The \textit{b}-Chromatic Number of Corona Graphs*

\textsc{Vernold Vivin.J}
Department of Mathematics,
University College of Engineering Nagercoil,
Anna University of Technology Tirunelveli,
Nagercoil - 629 004,
Tamil Nadu,
India.
e-mail: vernoldvivin@yahoo.in

\textsc{Venkatachalam.M}
Department of Mathematics,
RVS Faculty of Engineering,
RVS Educational Trust’s Group of Institutions,
Coimbatore - 641 402,
Tamil Nadu,
India.
e-mail: venkatmaths@gmail.com

\textbf{Abstract}

A \textit{b}-coloring of a graph \(G\) is a proper coloring of the vertices of \(G\) such that there exists a vertex in each color class joined to at least one vertex in each other color class. The \textit{b}-chromatic number of a graph \(G\), denoted by \(\varphi(G)\), is the maximal integer \(k\) such that \(G\) may have a \textit{b}-coloring with \(k\) colors. This parameter has been defined by Irving and Manlove [5]. They proved that determining \(\varphi(G)\) is NP-hard in general and polynomial for trees. In this paper, we find that the \textit{b}-chromatic number on corona graph of any graph \(G\) with path \(P_n\), cycle \(C_n\) and complete graph \(K_n\). Finally, we generalized the \textit{b}-chromatic number on corona graph of any two graphs, each one on \(n\) vertices.

\textbf{Keywords:} \textit{b}-chromatic number, \textit{b}-monotonic, \textit{b}-continuous, corona

* Utilitas Mathematica 88(2012), pp.299-307
The \(b \)-chromatic number \(\phi(G) \) [5, 7, 8] of a graph \(G \) is the largest positive integer \(k \) such that \(G \) admits a proper \(k \)-coloring in which every color class has a representative adjacent to at least one vertex in each of the other color classes. Such a coloring is called a \(b \)-coloring. This concept of \(b \)-chromatic number was introduced in 1999 by Irving and Manlove [5], who proved that determining \(\phi(G) \) is NP-hard in general and polynomial for trees.

Effantin and Kheddouci studied [1, 2, 3] the \(b \)-chromatic number for the powers of paths, cycles, complete binary trees, and complete caterpillars.

It has been proved in [6] by showing that if \(G \) is a \(d \)-regular graph with girth 5 and without cycles of length 6, then \(\phi(G) = d + 1 \).

Recently, motivated by the works of Sandi Klavžar and Marko Jakovac [7], who proved that the \(b \)-chromatic number of cubic graphs is four with the exception of Petersen graph, \(K_3, 3 \), prism over \(K_3 \), and sporadic with 10 vertices.

The corona of two graphs \(G_1 \) and \(G_2 \) is the graph \(G = G_1 \circ G_2 \) formed from one copy of \(G_1 \) and \(|V(G_1)| \) copies of \(G_2 \) where the \(i \)th vertex of \(G_1 \) is adjacent to every vertex in the \(i \)th copy of \(G_2 \).

2 Motivation

F. Bonomo et al., [4] defined that a graph \(G \) to be \(b \)-monotonic if \(\phi(H_1) \geq \phi(H_2) \) for every induced subgraph \(H_1 \) of \(G \), and every induced subgraph \(H_2 \) of \(H_1 \).

A graph \(G \) is defined to be \(b \)-continuous [4] if it admits a \(b \)-coloring with \(t \) colors, for every \(t = \chi(G), \ldots, \phi(G) \).

In this present paper, we investigate the \(b \)-chromatic number on corona graph of any two graphs, each one on \(n \) vertices. As a motivation, this work will be extended by the authors to investigate the \(b \)-continuous and \(b \)-monotonic for the generalization of corona graphs.
3 b-chromatic number on corona graph of any graph with path

Theorem 3.1. Let G be a simple graph on n vertices. Then

$$\varphi(G \circ P_n) = \begin{cases}
 n + 1; & \text{for } n \leq 3, \\
 n; & \text{for } n > 3.
\end{cases}$$

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $V(P_n) = \{u_1, u_2, \ldots, u_n\}$. Let $V(G \circ P_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_{ij} : 1 \leq i \leq n; 1 \leq j \leq n\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of P_n, i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \leq j \leq n\}$.

