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Abstract
We have implemented a hybrid cellular automata (HCA) model based upon the structure of human
prostate that recapitulates key interactions in nascent tumor foci between tumor cells and adjacent
stroma. Model simulations demonstrate how stochastic interactions between tumor cells and stroma
may lead to; a structural suppression of tumor growth, modest proliferation, or, unopposed tumor
growth. The model incorporates key aspects of prostate tumor progression including TGF-β and
matrix degrading enzyme (MDE) activity, and stromal activation. It also examines the importance
of TGF-β during tumor progression and the role of stromal cell density in regulating tumour growth.
The validity of one of the model’s key predictions concerning the effect of epithelial TGF-β
production on glandular stability was tested in vivo. These experimental results confirmed the ability
of the model to generate testable biological predictions in addition to providing new avenues of
experimental interest. This work underscores the need for more pathologically representative models
to cooperatively drive computational and biological modelling, which together could eventually lead
to more accurate diagnoses and treatments of prostate cancer.

Introduction
Cellular automata (CA) models have been used to examine 3-dimensional growth as well as
the response to radiation treatment of brain tumors such as glioblastoma multiforme (1,2) with
results that agreed well with clinical imaging data. Increasingly, CA models have been applied
to more complex tumor growth and treatment problems (3,4). For example, computational
models have been shown to be capable of both selecting effective treatments and screening out
ineffective treatments for lethal melanomas and GBM (5).

Computational models of avascular and vascular tumors have been extensively reported and
reviewed previously (6,7). Such models have been used to demonstrate how harsh growth
conditions such as hypoxia can promote evolution of invasive tumors and the results have been
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related in a preliminary manner to in vitro and in vivo tumor growth experiments (8). Tumor
growth models reported in the literature also consider the role of nutrients, oxygen, necrosis
at low pH, aggregation kinetics in the growth, genetic and phenotypical evolution, and
morphology of the growing tumor (7,9). Discrete cell simulations are typically validated by
carefully controlled in vitro experiments (10) because they can be designed to effectively
collect the vast amount of information associated with computational models.

CA models are based on discrete representation of space and time on a lattice where only
neighbouring lattice elements interact. One variant of the CA method is the Hybrid discrete
continuous CA (HCA), where continuous equations and discrete elements are solved together
on the same grid. A number of other tumor types have been accurately modeled using such
methods. HCA models have been extensively described in the literature (8,11–14). Although
most of the previously described models neglect intracellular features, they are well-suited to
study biological phenomena at the cellular level due to the simplicity of the logic, flexibility
of the technique, and the ability to integrate multiple interacting variables across a range of
spatial scales.

The prostate is a glandular sexual accessory organ composed of acinar ducts lined with luminal
secretory epithelium surrounded by a layer of basal epithelial cells. These epithelial acini are
encompassed by a stromal compartment composed predominantly of layers of smooth muscle
(see figure 1A). The principal cellular component of the prostate are illustrated in Figure 1B.

Prostatic adenocarcinoma is the second mos common cause of male cancer deaths in the
Western world(15). Early discrimination between relatively benign lesions and highly
aggressive prostate adenocarcinomas is critical for identifying those patients that require
aggressive treatment while avoiding over-treating patients who would otherwise suffer no ill
effects from their tumor.

In the adult prostate, paracine crosstalk between the epithelial and surrounding stromal tissues
maintain homeostasis (16,17). The smooth muscle and all other stromal cell types are separated
from the glandular acini by a collagen- and laminin-rich basement membrane that provides
positional information contributing to the maintenance of tissue architecture and differentiation
through cellular signaling and structural constraint (18).

The loss of homeostatic interactions between organ tissues in disease has been partially
attributed to a breakdown of the positional information established during development, which
includes the loss of the basement membrane (19,20) and an alteration of the density and type
of extracellular matrix (21). This matrix is produced by an ever-expanding population of
myofibroblasts (22). While there is evidence that strongly implicates the role of the basement
membrane and the stromal microenvironment on glandular integrity in tumor progression, the
conflicting data and the vast number of factors involved in the regulation of these components
limit our understanding of the multiple steps by which prostate tumors grow and invade
surrounding tissues.

