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Abstract: Oligodendrocytes are the myelinating cells of the central nervous system that constitute about 5 to 10% 
of the total glial population. These cells are responsible for myelin sheath production, which is essential not only 

for the rapid and efficient conduction of the electrical impulses along the axons, but also for preserving axonal in-
tegrity. Oligodendrocytes arise from oligodendrocyte progenitor cells that proliferate and differentiate just before 

and after birth, under a highly-regulated program. Both oligodendrocytes and their precursors are very susceptible 
to injury by several mechanisms, including excitotoxic damage, oxidative stress and inflammatory events. In this 

review, we will cover not only several important aspects of oligodendrocyte development and regulatory mecha-
nisms involved in this process, but also some of the most important pathways of injury associated to oligodendro-

genesis. In particular, we will also address some neurological disorders along life journey that present impairment in oligodendrocyte 
function and in myelination during neurodevelopment, such as periventricular leukomalacia, hypoxia/ischemia and hyperbilirubinemia 

that in turn can potentiate the emergence of neurological and neurodegenerative diseases like schizophrenia, multiple sclerosis and Alz-
heimer disease. 
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1. INTRODUCTION 

 Mammalian myelination occurs as a multi-step process involv-
ing: (1) oligodendrocyte precursor cell (OPC) proliferation, (2) 
OPC migration, recognition and adhesion to the appropriate axon, 
(3) synthesis and transport of myelin components to the oligoden-
drocyte (OL) outer membrane, (4) wrapping of the myelin mem-
brane around the axons and (5) compaction of the myelin sheath 
(for review see [1]). OL differentiation and maturation occur in an 
extremely elaborated and defined program that involves both intra-
cellular and extracellular factors, with distinct roles at each step. 
These mechanisms will allow the exact timing of OPC differentia-
tion and control the proper recognition of the axon to be myeli-
nated. Here, we first address the current knowledge on temporal OL 
lineage progression and determination of myelination, highlighting 
oligodendrogenesis in humans vs. rodents. 

 The last weeks of gestation and the first postnatal months are 
crucial periods for white matter maturation, which render to this 
period an increased vulnerability to any kind of insult. Several cel-
lular and molecular mechanisms have been implicated in preoli-
godendrocyte injury and death [2], resulting in impaired myelina-
tion. Here we will review how excitotoxicity, oxidative/nitrosative 
injury by free radicals, microglial activation and consequent in-
flammatory response may contribute to OL damage and de-
layed/deficient myelination. 

 Major white matter damage is usually associated with injury in 
premature infants while pathological conditions affecting term neo-
nates mostly reduce neuronal survival. Nevertheless, diffuse white 
matter injury may also be observed upon some neonatal harmful 
conditions. White matter injury is one of the most common cerebral 
neuropathologies observed in very premature infants (<30 weeks of 
gestational age) and termed as periventricular leukomalacia (PVL)  
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[3]. Other perinatal co-morbidities including intrauterine infection, 
cerebral hypoxia-ischemia (HI) injury, and, as recently reported, 
moderate to severe hyperbilirubinemia [4] are known determinants 
of marked white matter damage in preterm babies. These conditions 
may result in severe cognitive deficits detected during child infancy 
as cerebral palsy [3, 5], or in subtle changes that are only diagnosed 
in early adulthood such as schizophrenia [6], or even been associ-
ated to the emergence of neurodegenerative disorders such as mul-
tiple sclerosis or Alzheimer’s disease. So, we will discuss how OL 
function is impaired during these neurodevelopment-associated 
conditions and what long-term sequelae may be associated. 

2. OLIGODENDROCYTES DURING CENTRAL NERVOUS 
SYSTEM MYELINATION 

2.1. Oligodendrocyte Origin 

 OL development is better understood in the spinal cord (SC) 
than in the brain. The human OL lineage has been characterized in 
the SC mainly during the first trimester and in the human cerebrum 
for the second and third trimesters.  