Assign the following n-coloring for $G \circ P_n$ as b-chromatic:

- For $1 \leq i \leq n$, assign the color c_i to v_i.
- For $1 \leq i \leq n$, assign the color c_i to u_{1i}, $\forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_i to u_{2i}, $\forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_i to u_{3i}, $\forall i \neq 3$.
- For $1 \leq i \leq n$, assign the color c_i to u_{4i}, $\forall i \neq 4$.

- For $1 \leq i \leq n$, assign the color c_i to u_{ni}, $\forall i \neq n$.
- For $1 \leq i \leq n$, assign to vertex u_{ni}, one of allowed colors - such color exists, because $2 \leq \deg(u_{ni}) \leq 3$ and $n > 3$.

Let us assume that $\varphi(G \circ P_n)$ is greater than n, i.e. $\varphi(G \circ P_n) = n + 1$, $\forall n > 3$, there must be at least $n + 1$ vertices of degree n in $G \circ P_n$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v_1, v_2, \ldots, v_n, since there are only ones with degree at least n. This is the contradiction, b-coloring with $n + 1$ colors is impossible. Thus, we have $\varphi(G \circ P_n) \leq n$. Hence, $\varphi(G \circ P_n) = n, \forall n > 3$.

Note that $\varphi(G \circ P_1) = 2$ for graph G on one vertex and $\varphi(G \circ P_2) = 3$ for graph G on two vertices. Indeed, let us notice that such graph $G \circ P_2$ inculdes K_3. Now, let us define b-coloring of $G \circ P_3(|V(G)|) = 3$ with four colors in the following way: for $1 \leq i \leq 3$, assign the color c_i to v_i, for
1 \leq l \leq 3$, assign the color c_l to u_{1l}, $\forall l \neq 1$, for $1 \leq l \leq 3$, assign the color c_l to u_{2l}, $\forall l \neq 2$, for $1 \leq l \leq 3$, assign the color c_l to u_{3l}, $\forall l \neq 3$ and for $1 \leq l \leq 3$, assign the color c_4 to u_{4l}. Therefore, $\varphi(G \circ P_3) \geq 4$. Let us assume that $\varphi(G \circ P_3)$ is greater than 4, i.e. $\varphi(G \circ P_3) = 5$, there must be at least 5 vertices of degree 4 in $G \circ P_3$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v_1, v_2 and v_3, since these are only ones with degree at least 4. This is the contradiction, b-coloring with 5 colors is impossible. Thus, we have $\varphi(G \circ P_3) \leq 4$. Therefore, $\varphi(G \circ P_3) = 4$. Hence, $\varphi(G \circ P_n) = n + 1$, $\forall n \leq 3$.

Figure 3.1: b-coloring of $G \circ P_3$ with four colors for $G = P_3$.

4 \hspace{1em} \textbf{b-chromatic number on corona graph of any graph with cycle}

\textbf{Theorem 4.1.} Let G be a simple graph on n vertices, $n > 3$. Then

$$\varphi(G \circ C_n) = n.$$

\textit{Proof.} Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $V(C_n) = \{u_1, u_2, \ldots, u_n\}$. Let $V(G \circ C_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_{ij} : 1 \leq i \leq n; 1 \leq j \leq n\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of C_n, i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \leq j \leq n\}$.

Assign the following n-coloring for $G \circ C_n$ as b-chromatic:

- For $1 \leq i \leq n$, assign the color c_i to v_i.
- For $1 \leq i \leq n$, assign the color c_i to u_{1i}, $\forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_i to u_{2i}, $\forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_i to u_{3i}, $\forall i \neq 3$.
For $1 \leq i \leq n$, assign the color c_i to u_{4i}, $\forall i \neq 4$.

For $1 \leq i \leq n$, assign the color c_i to u_{ni}, $\forall i \neq n$.

For $1 \leq i \leq n$, assign to vertex u_{ii} one of allowed colors - such color exists, because $\text{deg}(u_{ii}) = 3$ and $n > 3$.