The effect of transforming growth factor-beta (TGF-β) on cancer progression has been the
target of much research and debate (23). TGF-β normally inhibits the proliferation of epithelia
through induction of the cell cycle inhibitors p15 and p21 (24). The determination of whether
TGF-β will induce cytostasis or apoptosis in normal epithelia depends on the intensity of their
proliferative activity in addition to poorly understood microenvironmental determinants (23,
25). Stromal production of TGF-β by prostate carcinoma-associated fibroblasts has been
demonstrated to increase the growth and invasiveness of initiated prostate epithelia (26);
however, the effect of epithelial TGF-β production from organized prostate glands is still
unclear. Moreover, systemic inhibitors of TGF-β have yielded conflicting data in therapeutic
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trials (27) underscoring the need for further analysis of TGF-β’s complex roles at different
stages of neoplastic progression.

The TGF-β family of cytokines are highly pleiotropic. Some of their functions, have been
accurately modeled computationally, including roles in vascular remodeling, hyperplasia and
wound repair (28). Continuum ODE tissue growth models of TGF-β-mediated stromal-
epithelial interactions were shown to have good qualitative agreement with experimental
biological results (29).

Prostate tumors have previously been investigated mathematically (30–34), (30–34) mainly
focusing on the role of PSA and androgen levels in progression. Whilst insightful these models
were purely continuous, non-spatial and did not consider the role of stroma. In this paper, we
model prostate tumorigenesis using a HCA model that integrates five different cell species
(discrete, individuals) with three different microenvironmental chemical species (continuous,
concentrations), all of which are thought to play key roles in prostate cancer. Using this model,
we have investigated the importance of TGF-β in driving prostate cancer progression. In
particular, we examined how TGF-β regulates tumor-stroma interactions in tissues with tumor
cells possessing different degrees of organization (as measured in terms of glandular
morphology). In addition, following a prediction generated by the model regarding the role of
TGF-β in organized glandular epithelia, we have provided previously unexamined pathological
and experimental support for the ability of the model to appropriately reflect TGF-β’s
physiological role at a specific stage of tumorigenesis.

Methods and materials
HCA models are mathematical tools in which discrete entities interact with continuous ones.
In the model, cells are the discrete entities represented as points on a 2D grid (2mm × 2mm
slice of a 3D prostate). This grid structure has been used in other cancer-related CA models
(7,35,36) and has proved to be very efficient. This grid hosts three microenvironmental
variables, which are treated as continuous concentrations, TGF-β, Matrix Degrading Enzyme
(MDE) expression and Membrane/ECM. The discrete cells are designated as basal epithelial,
luminal epithelial, motile stroma (representing bone marrow derived cells such as
macrophages), static stroma (fibromuscular stroma) and tumor cells. Figures 1b and 2 show
how cells are initially arranged: the simulated section of prostate contains three glands (Figure
2 and supplementary figure 1), each following the structure shown in 1b and arranged along
an axis going from the upper left to the lower right corner of the domain (as shown in Figure
2). The space outside the glands is either empty or occupied by static and motile stromal cells.
Static cells can represent muscle or fibroblastic lineages, while motile cells are predominantly
modeled on bone marrow-derived monocyte/macrophage lineages.

Figure 3 shows flowcharts that describe the behavior of the different cell types. A detailed
explanation of these flowcharts can be found in the supplemental appendix. The
microenvironmental variables of the model are, TGF-β, MDE expression and Membrane/ECM
concentrations (representing both the extra cellular matrix (ECM), which is present in the
messenchyme and is made of elements such as collagen, fibronectin, laminin and vitronectin,
and the epithelial basement membrane). The dynamics of these microenvironmental variables
are defined by three partial differential equations that describe how each of them evolves in
space and time. The dynamics of TGF-β (Tβ):
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which shows that TGF-β is produced by basal and cancer cells as well as by motile stromal
cells in proportion to the local TGF-β concentration. It also shows that TGF-β is consumed by
luminal and motile stroma cells. TGF-β also binds to the ECM at a rate that depends on the
local concentration of TGF-β and also that there is some natural decay of the ligand.

