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Observation of nonlinear self-trapping in
triangular photonic lattices
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We experimentally study light self-trapping in triangular photonic lattices induced optically in nonlinear
photorefractive crystals. We observe the formation of two-dimensional discrete and gap spatial solitons origi-
nating from the first and second bands of the linear transmission spectrum. © 2007 Optical Society of
America
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Photonic crystals are expected to find many applica-
tions in modern optical technologies because of their
unique properties arising from the effects of micro-
periodicity. In particular, the photonic bandgaps al-
low one to strongly modify and even suppress the
propagation of light in certain directions and at cer-
tain frequencies.1 Therefore photonic crystals and pe-
riodic structures in general offer a wealth of new pos-
sibilities to efficiently manipulate the flow of light in
optical systems.

Two-dimensional (2D) periodic structures can be
fabricated in various geometries. Among them trian-
gular lattices are known to support larger bandgaps,
and therefore most of the currently fabricated planar
photonic crystal structures possess the triangular
lattice symmetry. Furthermore, the same geometry
appears naturally in the stacking method fabrication
of photonic crystal fibers.2

Embedding structural defects into otherwise regu-
lar periodic structures allows for the realization of
photonic crystal waveguides3 and fibers, and high-Q
optical cavities.4 In these devices light is bound to a
lattice defect by modified total internal reflection or
Bragg reflection from the surrounding periodic struc-
ture. Efficient trapping, however, requires careful en-
gineering and fabrication of the periodic structure as
well as the embedded defects, and this typically rep-
resents a limiting factor in the realization of such de-
vices.

Alternatively, beam self-trapping can be used to
dynamically introduce refractive index defects in lat-
tice structures with a strong nonlinear response, re-
sulting in the formation of spatial lattice solitons.5

This approach avoids the need for structural defects
to trap the light, and shows inherent advantages for
all-optical applications. Nonlinear directional
transport6 and immobile localizations7,8 were re-
cently demonstrated experimentally in square lat-
tices. However, such effects remain largely unex-
ploited in triangular lattices. In this Letter we report
what we believe to be the first experimental study of
light self-trapping in triangular lattices in the form

5
of discrete and gap solitons, which can be considered
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a nonlinear equivalent of high-Q cavities in photonic
crystals.

In our experiment we optically induce a 2D trian-
gular lattice in a biased photorefractive SBN:60 crys-
tal by interfering three ordinarily polarized broad
beams from a frequency-doubled Nd:YVO4 cw laser.
The experimental setup resembles those described
earlier.6,9 Because of strong electro-optic anisotropy
the lattice writing beams propagate linearly in the
crystal, while extraordinarily polarized probe beams
simultaneously experience the induced periodic po-
tential and a strong photorefractive self-focusing
nonlinearity.10

The propagation of an optical beam along the tri-
angular lattice is governed by the parabolic equation
for the slowly varying amplitude of the electric
field7,9,10

Fig. 1. (Color online) (a) Lattice unit cell in Fourier space;
(b) Bloch-wave dispersion along the contour passing
through the high-symmetry points marked in (a); (c) refrac-
tive index profile of the triangular lattice; (d), (e) Bloch
waves corresponding to the � and Y points in (a) and (b); (d)
intensity at the � point of the first band; (e), (f) intensity

and phase at the Y point of the second band.
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where x and z are the transverse and propagation co-
ordinates normalized to the characteristic values xs
=1 �m and zs=1 mm, respectively; D=zs� / �4�n0xs

2�
is the diffraction coefficient; � is the wavelength in
vacuum; and n0 is the average refractive index of the
medium. The function F�x ,y , �E�2�=−��Ib+Ip�x ,y�
+ �E�2�−1 characterizes the total refractive index
modulation induced by the optical lattice and the
probe beam. Here, Ib=1 is the normalized constant
dark irradiance, Ip�x ,y�=Ig�exp�ikx�+exp�−ikx /2
− iky�3/2�+exp�−ikx /2+ iky�3/2��2 is the three-wave
interference pattern that induces a triangular lattice
[see Fig. 1(c)] with period along the x axis d
=4� / �3k�, Ig is the lattice intensity, and � is a nonlin-
ear coefficient proportional to the applied dc field.11

The parameters are chosen to match the experimen-
tal conditions: n0=2.35 is the refractive index of the
bulk photorefractive crystal, �=532 nm is the laser
wavelength in vacuum, the lattice period is d
=23 �m or d=30 �m, �=2.36, and Ig=0.49. The ap-
plied electric field is 5 kV/cm.

Light propagation in the linear regime is charac-
terized by the spatially extended eigenmodes or
Bloch waves.1 The Bloch waves are found as solu-
tions of the linearized equation (1) in the form E
=��x ,y�exp�i�z+ iKxx+ iKyy�, where ��x ,y� possesses
the same periodicity as the underlying lattice. The
dispersion relations ��Kx ,Ky� are periodic and fully
defined by their values in the first irreducible Bril-
louin zone,12 shown in Fig. 1(a). The calculated band-

Fig. 2. (Color online) Experimental images of (a) triangu-
lar lattice (period 23 �m), (b) single-beam input intensity
distribution, and (c) Fourier spectrum of input and lattice
beams. In (a) and (b) the dashed hexagon indicates the lat-
tice unit cell, and in (c) the edge of the first Brillouin zone
as defined by the three lattice beams. (d), (e) Measured lin-
ear discrete diffraction and nonlinear self-trapping, respec-
tively, from the top of the first band. The plot dimensions
are 150 �m along both x and y. (f) Numerically calculated
intensity of discrete soliton.
gap spectrum is shown in Fig. 1(b) for lattice period
d=30 �m. The lattice exhibits a full 2D bandgap for
typical experimental parameters.