Therefore, $\varphi(G \circ C_n) \geq n$. Let us assume that $\varphi(G \circ C_n)$ is greater than n, i.e., $\varphi(G \circ C_n) = n + 1$, $\forall n > 3$, there must be at least $n + 1$ vertices of degree n in $G \circ C_n$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v_1, v_2, \ldots, v_n, since these are only ones with degree at least n. This is the contradiction, b-coloring with $n + 1$ colors is impossible. Thus, we have $\varphi(G \circ C_n) \leq n$. Hence, $\varphi(G \circ C_n) = n$, $\forall n > 3$. Note that $\varphi(G \circ C_3) = 4$, since graph $G \circ C_3$ includes graph K_4.

Figure 4.2: b-coloring of $G \circ C_3$ with four colors for $G = P_3$

5 b-chromatic number on corona graph of any graph with complete graph

Theorem 5.1. Let G be a simple graph on n vertices. Then

$$\varphi(G \circ K_n) = n + 1.$$

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $V(K_n) = \{u_1, u_2, \ldots, u_n\}$. Let $V(G \circ K_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_{ij} : 1 \leq i \leq n; 1 \leq j \leq n\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of K_n. i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set
\{u_{ij} : 1 \leq j \leq n\}.

Assign the following \(n + 1\)-coloring for \(G \circ K_n\) as \(b\)-chromatic:

- For \(1 \leq i \leq n\), assign the color \(c_i\) to \(v_i\).
- For \(1 \leq l \leq n\), assign color \(c_l\) to \(u_{1l}\), \(\forall l \neq 1\).
- For \(1 \leq l \leq n\), assign color \(c_l\) to \(u_{2l}\), \(\forall l \neq 2\).
- For \(1 \leq l \leq n\), assign color \(c_l\) to \(u_{3l}\), \(\forall l \neq 3\).
- For \(1 \leq l \leq n\), assign color \(c_l\) to \(u_{4l}\), \(\forall l \neq 4\).
- For \(1 \leq l \leq n\), assign color \(c_l\) to \(u_{nl}\), \(\forall l \neq n\).
- For \(1 \leq l \leq n\), assign the color \(c_l\) to \(u_{nl}\).

Therefore, \(\varphi(G \circ K_n) \geq n + 1\).

Let us assume that \(\varphi(G \circ K_n)\) is greater than \(n + 1\), i.e., \(\varphi(G \circ K_n) = n + 2\), there must be at least \(n + 2\) vertices of degree \(n + 1\) in \(G \circ K_n\), all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices \(v_1, v_2, \ldots v_n\), since these are only ones with degree at least \(n + 1\). This is the contradiction, \(b\)-coloring with \(n + 2\) colors is impossible. Thus, we have \(\varphi(G \circ K_n) \leq n + 1\). Hence, \(\varphi(G \circ K_n) = n + 1\). \(\square\)

6 \(b\)-chromatic number on corona graph of star graph with path

Theorem 6.1. Let \(n\) be a positive integer. Then

\[
\varphi(K_{1,n} \circ P_n) = n + 1.
\]

Proof. Let \(V(K_{1,n}) = \{v_1, v_2, \ldots, v_{n+1}\}\) and \(V(P_n) = \{u_1, u_2, \ldots, u_n\}\). By the definition of star graph, \(v_1\) is adjacent to each \(\{v_i : 2 \leq i \leq n\}\). Let \(V(K_{1,n} \circ P_n) = \{v_i : 1 \leq i \leq n + 1\} \cup \{u_{ij} : 1 \leq i \leq n + 1; 1 \leq j \leq n\}\). By the definition of corona graph, each vertex of \(K_{1,n}\) is adjacent to every vertex of a copy of \(P_n\), i.e., every vertex \(v_i \in V(G)\) is adjacent to every vertex from the set \(\{u_{ij} : 1 \leq j \leq n\}\).

Assign the following \(n + 1\)-coloring for \(K_{1,n} \circ P_n\) as \(b\)-chromatic:
• For $1 \leq i \leq n + 1$, assign the color c_i to v_i.
• For $1 \leq l \leq n$, assign color c_l to u_{1l}, $\forall \ l \neq 1$.
• For $1 \leq l \leq n$, assign color c_l to u_{2l}, $\forall \ l \neq 2$.
• For $1 \leq l \leq n$, assign color c_l to u_{3l}, $\forall \ l \neq 3$.
• For $1 \leq l \leq n$, assign color c_l to u_{4l}, $\forall \ l \neq 4$.