MDEs (E) are produced by tumor cells (37) (at rate λ), diffuse (at rate DE) and are depleted as
they degrade the ECM and the basement membrane (μ).

Basement membrane/ECM (M) is produced by basal cells (depending on the current local
concentration of ECM ensuring the density never exceeds the maximum m0) and motile stroma
(depending on rate αF, scaled by the local concentration of TGF-β (38)). Finally, the ECM gets
degraded by the MDEs at a rate μ:

These microenvironmental factors (equations above) coupled with the discrete cells (defined
by the cellular life cycle flowcharts), represent an evolving dynamic hybrid model of the
prostate in which tumor progression emerges from the interactions of all the key elements. Cell
behavior results from the interactions with other cells in competition for space and via the
microenvironmental factors as shown in Figure 3f. It can be seen that TGF-β is a key factor
that determines the survival and growth of both tumor and normal epithelial cells, as well as
the behavior of stromal cells. The balance of TGF-β, MDEs and membrane production
modulates the competition of the different cellular species.

Time is discrete and is measured in timesteps of 24h. At each timestep cells follow their life
cycle (figure 3). The timescale affecting the microenvironmental variables is assumed to be
much faster (×100) than that of the cells in order to accommodate the different timescales
affecting processes at the cellular and molecular levels.

The parameters used to characterize the model are assigned the values shown in table 1. Many
of the values used are estimates, denoted by an asterisk (39–41), that are biologically plausible
but not in every case experimentally measured. As the values need to be non-dimensionalized,

Basanta et al. Page 4

Cancer Res. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the results of the non-dimensionalization (with respect to time, which is taken to have cell
cycles of 24h, and space of 2mm × 2 mm) are also given. These parameters have the property
of making the system homeostatic before cancer initiation. Therefore under normal
circumstances (in the absence of tumor cells), there is a natural homeostatic state for all the
variables with equilibrium concentrations of TGF-β, ECM and MDE.

Results
Because the composition of the stromal compartment has been shown to be statistically
correlated with prostate disease recurrence (42), the role of stroma on tumors at different stages
of malignancy (determined by TGF-β and MDE production) was studied. Each of the
simulations was allowed to run for 20000 time steps, corresponding to almost 55 years in real
time. After 10 time steps, 6 basal epithelial cells (4 in the central acinus and one on each of the
two remaining acini) become abnormal cells initiating tumorigenesis. The simulations test
different stromal configurations in which the proportion of stroma in the domain range from
20 to 40% of the total space. The stromal configurations considered are (motile, non-motile):

1- High proportion of motile and non-motile stroma (40%, 40%).

2- High proportion of motile stroma (40%, 10%).

3- High proportion of non-motile stroma (10%, 40%).

4- Low proportion of motile and non-motile stroma (10%, 10%).

Sample simulations
Figure 2 (and supplementary movies) shows the three main outcomes resulting from the
simulations. Figure 2a shows an example of a simulation in which the tumor breaks out from
the acini and grows into the surrounding stroma. Initially (a) the tumor cells fill the lumen
inside the gland. Eventually (b), the basement membrane starts to degrade and TGF-β begins
to leak from the gland and attract motile stroma. At the end of the simulation (c), the tumor
has taken a significant portion of the domain but its growth is constrained by the motile stroma
responding to the TGF-β gradient. As a result of periodic boundary conditions, tumor cells
growing on the upper boundary appear on the bottom however, this has no effect on the
simulation outcome. Figure 2b shows a simulation in which tumor cells quickly break from
the gland and grow unopposed. Finally, Figure 2c shows tumor cells producing excessive
quantities of MDE, which leads to early breakdown of the basement membrane and resulting
leakage of the TGF-β, without which the tumor cells die.