 Since OL are evenly distributed throughout the adult central 
nervous system (CNS), it would be reasonable to suppose that they 
are produced from all regions of the neuroepithelium. However, 
several studies demonstrated that, in both SC and telencephalon, 
OL originate from specific regions. A critical step during this proc-
ess is the establishment of distinct progenitor cell domains [7, 8]. 
Embryonic oligodendroglial specification shares mechanistic fea-
tures with motor neurons (MN) of the ventral neural tube [9, 10]. In 
the SC, most OL derive from a specialized domain of the ventricu-
lar zone, called MN precursors (pMN) domain, which gives rise to 
MN precursors and then to oligodendrocyte precursor cells (OPC) 
[11, 12]. pMN progenitors develop in stages, after the beginning of 
MN formation, that is completed at embryonic day (E) 10.5 in 
mice; a phase of OL production starts at E12.5. This process de-
pends on Sonic hedgehog homolog (Shh) signalling [13] that acts 
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through activation of Olig2, a transcription factor essential for OL 
development [11].  

 Interestingly, it seems that during early foetal stage OL develop 
only from ventrally derived progenitor cells as demonstrated when 
E14 rat SC were divided into dorsal and ventral regions and the 
cells cultured separately, OL develop only in ventral cultures [14, 
15]. OPC derived from the pMN domain continue to proliferate 
after specification and migrate both laterally and dorsally to occupy 
all areas of the SC. At a later foetal phase (starting around E15.5), 
an additional source of OPC arises in the dorsal SC, contributing to 
10-15% of the final OL population in the SC [16, 17].  

 In the forebrain, the formation of OL is a process even more 
complex, with multiple waves of OPC production and migration 
from embryonic to postnatal stages that emerge in a ventral-to-
dorsal progression [18]. At E12.5, the first wave of OPC develops 
from Nkx2.1-expressing precursors in the ventricular zone of the 
ventral medial ganglionic eminence and anterior entopeduncular 
areas [19, 20]. Subsequently they migrate to all parts of the telen-
cephalon, entering the cerebral cortex at E16. A second wave of 
OPC from Gsh2 expressing precursors occurs around E14.5 from 
the lateral and/or caudal ganglionic eminences. Finally, a third 
wave within the postnatal cortex from Emx1-expressing cortical 
precursors starts around birth at postnatal (P) day 0 [18]. After this 
process, OPC exhibit multidirectional migration in the ventricular 
zone to distant sites under control of several repulsive and attractive 
cues [21, 22]. Recent studies suggest that different waves of OPC 
can myelinate distinct regions of the brain, indicating that different 
functional subpopulations of OPC may have distinct functions [23]. 
Moreover, besides OPC density does not perceptibly vary during 
adulthood, it is higher in white matter than in grey matter [24, 25]. 
This could be in part explained by the higher rate of OPC prolifera-
tion in the white matter, since these OPC are in a proliferative state 
and contribute to adult oligodendrogenesis, while grey matter OPC 
are quiescent or slowly proliferative and most remain in an imma-
ture state [24]. 

2.2. Temporal Oligodendrocyte Lineage Progression 

 The proliferation and migration of neurons occurs mainly dur-
ing the prenatal period, while in glial cells are essentially postnatal 
processes that last for an extended period after birth, with differen-
tiation and maturation taking place throughout childhood. Given 
these overlapping situations several questions concerning the tem-
poral extent of each glial cell lineage progression during the postna-
tal period in humans, as well as their intermixed phases still remain 
unknown. 

 OL progression along several differentiation steps can be identi-
fiable according to their proliferative and migratory capacities, 
morphological changes and the expression pattern of specific mark-
ers. In this context, several studies identified four different stages of 
OL differentiation, namely: OPC, preoligodendrocytes (pre-OL) or 
late OPC, immature or pre-myelinating OL and mature or myelinat-
ing OL. OPC have a high proliferative and migratory capacity and 
express specific markers like platelet-derived growth factor receptor 

 (PDGF-R ), ganglioside A2B5, proteoglycan NG2 [26, 27], poly-
sialic acid-neural cell adhesion molecule [28] and fatty-acid-
binding protein (FABP)7 [29]. The majority of authors have de-
scribed OPC as cells with small polygonal soma and bipolar mor-
phology characteristic of neural precursor cells, with only few 
processes that are short in length and emanate from the opposing 
poles of the cell body [30]. However, some studies showed that 
NG2 progenitors evidence slightly different morphologies depend-
ing on their location in the brain [31, 32]. During progression along 
oligodendroglial lineage, OPC differentiate into pre-OL that acquire 
a multipolar morphology with short processes and start to express 
OPC markers as well as the sulfatide recognized by the O4 antibody 
[33] and the gadd-related protein (GRP) 17 [34], which persist until  
 