In a self-focusing medium, the nonlinear response
increases the beam propagation constant, shifting it
inside the gaps for modes associated with the top of
the dispersion bands (i.e., points with maximum �),
and allowing for the formation of self-trapped waves
or spatial solitons.5 In a triangular lattice, self-
trapping can occur in the form of discrete
solitons,10,13 originating from the � point at the top of
the first band (edge of total internal reflection gap),
and gap solitons,14 originating from the Y point at the
top of the second band (edge of Bragg reflection gap)
[see Fig. 1(b)].

To excite both types of self-trapped waves in the ex-
periment, we shape the probe beams so as to approxi-
mate the symmetry of the Bloch waves associated
with the corresponding points in the linear transmis-
sion spectrum. The calculated Bloch wave at the top
of the first band (� point) is shown in Fig. 1(d). It ex-
hibits a strong intensity modulation with peaks coin-
ciding with those of the lattice [see Fig. 1(d)], and a
constant phase in the transverse plane. This funda-
mental Bloch wave is excited by a Gaussian beam fo-
cused onto a single lattice site at the input face of the
crystal [Figs. 2(a) and 2(b)]. The spectral components
of the input beam are centered around the � point in

Fig. 3. (Color online) Experimental images of (a) two-
beam input intensity distribution, (b) Fourier spectrum of
input and lattice beams, and (c) linear second band Bloch
wave at the crystal output. In (b) the dashed hexagon indi-
cates the edge of the first Brillouin zone, and in (c) the lat-
tice unit cell. (d), (e) Measured linear diffraction [as in (c)]
and nonlinear self-trapping, respectively, from the top of
the second band. The plot dimensions are 150 �m along x
and 200 �m along y. (f) Measured phase interferogram for
the self-trapped beam in (e). (g), (h) Numerically calculated
gap soliton intensity distribution and phase, respectively.

The lattice period is 30 �m.
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Fourier space [Figs. 1(a) and 2(c)]. At low laser power
�10 nW� the beam experiences characteristic discrete
diffraction,15 and most of the light is coupled out of
the central lattice site upon propagation, as shown in
the 3D plot of the output beam intensity distribution
in Fig. 2(d). At high laser power �1 �W�, on the other
hand, the beam localizes at the central lattice site
[see Fig. 2(e)], resembling the discrete soliton theo-
retically predicted for such lattices.10,13 The soliton
profile calculated numerically for our experimental
conditions is shown in Fig. 2(f), and the agreement
with the observation in Fig. 2(e) is good.

The calculated Bloch wave associated with the Y
point at the top of the second band is shown in Figs.
1(e) and 1(f). It has a more complex intensity and
phase structure and represents a state with a re-
duced symmetry. The phase structure of the second
band wave is staggered in the vertical direction with
a �-phase jump between each zigzag-shaped inten-
sity band extending in the horizontal direction. The
intensity peaks are positioned off center with respect
to the lattice sites.

The second band wave is excited experimentally by
a two-beam interference pattern with a staggered
phase structure along the vertical direction [Fig.
3(a)]. The period of the interference fringes is
matched to that of the corresponding Bloch wave,
and the spectral components of the two input beams
are centered around the Y point in Fourier space
[Figs. 1(a) and 3(b)]. Despite the rather crude ap-
proximation to the Bloch wave profile, the second
band wave is successfully excited in the experiment,
as seen in Fig. 3(c), which shows the central part of
the linear output.

At low power the second band wave strongly dif-
fracts in the lattice [Fig. 3(d)], while at high power it
localizes to almost a single lattice site with two out-
of-phase and off-center lobes, thus preserving the
Bloch wave symmetry. This is verified by interfero-
metric measurements revealing a clear �-phase jump
at the center of the localized beam [Fig. 3(f)]. Nu-
merical calculations confirm the observed intensity
[Fig. 3(g)] and phase [Fig. 3(h)] structure of the local-
ized beam. Again we find that observations agree
well with theory, although the symmetry of the ob-
served second band wave appears to be slightly ro-
tated at the crystal output. Such a rotation can be as-
sociated with mode transformation to a different
family of gap solitons originating from the J point of
the second spectral band14 [Figs. 1(a) and 1(b)],
where the phase structure at the soliton core is ro-
tated by 30° compared with the Y state. According to
numerical calculations, the internal energies of the Y
and J gap solitons are similar under our experimen-
tal conditions, and transformation between these
states could therefore be induced by a small input
beam asymmetry. On the other hand, we find that the
nonlinear gap state remains strongly trapped at the
central lattice site subject to small variations in the
tilt of the input beams. The observed immobility
demonstrates a different regime of soliton dynamics
compared with the previously reported strong direc-
tional mobility of reduced-symmetry gap solitons in
square lattices.6

In conclusion, we have experimentally demon-
strated light self-trapping and the formation of 2D
discrete and gap spatial solitons in optically induced
triangular photonic lattices. We believe that our re-
sults may be useful for other types of nonlinear peri-
odic structures with similar geometry such as planar
photonic crystals and microstructured optical fibers.
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