Varying the microenvironment
To further investigate the three distinct outcomes the model can produce we examined the
effect of varying each of the three microenvironmental parameters. Due to the limitations of
our parameter estimates, varying them over two orders of magnitude also allows us to test the
robustness of the model outcomes as well as the sensitivity (see figure 2d). Subfigures d(i)–d
(iv) show the type of outcome.

MDE production has a dominant effect on the outcome of the simulations and results show
that too little MDE production leaves the tumor confined to the gland whereas too much means
that the basement membrane breaks down (and consequently, TGF-β spills out of the gland)
too early, depriving the tumor cells of the required minimum of TGF-β level to survive (see
fig. 2). This hints that there is an optimal range of MDE production that would allow the tumor
to escape from the gland and invade the surrounding tissue. This particular range is parameter
dependent, modulated by the rate at which the basal membrane is degraded by tumor cells and
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repaired by basal and stromal cells as well as the susceptibility of the tumour cells to TGF-β
concentration.

Contrary to our expectations, tumour TGF-β production does not modify significantly the
simulation outcomes. Stromal configuration on the other hand, has a more significant effect
on tumor progression. Prostates with a high proportion of stromal cells are less likely to be
taken over by a tumor than those with less density of stromal cells. The role of stroma in tumor
promotion becomes critical after the tumor has escaped from the gland and it is also at this
point when TGF-β, which mediates the interactions between stroma and tumor, plays a more
dominant role. In fact, tumor cell TGF-β production from within contained glands seems to
inhibit tumor progression due to the recruitment of matrix-producing motile stroma. This often
leads to an increased deposition of stromal produced ECM (See figure 2A and compare
supplemental figures 2 and 3 with different amounts of stromal cells). In order to ground this
in pathologic reality, human PIN biopsies were immunostained for TGF-β and counterstained
with Masson’s trichrome to determine whether an adjacent stromal matrix deposition could be
observed. Figure 4 shows very little to no TGF-β immunoreactivity in normal human prostate
glandular epithelium (a) compared to high immunoreactivity in some glandular PIN foci (b).
Furthermore, trichrome staining of these sections revealed that the stroma adjacent TGF-β
expressing PIN foci had increased collagen production, confirming the HCA model outcome.

Given the potential implications, it was important to determine whether the prediction that
tumor cell TGF-β production does not significantly alter the simulation outcome was
biologically realistic. To test this, constitutively active TGF-β1 was overexpressed in a human
prostate epithelial cell line previously demonstrated to be capable of malignant transformation
(BPH1) (43,44). Importantly, this cell line is able to form acini when recombined with inductive
rat urogenital mesenchyme (rUGM) (44) allowing us to determine whether the expression of
TGF-β might result in enhanced tumorigenicity.

A HA-tagged, constitutively active TGF-β1 previously generated and characterized (45) was
expressed in BPH1 cells (see materials and methods) (Figure 5a). To confirm its functionality,
conditioned media collected from parental BPH1 and BPH1TGFβ1 cells were placed on serum-
starved human prostate fibroblasts expressing a red fluorescent protein TGF-β reporter. Results
show an activation of TGF-β signalling by BPH1TGFβ1 cell conditioned media, but not the
parental control (Figure 5b). To test our simulation prediction, we recombined each epithelial
cell line with rUGM for 6 weeks under the kidney capsule of SCID mice, a technique previously
applied to the study of prostate development and tumor formation (44). Kidney capsule grafting
of tissue recombination with inductive rUGM results shows that TGF-β1 production decreased
the overall size of the tissue recombination graft by 3–4 fold (Figure 5c). Histologically,
trichrome (Figure 5d) and smooth muscle (Figure 5e) staining of these grafts revealed that
BPH1TGFβ1 grafts show a decrease in smooth muscle and an increase in periacinar collagen
production over controls, consistent with changes seen around pre-malignant human lesions
(figure 4). Moreover, histochemical identification of basement membrane by PAS staining
demonstrates that TGF-β1 production by initiated prostate epithelia does not affect glandular
containment (Figure 6).

