, displaying messages as they move
between assets and displaying message queues.

Enterprisereplays execution of a program using an event file produced by an external Unix
event monitoring process that receives messages from the run-time executive. The interface
assumes that the events are partially ordered [Lam78] by the monitoring process. To support real-
time animation, it is possible to replace this file by a stream connection between the user-interface

- 16 - Enterprise Technical Report TR93-04

and event-monitoring processes. However, in this case, the animation system may be unable to
keep up with events. Therefore, replay is the preferred approach to animation.

During animation, the time between animation steps is proportional but not equal to the real
time program execution. The proportionality factor can be adjusted by the user to speed up or slow
down the animation. The user can also execute the animation one event at a time.

4.1 Animation View

When the user selectsnimatefrom theEnterpriseview menu, theEnterpriseview is
replaced by a\nimationview. TheAnimationview of the Simulation program is shown in
Figure 7 and th&nimationview of a recursivélphaBetasearch program is shown in Figure 8.

[J==——— Enterprise: Simulation (Animating) =——[EHE

Figure 7: TheAnimationview of the Simulation program.

-17 - Enterprise Technical Report TR93-04

E[J==———— Enterprise: AlphaBeta (Animating) =———-—[0zF =

A

]
alk
e T [Z]
IDLE Busé
oM ABA.2 AB.1.3
e
ABA.11 P laB112
vl

g

k2

.............. v

<] 1]

Figure 8: TheAnimationview of the AlphaBeta program.

Each replica from a replicated asset is displayed as a separate icon, messages and messag
gqueues are displayed as icons and animation commands appear in the asset, message queue a
Animationview menus. For example, the user can use an asset menu to open a monitoring
window that contains such information as the machine name for the asset and performance
information for that machine. Similarly, the user can use the message queue menu to examine the
details of messages that it contains. Finally, the view menu itself has choices for starting the
animation from the beginning, pausing or resuming the animation, single stepping through events,
setting the speed of the animation and replacind\ti@ation view by theEnterpriseview.

-18 - Enterprise Technical Report TR93-04

Assets can be collapsed and expanded inAthienation view to provide a clustering
mechanism [Tay92]. Clustering is a useful abstraction technique during debugging since it reduces
the clutter caused by displaying too much inappropriate detail and allows the user to focus on the
important relationships. For example, Figure 8 showvasion (enclosed by a wavy-line
rectangle) that containsraceptionist(AB.1) and aivisionwith a replication factor of three. The
left divisionis expanded to show its component assets while theitvigion assets on the right
are collapsed. Each of thedigisionscontains aeceptionistand arepresentativevith replication
factor of two. Arepresentatives a leaf node of a division hierarchy.

The Animation view displays two message queues. Incoming messages are queued in the
input queuabove the asset, and replies to previously sent messages are queuszbiy theee
to the right of the asset. These locations correspond to the logical structure of the user's code
where calls are received at the start of the code and replies are received in the body of the code.
Replicated assets share a common input queue that is displayed above and to the left of the
replicated assets. However, each replica has its own reply queue. Messages are represented b
icons that move along the paths between assets and into the message queues.

A message queue displays the number of messages it contains. When a message arrives at
gueue this number is incremented and when a message is removed from the queue to be processe
by an asset, the number is decremented. When the animation is active but stopped, the messag
gueue menu can be used to select any message it contains and to display its sender, paramete
values and any other information that is placed in the message event by the event logging process.

Replicas are named by appending an id number to the base asset name assigned by the use
The id numbers for each asset are generated in sequential order starting at 1. Replicas are
numbered left to right as shown in Figure 7. However, the replicasvision assets are
structured hierarchically instead of linearly as shown in Figure 8.

Figure 7 shows an animation of the simulation program at a specific point in time. Each asset
is eitherbusy(processing a task) adle (waiting for a message to invoke a taskjodel has just
sent its last message RolyConv and has become idle. The message appears Meaoel and
will move to PolyConvs input queue as the animation proceeds. CurrepdiyConvs input
gueue contains one message. HoweRelyConvhas just sent a messageSgit, completed its
previous invocation and is now idle. Therefore, the message in its input queue will be received
and removed from the queue, momentarily. At this péiotyConwwill change its state to busy.
The message th&olyConvsent toSplit will move left into the common input queue for the
replicated asset and increment the queue count to 3. Note that message queue icons show zero (n
visible icon), one (a single message icon) or many (a message icon with two others behind it)
messages. The number beside the queue icon indicates the exact count. Two of the Egltcated