the immature OL stage. After losing the expression of NG2 mark-
ers, the immature OL present long ramified branches and start the 
expression of other specific markers like galactocerebroside C 
(GalC) [35, 36]. For the initial step of myelin formation, immature 
post-mitotic OLs need to extend several cytoplasmic protrusions 
(filopodia) in order to find suitable myelin-competent axons. Fi-
nally, mature OL synthesize the major myelin structural proteins in 
an orderly manner, i.e. myelin basic protein (MBP), proteolipid 
protein (PLP), myelin associated glycoprotein (MAG) and myelin 
OL glycoprotein (MOG) and to extend membranes that form com-
pact enwrapping myelin sheaths around the axons [37-39]. Mature 
OL express markers such as myelin gene regulatory factor 
(MRF)/gene model 98 [40], zinc finger protein 488 [41] and 
FABP5 [29].  

 In humans, only a few studies addressed the temporal OL de-
velopment and also described the existence of four stages of OL 
maturation between 10 and 41 gestational weeks (g.w.): OPC, pre-
OL, immature OL and mature OL. As observed in animal models, 
the first OL observed in humans are OPC that reside in the fore-
brain at 10 g. w.. OPC appear in more relevant numbers only 
around 15 g.w., when they appear in higher numbers in the gangli-
onic eminences and in the cortical ventricular zone/subventricular 
zone [42]. Later, between 18 and 28 g.w., some immature OL are 
identified but OPC and pre-OL are yet the most predominant cells 
from OL lineage. Between 28 and 40 g.w. is described a high de-
gree of OL differentiation, with a consequent increase in the num-
ber of immature OL and the appearance of some mature OL that are 
restricted to the periventricular white matter [43, 44]. Approxi-
mately at the 30 g.w. a marked increase in O4+ cells displaying a 
complex multipolar morphology is observed mostly in deeper and 
milder cerebral white matter, while they are sparingly distributed in 
the superficial white matter, and not detected in cerebral cortex. 
Overall, the first MBP+ cells are observed between 20 and 28 g.w. 
in subcortical regions, but are only broadly visualized between 36 
and 40 g.w., with an increase from 1 to 5% in total brain volume 
that contains myelinated white matter [43, 45]. 

 In rodents, the first OPC are observed in the telencephalon, 
namely in the entopeduncular area, around E9.5 [46]. Moreover, 
another study showed that ventral telencephalic regions have a 
greater capacity to generate OL in vitro than the corresponding 
cortical regions in E13 rat brain [47]. Later, at P2, both rat and 
mouse present an high proportion of pre-OL in the cerebral white 
matter together with a minor number of immature OL are a minor 
population. In contrast, the white matter contains more than 80% of 
immature OL at P7 that begin to myelinate axons [48].  

 In comparison, OL lineage progression in the P2 rodents (Fig. 
1) is similar to that of humans between 18 and 27 g.w. in cerebral 
white matter, being mostly composed by pre-OL and few immature 
OL. At P7, rodent white matter presents a maturation state similar 
to the one observed in human between 30 and 36 g.w. [49]. Finally, 
the first MBP+ cells are only observed around P7 in rodents, in-
creasing abundantly at P14, both in the rat and mouse brain [50-52], 
what is approximate to the extent of myelination in many full-term 
infants [53].  

3. REGULATION OF OLIGODENDROCYTE DEVELOP-

MENT AND MYELINATION  

 OL development is orchestrated by an extremely complex pro-
gram that involves several factors with distinct roles at each step. 
These signals serve two major purposes: 1) help to control the 
proper timing of OPC differentiation to ensure myelination at the 
appropriate moment and place, and 2) control and match the num-
ber of OL to the axonal surface area requiring myelination. Several 
intracellular and extracellular molecules modulate the fate of OL in 
the myelination process as discussed below.  
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3.1. Transcription Factors 