Discussion
This paper introduces a mathematical model that recapitulates some key elements of tumor
progression, such as epithelial invasion and stromal reorganization. The aim of the model is to
provide a basic platform from which to study the role of TGF-β and stroma in prostate tumor
progression from non-tumorigenic homeostasis to preneoplasia to malignancy. To be useful
mathematical models must generate hypotheses which can be tested in biological systems and
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compared to clinical observations, and further must be amenable to testing and generating a
deeper understading of biological phenomena.

Prostatic intraepithelial neoplasia, (PIN) was first defined 20 years ago and is considered to be
the most common premalignant lesion in prostate cancer (46). PIN can be made to regress in
humans (47) and this process can also be documented in experimental animal models (48);
however, it is unclear if such regression happens spontaneously in patients. Thus, while PIN
can progress to cancer, this is not an inevitable progression and the conditions that promote or
suppress such a progression are presently unknown.

Under basal conditions, the model presented here is homeostatic. The disruption of homeostasis
as a result of the appearance of tumor cells, can result in one of four different scenarios,
depending on the phenotype of the tumor cells as well as the stromal microenvironment. These
scenarios (fig. 2) are: (i) nascent tumors that develop slowly and remain at a stage that
recapitulates aspects of the pre-malignant lesion PIN; (ii) tumors that break out of their acinar
containment and invade locally but do not outgrow the other cell types; and (iii) tumors that
develop rapidly and take over the prostate (fig 4b). (iv) tumors that develop quickly but are
self-limiting, dying out before progression beyond PIN (fig 4c). These results show both the
potential of the model to capture distinct outcomes and the reproduction of the diversity of
timescales at which different prostate tumors are known to develop.

This mathematical model generated a number of hypotheses. In our simulated prostate
environment, before tumor break out, TGF-β production by tumor cells appears to have little
effect on the outcome of the progression (see fig. 2), which was corroborated experimentally
(see fig. 5). TGF-β in this model does recruit motile stromal cells, which structurally inhibit
glandular breakdown through matrix production, which was also corroborated by examination
of clinical samples of human PIN foci expressing TGF-β (see fig. 4). This ineffectiveness
persists regardless of either the proportion of stromal subtypes or the rates of production of
MDEs by the tumor cells. Similar to biological assumptions (23,49), the effects of TGF-β in
this model are more likely to be tumorigenic once tumor cells emerge from a contained PIN-
like state as determined by the effects of the TGF-β gradient on tumor cell growth and stromal
recruitment (see fig. 2a). This is consistent with previously described biological observations
(26).

A second hypothesis generated by the model concerns the role of tumor cell MDE production.
The results show that there is a critical range of values of MDE production that are optimal for
tumor progression. If tumor cells produce MDEs at a suboptimal rate, the time to break out
and even the chances of the tumor progressing from PIN are affected negatively (see fig. 2).
Alternatively, excessive production of MDEs might work against the tumor and simulation
results suggest that too much MDE production could, under certain conditions, lead to tumor
cell death. Degrading the basement membrane too quickly may result in TGF-β diffusing out
of the glandular acinus, leaving the tumor cells in the gland with insufficient growth factors to
survive (supplementary figure 4). Therefore, it is a prediction of this model that the appropriate
resources (e.g. TGF-β) essential for invasion and survival of tumor cells outside of the gland
are available once the basement membrane is breached. The specific values that characterize
this critical range of MDE production will depend on the rest of the parameters of the model
such as TGF-β production and diffusion or the rate at which MDE is used to degrade the basal
membrane.

There are a number of implications coming from these hypotheses. The first suggests that,
despite the central role that TGF-β played in the conception of the model (see fig. 3f), the level
of production by tumor cells does not affect the initial premalignant stages of tumorigenesis.
This hypothesis does not address the role of TGF-β once the tumor progresses beyond
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containment, where TGF-β’s role appears to be more pro-tumorigenic. A different hypothesis,
which could have far-reaching implications, is the role of excessive MDE production by tumor
cells in halting tumor progression, which, at present, is untested.