-19- Enterprise Technical Report TR93-04

assetsSplit.1 andSplit.2 are currently busy. Howevegplit.3 has completed its task and is
currently idle. Since there are messages in the input queue waiting to be processed, a message i
moving from the queue tBplit.3

Figure 8 shows an animation of AfphaBetatree search program [MRS87] that illustrates
message replies. Note that in this example, the number of processes and the size of the messag
gueues have been reduced for brevity. This application was createddiysgign assets that
allows one to easily write parallel recursive divide-and-conquer applications. The application
consists of aivision that contains aeceptionist(AB.1) whose subordinatdivision has a
replication factor of three (AB.1.1, AB.1.2 and AB.1.3). Each subordihatsion contains a
receptionistwith a replicatedepresentative Two of these subordinativisions(AB.1.2 and
AB.1.3) have been collapsed, but the other (AB.1.1) is expanded.

At the moment represented in Figure 8, AB.1.1.2 has completed a task and replied to its
caller, AB.1.1. The reply message is shown on its way to the reply queue of AB.1.1.2. Note that
the message path of a reply begins at the bottom of the replying asset, corresponding to the
structure of an asset's code where the return statement is usually at the end.

4.2 States

At run-time, Enterpriseassets become processes. A process communicates with other
processes by sending messages. As an asset executes, it can be in one of four states: idle, bus
blocked, and dead. An asset changes state in response to events that affect it.

Idle An idle asset is one that is not currently executing. It is waiting to receive a message.
The next message sent to it will be received immediately.

Busy A busy asset is one that is executing code in response to a message from a caller
asset. It can send messages to other assets and receive replies from them, but canno
receive a message from another caller until it completes the active message. All
messages sent to it are put in its message queue.

Blocked A blocked asset is one that has stopped execution to wait for a reply to a message it
has sent. This occurs when an asset tries to access the return value from an asset call
that has not yet replied. All messages sent to it are put in its message queue.

Dead A dead asset is one that has stopped execution because of some kind of error. The
Enterpriseexecutive has determined that it can no longer communicate with any other
asset. The asset cannot send messages and ignores any messages sent to it.

The state of a collapsed asset is determined by the states of its components. If at least one
component is busy, the asset is busy. If no component is busy and at least one is blocked, the

- 20 - Enterprise Technical Report TR93-04

asset is blocked. If no component is busy or blocked and at least one is idle, the asset is idle.
Otherwise all of the components must be dead, so the asset is dead.

The state of an asset is indicated in Ammation view by one of two (user-selectable)
mechanisms: color or state name display. lcons for busy assets are green, icons for idle assets ar
yellow, icons for blocked assets are red and icons for dead assets are black.

4.3 Events

Assets change state in response to events that occur when the program is running. The event
logging process monitors programs as they run, identifies when important events occur, and writes
event records to an event file, maintaining the original partial ordering between the events. The
animation system reads the events from the event file and updates the display. Seven events are
supported: SentMsg, RcvdMsg, Block, SentReply, RcvdReply, DoneMsg and Die. Figure 9 is a
state-transition diagram that shows the relationship between the asset states (represented by circles
and the events (represented by arrows).

RcvdReply

DoneMsg ocken
ocke

Figure 9: The state transition diagram Eoterpriseassets.

The event file is an ASCII text file. Each event starts on a new line. It begins with the #
character and a space followed by an event type and its parameters separated by spaces and ent
with a new line character. An optional information string can follow on the next line. The
information string is displayed by the user-interface when the user inspects message contents.

Event parameters depend on event types. They include asset names, message tags an
integers representing times. Asset names are the names from the graph file with replica numbers
appended to them. Tags are integers that are used to associate SentMsg events with RcvdMs¢
events and SentReply events with RcvdReply events. Times are measured from some arbitrary
start time in milliseconds and refer to the time that the event was inserted into the event file. The
sequence of times must be monotonically non-decreasing.

-21- Enterprise Technical Report TR93-04

SentMsg

When the event logging process detects that an asset has sent a message to another asset,
inserts a SentMsg event in the event file. The information string contains the names and values of
all message parameters. During animation, a message moves from the sender to the input queue ¢
the receiver where the message count is incremented. The sender must be busy and it does nc
change state. The receiver does not change state.