 Many transcription factors have been implicated in myelination, 
from lineage specification through OL progressive stages of matu-
ration until the myelination process. The most studied transcription 
factors are two families including: Sox group (Sox8, Sox9 and 
Sox10) and Olig genes (Olig1 and Olig2) [54]. Regarding to Sox 
family, Sox9 is involved in OL specification, while Sox 8 is re-
quired for the terminal differentiation and Sox10 is necessary for 
the development of myelin-forming OL [55, 56]. The two Olig 
genes besides structurally similar and co-ordinately expressed, en-
code proteins with quite distinct biological capabilities. Expression 
of Olig2 plays prominent roles in multipotent neural progenitor 
cells of the embryo and adult being necessary for OL lineage devel-
opment. Indeed, Olig2 is required for the development of NG2+ 
progenitor cells [11, 57]. Interestingly, Olig2 is strongly upregu-
lated during acute brain damage [58], what may indicate an increase 
in OL proliferation to counteract defects in the number of OL and 
myelination. On the other hand, Olig1 appears to be mostly impli-
cated in OL maturation, although there is disagreement on whether 
there is an absolute requirement of Olig1 during normal develop-
ment. Some studies demonstrated that Olig1 is involved in the final 
stages of myelin production [11, 59] and in regeneration [60]. In 
vivo, Olig1 null mice showed that loss of Olig1 causes a transient 
delay in the appearance of differentiated OL and myelination with-
out long-term myelin deficits [11, 61]. However, a different study 
in other Olig1 null mice found severe myelination defects that led 
to early postnatal lethality [62]. 

3.2. Cytoskeleton Components and their Regulation 

 As described before, OL suffer continuous remodelling of the 
cytoskeleton in order to be able to extend their processes and un-
sheath the axons. Changes in OL shape are in part mediated by the 
cytoskeleton that is composed by microtubules (MT) and micro-
filaments (MF). These elements have distinct roles; while MT con-
fer mechanical stability to OL processes, MF mediate process out-
growth and basic stability, as a consequence of their localization 
immediately beneath the plasma membrane.  

 MT are composed by heterodimers of - and -tubulin protein 
subunits that are anchored in the MT organizing centre in the vicin-
ity of the nucleus and extending to the OL periphery, giving origin 
to filaments arranged in parallel to the main axis of the processes 
[63, 64]. More recently, the importance of cytoskeleton during OL 
development was emphasized by the discovery of a specific form of 

-tubulin, the IV-tubulin that has not yet been found in other CNS 
cells [65]. Tubulin undergoes several posttranslational modifica-
tions, including -tubulin acetylation that is correlated with higher 
stability in more mature OL [66]. Indeed, to increase MT dynamics 
during OL maturation and myelination, tubulin must be deacety-
lated in a process mediated by silent information regulator type 
(SIRT) 2 [67]. 

 Actin, MF-associated protein, is present in OL in two different 
states, as globular monomers (G-actin) or as filamentous polymers 
(F-actin). De novo actin nucleation to form G-actin is a kinetically 
unfavourable process due to the extreme instability of these small 
action oligomers, but it is thought that both actin-related protein 2/3 
(Arp2/3) complex and formins could be involved as stabilizers [68]. 
It is known that Arp2/3 complex is activated by cortactin and by 
Wiskott-Aldrich syndrome protein (WASP) family proteins [69]. 
These proteins polymerize actin monomers into F-actin filaments to 
generate small membrane protrusions for filopodia and lamellipodia 
formation [70, 71]. Filopodia are narrow structures supported by 
tightly packed parallel actin bundles with their plus ends facing the 
membrane, whereas lamellipodia are broader and contain actin 
networks arranged in an approximately orthogonal manner [72, 73]. 
WASP proteins are themselves controlled by Rho GTPases that 
regulate cytoskeletal structure by mediating actin polymerization 
[74, 75]. Rho GTPases are divided in 8 subfamilies that include the 
RhoA-related subfamily (RhoA, RhoB, RhoC), the Rac1-related 
subfamily (Rac1, Rac2, Rac3, RhoG) and the Cdc42-related sub-
family (Cdc42, TC10, TCL, Chp/Wrch-2, Wrch-1). Rho GTPases 
act as binary molecular switches that cycle between an inactive 
guanosine diphosphate (GDP)-bound and an active guanosine 
triphosphate (GTP)-bound state in response to extracellular stimuli. 
In the CNS, active Rac1 and Cdc42 act as positive regulators of 
morphological differentiation, inducing process extension and 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Oligodendrocyte lineage development in rodents and humans. Oligodendrocyte precursor cells (OPC, with NG2 positive staining) arise around em-

bryonic (E) day 9 in rodents and between 10 and 18 gestational weeks (g.w.) in humans. Lately, at postnatal (P) day 2 and between 18 and 28 g.w., the propor-

tion of cells along oligodendrocyte (OL) lineage is very similar being composed mainly by OPC and pre-OL (more ramified but also positive to NG2 staining), 