Finally, an interesting insight provided by the model is the dual role of structural constraints
in tumor progression. The glandular structure of the prostate both delays and protects tumor
growth. While this arrangement limits the growth in the early stages, it provides a haven in
which tumor cells can grow until they reach a critical mass. The role of the stromal
configuration has also been shown to be important before and after the tumor breaks out from
the gland. In those cases in which the proportion of stroma is high, degradation of the basement
membrane is hindered by the presence of motile stroma. Furthermore, when the membrane is
breached, the stroma helps to constrain tumor expansion. Thus, the model hints that the
abundance of stromal cells, both motile (that block tumor growth and produce ECM) and static
(that amplify the TGF-β signal and provide a clearer gradient for motile stroma), hinder tumor
growth.

A key value of designing biologically relevant mathematical models is the clarification of
deficiencies in biological modeling. At present, there is no valid biological model of the effect
of stromal heterogeneity on human prostate glandular stability or tumor progression. As such,
adequate experimental validation and model parameterization of the effects of variable stromal
compositions under different MDE conditions remains unexamined. However, attempts at
developing such a model are ongoing, which will provide a biological tool for examining both
mathematical and pathological predictions concerning the effects of stromal heterogeneity on
tumor progression.

In order to obtain a tractable model, simplifications were unavoidable. For example, all tumor
cells share the same phenotype. Nonetheless, tumors are microcosms of evolution in which
several tumor phenotypes coexist as a result of microenvironmental heterogeneity and a
complex evolutionary process. Furthermore, it is known that some types of stromal cells, such
as fibroblasts, can alter their phenotype in response to microenvironmental changes produced
by a tumor. It is likely that these evolutionary dynamics would impact tumor progression.
Therefore, it is our goal to explore the effect of the stromal-tumor co-evolution in prostate
tumor progression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) H&E stained cross-sections of human prostate at medium magnification showing, from left
to right, normal prosate tissue, prostatic intraepithelial neoplasia (PIN), and high grade prostatic
adenocarcinoma. In the center panel, prostatic intraepithelial neoplasia (PIN) are premalignant
consisting of atypical luminal epithelial cells that may develop into the invasive cancer shown
in the right panel. Prostate cancer is characterized by small disorganized glands without basal
cells invading into the surrounding stroma. (b) Model domain with its key cell types. The basal
cells produce TGF-β and help maintain homeostasis. Luminal cells consume TGF-β and can
become tumorigenic. The stromal cells occupy locations outside the acini and produce TGF-
β in response to the TGF-β once it reaches a certain concentration. (c) Image with the initial
configuration. The simulation domain is made of three glands, equally spaced, and surrounded
by stromal cells.
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Figure 2.
(A) Example of simulation in which the tumours break out from the glands and start growing
in the messenchyme. The domain contained 40% of motile and 40% of non motilestroma.
Figures show three snapshots of the simulation. After about 3 months each of the glands is
entirely occupied by a tumour and MDE production is clearly visible. After 43 years two of
the tumours have managed to break out from the gland. At the end of the simulation (after
about 54 years) the three tumours have merged into a single one that seems posed to take over
the entire domain though its pattern of growth seems to be channelled by the stroma. (B)
Example of a simulation in which the tumour takes over the entire prostate. In this simulation
the production of TGF-β is relatively low compared to other simulations and the proportion of
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motile stroma is the same than that of non motile stroma: 10%. After about 3 months each one
of the glands is occupied by a tumour and MDE production is already visible. After about 22
years, the tumour in the upper gland breaks out and expands in the messenchyme. After about
43 years the tumour has taken over the entire prostate, degraded almost entirely all the
membrane and TGF-β and MDEs can be found everywhere in high quantities. (C) Example of