RcvdMsg

When the event logging process detects that an asset has received a message and starte
processing the task that the message invokes, it inserts a RcvdMsg event in the event file. During
animation, the receiver decrements its input queue counter. The receiver then changes its state
from idle to busy.

DoneMsg

When the event logging process detects that an asset has finished executing a message, i
inserts a DoneMsg event in the event file. During animation, the receiver changes its state from
busy to idle.

SentReply

When the event logging process detects that an asset has has sent a reply message to it
caller, it inserts a SentReply event into the event file. The information string contains the names
and values of all message parameters. During animation, a message moves from the sender to thi
reply queue of the receiver and the message count is incremented. The sender asset must be in th
busy state but the receiver may either be busy or blocked.

RcvdReply

When the event logging process detects that an asset has accessed a message reply, it inser
a RcvdReply event into the event file. During animation, the message count in the reply queue is
decremented. The asset that receives a reply may either be busy or blocked. If the asset was
blocked with the same tag as the RcvdReply it becomes busy.

Block

When the event logging process detects that an asset has tried to access a result computed b
another asset, and the result is not available, it inserts a Block event into the event file. The Block
event includes a tag that indicates the reply it is waiting for. During animation, the asset state
changes from Busy to Blocked.

-22 - Enterprise Technical Report TR93-04

Die

If the event logging process determines that an asset is not responding for some reason, it
inserts a Die event into the event file. During animation, the asset becomes dead, but the message
gueues are not affected so that the user can examine them, after the event. The asset can be ar
state before this event.

4.4 The Animation Architecture

The object-oriented animation architecture is new and application independent. It has two
main components, one is asynchronous and the other is synchronous. The asynchronous
component has two responsibilities. It must process the events at the correct animation time.
However, since we want the user to be able to interact with the system during animation, it is also
responsible for user events as well. The synchronous component of the animation system is
responsible for animating messages.

The Asynchronous Component of the Animation Architecture

Several new classes were added to the user-interface to support animation and several
behaviors were added to the existing classes. Whefrtimeation view is displayed, the asset
graph is modified. Each replicated asset is wrapped in an instaReplafatedAssdhat contains
the original asset together with a list of replicas that are constructed by copying the original asset.
The copies are identical, except that each is given a different id number. As an animation proceeds,
the states of these replicas may diverge. The ReplicatedAsset is responsible for drawing the
connections between replicas, much EkgandableAssetio for their components.

Two new responsibilities are added in #k&setclass, knowing the input message queue and
knowing the reply message queue. Both queues are instances of the subcMessaggQuele
InputQueuaandReplyQueue A MessageQueusontains an ordered collection of messages, which
are instances of claddessage The display method iAssetchecks to see if animation is active
and if so, allocates room for the message queues when it computes its bounding rectangle. When
an asset is told to draw itself, it also tells its message queues to draw themselves.

Message queue selection is implemented by augmenting the message that is sent to an asset t
ask it for its sub-asset that contains the cursor point. An asset now considers its two queues as
candidates in addition to its component assetdVMiessageQueudetermines if it contains the
cursor point by testing if the point is within its screen extent.

An instance of clasBventQueués responsible for knowing the start time for an animation
and the events from an event file. It is created wheAtimation view is displayed. That is, to
speed up event processing, the event file is parsed and all events are created before the animatiol
begins. The animation start time is set when the user actually starts an animation.

-23 - Enterprise Technical Report TR93-04

When the event file is parsed and instances of élageationEvenare created, each event
time is translated to a time relative to the start time for its event queue. When the animation is
active, the control loop for the window sends a message to the program every time through the
loop. The program responds by telling the animation event queue to process its animation events.
The event queue processes its events in order until the event time plus the start time catches up tc
the current time. Control is then returned to the control loop which checks for user input. In this
way the animation system only takes control periodically and, when it does, only for a short time.
This allows users to interact with the system during an animation. For example, the user could
pause the animation.

Each animation event represents one event from the event file. In addition to the event time,
an animation event contains a collection of animation messages. Each of the animation messages
consists of a receiver asset, a message selector, and an array of arguments for the message. O1
event may translate into several animation messages. For example, a SentReply event translates t
two animation messages: one to tell the sending asset it has sent a reply and one to tell the receiving
asset it has been sent a reply. The set of messages for one event is treated as a transaction; if or
message is sent they all are. There is a subclass of the abstract supenolessonEventfor
each type of event. Each event sub-class need only implement creation messages. All other
messages are implementedAinimationEvent In addition, the asset classes implement methods
for each animation message sent by an animation event. The responsibilities include changing state,
updating message queues, and modifying the display.