with a minor population of immature OL (O4+ staining). White matter at P7 rodents is comparable to that observed in humans between 28 and 40 g.w., with 

predominance of immature oligodendrocytes and a progressive increase in mature oligodendrocytes that express the myelin basic protein. 
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branching, while RhoA acts as a negative regulator inhibiting proc-
ess elongation [76]. RhoA, B and C activate the immediate down-
stream Rho-associated protein kinase (ROCK), which in turn phos-
phorylates a number of actin cytoskeleton regulators, like the en-
zyme myosin light chain phosphatase and the myosin light chain 
[77]. This direct phosphorylation increases the contraction of the 
actomyosin network [78, 79]. So, ROCK inhibition in OPC results 
in a significant generation of branches and cell processes in early 
differentiation stages, followed by accelerated production of MBP 
[80]. Rac1 and Cdc42 activate WASP family of proteins, like neu-
ronal WASP (N-WASP) and Wiskott-Aldrich syndrome protein 
family verprolin homologs (WAVE) 1/2 [81, 82]. These proteins, as 
already mentioned, bind the Arp2/3 complex and alter its conforma-
tion for actin binding. WAVE1 and N-WASP are also critical for 
myelination, since deletion of WAVE1 in mice triggers hypomyeli-
nation, while the N-WASP inhibitor wiskostatin causes retraction of 
filopodia and lamellipodia and impairs myelination [83].  

3.3. Extracellular Factors 

 Many studies point out the importance of extracellular factors 
released by neurons and glial cells in oligodendrogenesis.  

3.3.1. Growth Factors 

 Several lines of evidence have demonstrated the importance of 
growth factors in OL development; while some promote the main-
tenance of the OPC pool, others induce OPC differentiation into 
myelinating OL. Moreover, one mechanism that may determine the 
final number of OL is the competition for limiting amounts of fac-
tors, like platelet-derived growth factor A (PDGF- ), fibroblast 
growth factor 2 (FGF-2), insulin-like growth factor 1 (IGF-1), neu-
rotrofin 3 (NT-3) and ciliary neurotrophic factor (CNTF) [84-86]. 
PDGF-  is a potent mitogen produced by both astrocytes and neu-
rons that regulates the proliferation and survival of OPC, preventing 
premature differentiation [87-89] and inducing early OPC to prolif-
erate for an indefinite number of divisions in vitro [90]. In addition, 
it is also known that NG2+ cells in white matter exhibit greater 
proliferative response to PDGF-  than those in the grey matter [91], 
revealing regional responses in PDGF-induced proliferation. FGF-2 
is a mitogen that stimulates proliferation of early and late progeni-
tors, maintaining the expression of the PDGFR  and blocking the 
differentiation into OL [92, 93]. In addition, FGF-2 induces with-
drawal of myelin sheets and downregulation of the major myelin 
proteins, at both the protein and mRNA levels [94, 95]. Although 
PDGF-  or FGF-2 act individually with different effects on OPC, if 
together they induce continuous proliferation and produce a “condi-
tional immortalization” of OPC [96]. IGF-1 in combination with 
FGF-2 and PDGF-  synergistically promotes DNA synthesis in 
OPC [97] and in vitro proliferation [98]. Recently, another FGF, the 
FGF-8, was shown to induce proliferation and migration of postna-
tal mouse OPC, as well as differentiation into mature OL [99]. A 
different study has shown that OPC cultured in the presence of 
FGF-8 expressed more MBP compared to FGF-2 and in OL cul-
tures. While FGF-2 downregulated mature OL markers and induced 
a reverted state, such effects were not observed with FGF-8, reveal-
ing a distinct action of these two similar growth factors [100]. In 
what concerns NT-3, it induces OPC proliferation in vivo [101, 
102], but presents a weak mitogenic effect in vitro [103].  