simulation in which the three tumours are initiated grow and die out before they manage to
break out from the glands. In this simulation the proportion of stroma is the same than non
motilestroma: 10%. The tumour cells produce MDEs at a significant higher rate than in most
of the other simulations. After 60 days the central gland has almost being taken over by the
tumour. After 1 month the central tumour has produced enough MDEs to degrade the basal
membrane although the local concentration of TGF-β is remarkably lower than that in
comparable simulations. Both tumour cells and TGF-β can be seen spilling out of the membrane
and into the surrounding stroma. After 900 timesteps the simulation shows a situation similar
to that at the beginning. (D) Graphical representation of the results of several simulations using
different stromal configurations. Each colour represents a different outcome. Green represents
simulations in which all the tumour cells die, yellow those in which the tumour does not break
out from the gland and red, those in which the tumour does.(I) Simulations in which 80% of
the domain is stroma. (II) Simulations with 40% of motile stroma and 10% of non motilestroma.
(III) Simulations with 10% of motile stroma and 40% of non motilestroma. (IV) Simulations
with 20% of stroma.
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Figure 3.
Flowcharts with the life cycle of the different cell phenotypes. (a) Tumour cells produce TGF-
β (which they need for proliferation) and MDEs. They proliferate when there is enough TGF-
β and have reached maturity. An insufficient local concentration of TGF-β triggers cell death.
(b) Basal cells replace missing luminal cells and produce TGF-β to suppress proliferation. (c)
Normal luminal cells consume TGF-β and die when they are surrounded by tumour cells. (d)
Non motile stroma cells consume TGF-β but will produce more when the local concentration
exceeds threshold. (e) Motile stromal cells are constantly moving chemotactically towards the
direction of the TGF-β gradient. (f) Key interactions between the cell types and biologically
active substances. Solid lines denote reduction in concentration by consumption, killing, or
inhibition of production at the end with the small red cross bar. Dashed lines denote increases
in concentration by promotion of production or proliferation at the end(s) with the arrow and
(+) symbol. The double arrow between tumour cells and TGF-β represents TGF-β production
by the tumour cells that in turn results in tumour cell proliferation by TGF-β.
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Figure 4.
Human PIN foci expressing TGF-β show altered adjacent stroma. Compared to normal
prostates (a), PIN foci that express TGF-β (b) show decreased periacinar smooth muscle with
increased collagen deposition as shown by TGF-β (circle) and trichrome (arrow) staining.
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Figure 5.
Functional TGF-β overexpression by contained prostate epithelial glands. (a) HA-tagged,
constitutively active TGF-β1 was constitutively expressed in BPH1 human prostate epithelia.
(b) Conditioned media from BPH1-TGFb1 (right), but not BPH1 (left) cells in culture activated
a RFP TGFbeta reporter in serum-starved human prostate fibroblasts. (c) Kidney capsule tissue
recombination grafting shows a decrease in graft size when rUGM is recombined with BPH1-
TGFb1 (right) versus parental control (left). Trichrome (d) and smooth muscle alpha actin (e)
staining reveals predominantly smooth muscle surrounding BPH1 acini (left) verses increased
periacinar collagen deposition in BPH1-TGFbeta grafts (right).
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Figure 6.
BPH1- TGF-β glands are contained by basement membranes. PAS staining in normal human
prostate (a) and tissue recombination grafts (b) of BPH1 (left) and BPH1-TGFbeta (right)
demonstrate glandular containment by basement membranes.
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Table 1
Model parameters
Parameters with (*) denote estimated values. Parameters with (**) denote a series of parameters for which the model
was tested.

Parameter Value Normalized value

DTβ 2 × 10−9 cm2/s (*) 0.02

m0 1.050 g/cm3 0.1

αT,B 230 × 10−12 g/day/cells (*) 0.01

αT,C 1.8 × 10−9 cm3/day/cell (*) 1 (0.1, 10)**

αE,C 1 × 10−9 0.0001 (0.01, 1×10 −6)**

γT,S 2.7 × cm3/day/cells (*) 0.1

Tβ,S,0 2.6 × 10−8 cm3/day/cells (*) 1

γT,M 9.5 × 10−2 cm3/g/day (*) 1×10−6

γ′T,S 1.35 × 10−2 cm3/g/day (*) 0.01

τ 24h 1

DE 10−9 cm2/s 0.00054

DT 2 × 10−9 cm2/s 0.000108

DN 10−9 cm2/s 0.00054

Stroma (10%-10%)**,(40%-10%)**, (10%–40%)**,(40%-40%)**
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