Assets have input and reply message queues. Each queue contains an ordered collection of
messages. They are displayed either above or beside an asset. Messages move along the patl
between assets and into the queues in response to SentMsg and SentReply events. For a SentMs
event, a message moves from below the sending asset to just above the receiving asset and the
into its input queue. For a SentReply event, a message moves from below the replying asset to
just below the receiving asset and into its reply queue. Although messages must move different
distances on the display screen, these distances are not necessarily indicative of the actual
communication distances. Therefore a message moves from one asset to another in (user
adjustable) constant time. For example, with replicated assets, the replicas will be different
distances from the calling asset due to the wayBhtdrprisedisplays assets hierarchically. To
compensate, messages with longer screen travel distances move faster to maintain a constant time
interval.

Because the destination queue is part of the receiver, animating the message is actually done
by the receiver. When a SentMsg or a SentReply event occurs, the receiver is informed. The
receiver creates a message, inserts it into its message queue and marks it as pending, determine

- 24 - Enterprise Technical Report TR93-04

the path it must follow to move from the sender into its queue, and asks the message to animate
itself. When the message reaches the message queue, the receiver removes the pending mark ar
increments the counter for its message queue. The user can examine any message in a messag
gueue even if it is pending (the animation has not yet shown it reaching the queue).

A message is received when a RcvdMsg or a RcvdReply event occurs. The receiving asset
removes the message from its message queue. If the message is marked as pending, the receivt
also removes the message from the animation queue so it disappears at the next animation step. |
the message is not pending then the receiver decrements its message queue counter.

The Synchronous Component of the Animation Architecture

Animation of messages and busy assets are done synchronously. The program maintains an
instance ofAnimationQueuehat holds objects to be animated. When the program tells its event
gueue to process events, it also tells its animation queue to animate its objects. The animation
gueue checks to see if it is time to perform the next step of the animation and, if it is, sends an
animate message to every object in its queue. If it isn't time, the queue does nothing. The time
between steps is a constant. The class of each object in the queue must support the animate
message to perform one step of the animation.

A message in the animation queue animates itself by moving along a pre-computed path in
steps. The path was computed by the asset that created the message. This asset computed tf
location of the sender and receiver and computed a set of points along the path between them. The
path was stored in the message before the message was added to the animation queue. Whenevel
message receives an animate message, the message moves itself to the next point on its path, the
deletes the point from its path. If a message reaches the end of its path, it removes itself from the
animation queue, tells the receiver to mark it as not pending and tells the receiver to increment its
message queue counter.

5. Conclusions

This paper describes the object-oriented component oEtiterprise programming
environment for developing distributed applications that execute concurrently on a network of
workstations. These components provide a new anthropomorphic model for parallel computation.
The simplicity of this model:

1. makes it easier to learn than other models of parallel computation,

2. has allowed programmers to write parallel programs more quickly than with other models
and

-25 - Enterprise Technical Report TR93-04

3. has reduced the complexity of the user-interface and the Bifterprisecomponents so
they could be designed and implemented quickly.

Enterpriseincludes an animation component that:
1. has a new architecture that supports asynchronous and synchronous events,
2. is a valuable tool for understanding the complexity of parallel computations and
3. isindependent dEnterpriseso that it can used for other applications.

Our experience with the object-oriented componentEmkrprisehave also provided some
insights into the use of object-oriented computing in general and ST-80 in particular.

1. The advantages obtained from the extensive user-interface libraries of ST-80 outweigh the
perceived disadvantages. The efforts required to combine object-oriented user-interface
code with traditional C code were minimal. The execution time performance problems of
ST-80 are insignificant in user-interfaces, even though in this application the user-interface
is fairly CPU intensive during animation.

2. Although Smalltalk has not been used extensively to construct user-interfaces where object
motion is an important factor, tienterpriseexperience illustrates its power for such
applications.

3. The lack of support for multiple-inheritance is a significant problem in Smalltalk when the
application depends on a real-world analogy.