Therefore, $\varphi(K_{1,n} \circ P_n) \geq n + 1$.

Let us assume that $\varphi(K_{1,n} \circ P_n)$ is greater than $n + 1$, i.e., $\varphi(K_{1,n} \circ P_n) = n + 2$, there must be at least $n + 2$ vertices of degree $n + 1$ in $K_{1,n} \circ P_n$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v, v_1, v_2, \ldots, v_n, since these are only ones with degree at least $n + 1$. This is the contradiction, b-coloring with $n + 2$ colors is impossible. Thus, we have $\varphi(K_{1,n} \circ P_n) \leq n + 1$. Hence, $\varphi(K_{1,n} \circ P_n) = n + 1$.

7 Generalization of b-chromatic number on corona graph of any two graphs

Theorem 7.1. Let G and H be simple graphs, each one on n vertices. Then

$$\varphi(G \circ H) = \begin{cases} n; \text{ if } \Delta(H) < n - 1, \\ n + 1; \text{ if } \Delta(H) = n - 1. \end{cases}$$

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $V(H) = \{u_1, u_2, \ldots, u_n\}$. Let $V(G \circ H) = \{v_i : 1 \leq i \leq n\} \cup \{u_{ij} : 1 \leq i \leq n; 1 \leq j \leq n\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of H, i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \leq j \leq n\}$.

7
Let us rename vertices in ith copy of H in $G \circ H$, $i = 1, 2, \ldots, n$, in such a way that a vertex of maximum degree has a label u_{ii}.

Assign the following coloring for $G \circ H$ as b-chromatic:

- For $1 \leq i \leq n$, assign the color c_i to v_i.
- For $1 \leq i \leq n$, assign the color c_i to u_{1i}, \forall $i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_i to u_{2i}, \forall $i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_i to u_{3i}, \forall $i \neq 3$.
- For $1 \leq i \leq n$, assign the color c_i to u_{4i}, \forall $i \neq 4$.
- For $1 \leq i \leq n$, assign the color c_i to u_{ni}, \forall $i \neq n$.

The following cases completes the proof:

Case (i): $\Delta(H) < n - 1$

For $1 \leq i \leq n$, assign to vertex u_{ii} one of allowed colors - such color exists, because $1 \leq \deg(u_{ii}) < n - 1$. Therefore, $\varphi(G \circ H) \geq n$.

Let us assume that $\varphi(G \circ H)$ is greater than n, i.e., $\varphi(G \circ H) = n + 1$, there must be at least $n + 1$ vertices of degree n in $G \circ H$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v_1, v_2, \ldots, v_n, since these are only ones with degree at least n. This is the contradiction, b-coloring with $n + 1$ colors is impossible. Thus, we have $\varphi(G \circ H) \leq n$. Hence, $\varphi(G \circ H) = n$, if $\Delta(H) < n - 1$.

Case (ii): $\Delta(H) = n - 1$

For $1 \leq i \leq n$, assign the color c_{n+1} to u_{ii}. Therefore, $\varphi(G \circ H) \geq n + 1$.

Let us assume that $\varphi(G \circ H)$ is greater than $n + 1$, i.e., $\varphi(G \circ H) = n + 2$, there must be at least $n + 2$ vertices of degree $n + 1$ in $G \circ H$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v_1, v_2, \ldots, v_n, since these are only ones with degree at least n. This is the contradiction, b-coloring with $n + 2$ colors is impossible. Thus, we have $\varphi(G \circ H) \leq n + 1$. Hence, $\varphi(G \circ H) = n + 1$, if $\Delta(H) = n - 1$.

\[\square\]
Figure 7.1: \(b\)-coloring of \(G \circ H = P_6 \circ W_6\) with seven colors. The case where \(\Delta(H) = n - 1\).

Acknowledgements

The present version of this paper owes much to the excellent comments, corrections, valuable suggestions, typographical errors and kind remarks of the learned referee.

References