The success of thenterpriseproject is largely due to its object-oriented components. In
fact, several members of the research group who had severe doubts about the utility of the object-
oriented approach are now firmly committed to the use of object-oriented technology for user-
interfaces in particular and for embedded applications in general.

Acknowledgements

The Enterpriseproject has benefitted from the efforts of many people, including: Paul
Iglinski, Paul Lu, Ron Meleshko, lan Parsons, Carol Smith and Zhonghua Yang. This research
was supported in part by research grants from the Central Research Fund, University of Alberta,
the Natural Sciences and Engineering Research Council of Canada, grants OGP-8173 and 10788(
and a grant from IBM Canada.

- 26 - Enterprise Technical Report TR93-04

[GKM90]
[Lam78]

[LMP92]

[LPO1]

[LSWS6]

[LVC89]
[MRS87]
[Par93]
[Sun91]

[SSG91]

[SSW92]

[Tay92]

[WWWO0]

[You92]

Refer ences

J. Gettys, P. Karlton and S. McGregofi.he X Window System, Version Il
Software - Practice and Experience, Vol. 20, No. 2, pp. 35-67, 1990.

L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
CACM, Vol. 21, No. 7, pp. 558-565, 1978.

G. Lobe, P. Lu, S. Melax, I. Parsons, J. Schaeffer, C. Smith and D. Szafron. The
Enterprise Model for Developing Distributed Applications. Technical Report TR 92-
20, Dept. of Computing Science, University of Alberta, 1992.

W. LaLonde and J. Pugimside Smalltalk Volume .IIPrentice-Hall, Englewood
Cliffs N.J., 1991.

D. Lanovaz, D. Szafron and B. Wilkerson. The Synergism of Logic-Based
Programming and Software Engineering: A Programming Environment Approach.
CIPS Edmonton '87 Intelligence Integration Conference Proceedpms43-53,
November, 1987.

M.A. Linton, J.M. Vlissides and P.R. Calder. Composing User Interfaces with
InterViews.|I[EEE Computer,Vol. 22, No. 2, pp. 8-22, 1989.

T.A. Marsland, A. Reinefeld and J. Schaeffer. Low Overhead Alternatives to SSS*.
Artificial Intelligence, Vol. 31, No. 1, pp. 185-199, 1987.

I. Parsons. An Appraisal of the Enterprise Model. M.Sc. thesis, Dept. of Computing
Science, University of Alberta, 1992.

Sun Microsystems, IncOpenWindows DeskSet Reference Gui8en
Microsystems Inc., 1991.

A. Singh, J. Schaeffer and M. Green. A Template-Based Approach to the Generation
of Distributed Applications Using a Network of Workstatiol'SEE Transactions on
Parallel and Distributed System&/ol. 2, No. 1, pp. 52-67, 1991.

D. Szafron, J. Schaeffer, P.S. Wong, E. Chan, P. Lu and C. Smith. The Enterprise
Distributed Programming ModelProgramming Environments for Parallel
Computing N. Topham, R. Ibbett and T. Bemmerl, editors, Elsevier Science
Publishers, pp. 67-76, 1992.

D. Taylor. A Prototype Debugger for Hermedascon '92 IBM Canada Ltd,
Toronto, pp. 29 - 42, November, 1992.

R. Wirfs-Brock, B. Wilkerson and L. Wiendbesigning Object-Oriented Software
Prentice Hall, 1990.

D. Young.Object-Oriented Programming with C++ and OSF/Mot#rentice-Hall,
Englewood Cliffs N.J., 1992.

- 27 - Enterprise Technical Report TR93-04

Appendix A: The Enterprise Graph File Format
This appendix describes the format of Exeerprisegraph file using extended BNF notation.
Notation

<abcd>* nmeans 0 or nore occurrences of <abcd>

<abcd>+ neans 1 or nore occurrences of <abcd>
Syntax
<gr aph> = <asset>
<servi ce>*
<asset > = <npanme> <sinpType> <mi n> <max> <order> <debug> <opt >

<servi ce>

<opti ons>

<name> <conpType> <m n> <max> <order> <debug> <opt >

<chi | dcount >
<opti ons>
<asset >+

<name> servi ce <debug> <opt >

<opti ons>
<name> = <string>
<m n> = <positive integer>
<max> = <non-negative integer>
<or der > = ORDERED | UNORDERED
<debug> = DEBUG | NDEBUG
<opt > = OPTIM ZE | NOPTIM ZE
<si mpType> = individual | representative
<compType> = line | department | division

<chi | dcount >

<options>

<positive integer>

CFLAGS <fl ags>

EXTERNAL <l i brarylList>
| NCLUDE <mmachi nelLi st >
EXCLUDE <machi nelLi st >

<librarylList> = <string>
<machi neLi st > = <string>
<fl ags> = <string>

-28 -

Enterprise Technical Report TR93-04

Semantics

<gr aph>

A graph represents the entiEaterpriseprogram. It consists of an asset definition followed by 0

or more service definitions. The file can be parsed from top to bottom to perform a depth-first
traversal of the graph.

<asset >

An asset can either be simple or composite. Simple assets aréngitvidualsor representatives

Each is represented by one line containing information about the asset followed by 4 lines
containing information about options. Composite assets are represented in the same way as simple
assets except that they also specify a count of children and are followed by a definition for each
child.

<servi ce>

A serviceasset is represented in the same way as a simple asset, except that it cannot have &
replication factor or ordering option.

<nane>

A name may be used as the name of an asset or the base name for a C source file.

<m n> and <max>

These are the integers representing minimum and maximum replication factors. If they are both 1,
there is no replicationMin must be > 0 anthaxmust be 0 or >min. An asset will be replicated

at leasimin times and at moshaxtimes. If max is O, there is no fixed maximum and the asset is
replicated as many times as necessary to use all available processeag= Hin, an asset will

be replicated exactimin times.

<or der >

This flag indicates whether a replicated asset's return values are returned in the order that the asset
were called (ORDERED) or in the order that they finish (UNORDERED).

<debug>

This flag indicates whether an asset should be compiled using debug flags (DEBUG) or not
(NDEBUG). It may also be used to turn the debugger on and off for each asset.

<opt >

This flag indicates whether an asset should be compiled with optimization off (NOPTIMIZE) or on
(OPTIMIZE).

- 29 - Enterprise Technical Report TR93-04

<si mpType>

The type of a simple asset mustit@ividual or representative
<conpType>

The type of a composite asset muslifie departmenbr division

<chi | dcount >

Each composite asset hageeptionistand one or more children. Theceptionistis not explicitly
represented in the graph file. Each child asset is represented in the graph file.

<options>

Four lines give options for compiling, linking and executing each asset and all four lines must
appear. If an option does not apply to an asset, the rest of the line is left blank. The options are
treated as character strings by the interface. That is, they will not be parsed but will be passed to
the Enterpriseexecutive in the form that they are entered by the user. CFLAGS gives a list of
compile flags to use when compiling the asset. They are appended to the compile command by the
executive. EXTERNAL gives a list of external modules or libraries to be linked with an asset.
They are appended to the link command by the executive. INCLUDE gives a list of machines that
can execute an asset. If the list is present, the machines will be used instead of the machines in the
Enterprisemach_file. EXCLUDE gives a list of machines that are forbidden to execute an asset.
These will be excluded from the list in mach_file.

- 30 - Enterprise Technical Report TR93-04

Appendix B: The Enterprise Event File Format

This appendix describes the format of Breerpriseevent file using extended BNF notation.

Notation

<abcd>* nmeans 0 or
<abcd>+ neans 1 or

nore of <abcd>
nor e of <abcd>

alb means a or b
O is used for grouping
Syntax

<event Fi | e>

<event >

<sent Event >
<rcvdEvent >
<doneEvent >
<bl ockEvent >
<di eEvent >
<coment >
<asset Nanme>
<nmsgTag>
<evTi me>

<asset Base>

<asset Suffi x>

Semantics

<event Fil e>

<event >*

(<sentEvent> | <rcvdEvent> | <doneEvent> | <bl ockEvent>
| <di eEvent>) <evTi ne> <coment >*

(sentMsg | sentReply) <asset Nane> <asset Name> <nsgTag>
(rcvdMsg | rcvdReply) <asset Nanme> <asset Name> <nmsgTag>
doneMsg <asset Nanme>

bl ock <asset Nane> <nsgTag>

di e <asset Name>

<oneLi neO Fi | e>

<asset Base> <asset Suf fi x>+

<i nt eger >

<i nt eger >

<string>

<i nt eger >

An <event Fi | e> contains all of the events that were captured for one run of the program. It
consists of zero or more event records. The file is used to communicate between the run-time
executive and the animation system.

<event >

An <event > represents the occurrence of one run-time event. Because each event may span
multiple lines in the file, each must be prefixed with the # character. Events are generated in

-31- Enterprise Technical Report TR93-04

response to actions taken by the user's program. Each event record contains the time at which the
event occurred. The sequence of times must be non-decreasing.

<sent Event >

A <sent Event > can be either asent Msg> or a<sent Repl y>. A <sent Msg> IS generated
by an asset that has sent a message to another asseit Repl y> is generated by an asset that
has previously received a message from another asset and has just sent a reply for this message. |
both types, the record contains the name of the sending asset, the name of the receiving asset, an
the tag for the message. Following this line is an optional comment. The comment will be
displayed in the message when it is expanded by the user during an animation. Each line of
comment will be displayed on a separate line in the expanded message.

<rcvdEvent >

A <rcvdEvent > can be either ar cvdMsg> or a<r cvdRepl y>. A <rcvdMsg> iS generated
by an asset that has received a message from a caller and started to work on the task. A
<rcvdRepl y> IS generated by an asset that has accessed a reply from a previous call to another
asset. In both types, the record contains the name of the receiving asset, the name of the sendinc
asset, and the message tag. The tag must match the tag of a messaged(iey>) or reply (for
<r cvdRepl y>) that was previously sent.

<doneEvent >

A <doneEvent > is generated by an asset that has finished a task and become idle. If a reply
was sent, the asset must generateemt Repl y> event before thedoneEvent >. The event
record contains the name of the asset.

<bl ockEvent >

A <bl ockEvent > is generated by an asset when it tries to access the returned value of a
previously sent message and the reply is not yet available. The event record contains the name of
the blocking asset and the tag of the message that was sent and has not yet returned.

<di eEvent >

A <di eEvent > is generated by the run-time executive when it detects that an asset is no
longer responding to messages. The event record contains the name of the asset that has died.
<comment >

A <comment > is a string of characters with embedded spaces, ended by an end of line. It will
be displayed when its message is expanded by the user during an animation. The animation
system will not process the string in any way. The run-time executive is responsible for building
the string before writing it to the event file.

-32- Enterprise Technical Report TR93-04

<asset Name>

An <asset Name> IS a string that matches the name of one of the assets in the graph,
including its number suffix. An assetasset Name> is unique within a program, even when
replicas are considered. Thasset Nane>is built by appending its number suffix to the base name
assigned by the user. Its base name consists of its parents name and its number suffix consists o
a '." and its replica number. The root asset just appends a '.1' to its base name. Assets that are nc
replicated have replica numbers of 1. Replicas of replicated assets are numbered left to right within
their parent, starting at 1. When an asset is replicated, it becomes a manager for its replicas. The
manager takes the place of the original non-replicated asset in the graph and is the parent for the
replicas. For example, consider a line of two assets, A and B. B is replicated twice. Then A will
have assetName A.1, and B will become a manager with assetName B.1 There will be two
replicas of B created that will have the manager B.1 as their parent. They will have assetNames
B.1.1 and B.1.2

<nsgTag>

A <nsgTag> is an integer that uniquely identifies a message. Message tags are used to
associate message replies and message blocks with message sends.
<evTi nme>

An<evTi ne> is an integer time measured from some arbitrary start time.

Notes

1. The sender is not actually required irravdEvent > since the tag can be used to find the
correspondingssent Event > that contains the sender. However, it is more convenient to
include it.

2. When a manager forwards a message to a replica, it must ensure that the replica replies to
the original sender and not to the manager. However, the event record must be a
<sent Msg> from the manager to the receiver so that the animation system animates the
message from the shared replica queue to the replica. That is, the sequence of events for
asset A calling replicated asset B and its reply must be:

sentMsg A.1 B.1 tagl (A. 1 sends to manager)

rvcdMsg B. 1 tagl (rmanager receives nsQ)

sentMsg B.1 B. 1.1 tag2 (rmanager forwards nsg to B.1.1)
rcvdMsg B. 1.1 tag2 (B. 1.1 recei ves nmessage)
sentReply B.1.1 A1 tag3 (B.1.1 replies to A 1 directly)
doneMsg B. 1.1 (B.1.1 is finished executing)
rcvdReply A. 1 tag3 (A. 1 uses the result)

-33- Enterprise Technical Report TR93-04