 Thyroid hormone (T3) is one of the best-characterized differen-
tiation factors. This growth factor blocks OPC proliferation in vitro 
and induces their differentiation into OL even in the presence of 
PDGF-  [84, 104]. T3 is necessary for proper myelination timing 
and production of normal levels of myelin in vivo and in vitro [105-
107]. Moreover, while increased concentrations of T3 as those ob-
served in hyperthyroidism accelerate myelination, hypothyroidism 
results in its decrease [108]. However, it seems that this hormone is 
not essential for OL differentiation, but may be involved in regulat-
ing the moment of differentiation, since OPC cultured in the ab-
sence of mitogens stop dividing and differentiate rapidly, even in 

the absence of T3 [84]. However, in the presence of mitogens, T3 
signalling is necessary to promote the complete differentiation of 
OPC [109]. A recent study have also demonstrated that GC-1, a 
thyromimetic compound with selective thyroid receptor  activity, 
promotes oligodendrogenesis from both rodent and human OPC 
and increases the production of MBP, cyclic nucleotide 3’-
phosphodiesterase (CNP) and MAG [110]. Moreover, it has been 
proposed that T3 is necessary early in OL development for 
apotransferrin expression and action, which in turn will favour OL 
maturation and myelination [111]. 

Besides the positive cues that promote OPC proliferation, migration 
and differentiation, there are inhibitory factors that also regulate OL 
development, such as bone morphogenetic proteins (BMP) secreted 
by astrocytes [112, 113] that inhibit OPC differentiation into myeli-
nating OL [114, 115]. 

3.3.2. Cytokines and Chemokines 

 Cytokines are pleiotropic factors and most of them are secreted 
proteins or glycoproteins, while chemokines are small molecular 
weight cytokines specialized in causing cell movement. However, 
both use chemical signals to induce changes in other cells. Cytoki-
nes and their receptors are expressed physiologically in CNS cells 
and are important in the development and function of the brain. 
Some cytokines involved in OL development are interferon (IFN)-
, interleukin (IL)-1 , transforming growth factor (TGF)- , IL-6 

and leukemia inhibitory factor (LIF). Both IL-1  and TGF-  are 
able to inhibit OPC proliferation and enhance their differentiation 
[116-119]. On the contrary, IFN-  has exactly the opposite effect in 
OL development, inhibiting OPC differentiation and the cell cycle 
exit [120, 121]. Exogenous LIF can stimulate OPC proliferation 
[122], differentiation [116] and myelination [123]. Moreover, selec-
tive activation of TNF receptor 2 (TNFR2) on astrocytes leads to 
enhanced LIF gene expression and secretion, which then stimulates 
the differentiation of co-cultured OPC into MBP+ mature OL [124]. 
After TGF-  gain of function, enhanced OPC cell cycle exit accel-
erates oligodendrogenesis and subcortical white matter myelination, 
while TGF-  receptor II deletion in OPC prevents their maturation 
into mature myelinating OL, leading to hypomyelination in the 
developing subcortical white matter in mice [125]. Recently, IL-
17A has also been described as regulator of OL development, since 
OPC stimulated with IL-17A exit the cell cycle and differentiate 
with an increased expression of PLP [126].  

 There is little evidence that OL produce chemokines, but it is 
known that in cell cultures CXC chemokines, such as growth-
related oncogene- , IL-8 and stromal cell-derived factor-1  stimu-
late MBP production [127], while astrocytic CXC ligand 1 in the 
SC enhances the proliferative response of OPC to PDGF-  [128]. It 
was also demonstrated that CXCL1-mediated signalling on OPC 
inhibit their migration and induce proliferation by a PDGF- -driven 
mechanism [21].  

3.4. Neuron-Oligodendrocyte Communication 

 Since most of the factors described above are also produced by 
astrocytes the role of neurons on myelination was not initially ap-
parent. To note, however, that neurons can direct the myelination of 
their axons, and consequently the OL differentiation, through neu-
ronal-OL cross talk. It was initially thought that axon diameter rep-
resented the only and crucial regulator of myelination [129], with 
OL selecting axons with diameters above 0.2 μm and excluding 
dendrites (Fig. 2A) [130]. A recent study using optogenetic stimula-
tion of the premotor cortex demonstrated that neuronal activity 
induces oligodendrogenesis and myelination within the deep layers 
of the premotor cortex and subcortical white matter [131]. How-
ever, the molecular cues for this recognition remain unclear. It 
seems that besides axon diameter and neuronal activity, also neuro-
transmission and cell adhesion molecules play an important role in 
OL differentiation and myelination. 
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3.4.1. Neurotransmitters and their Receptors 

 As mentioned, the production of myelinated axons requires a 
precise matching of the number of OL generated with the length of 
axons to be myelinated. So, OL at different stages of development 
have to express ion channels as well as purinergic and other mem-
brane receptors in order to detect the impulse activity through the 
activity-dependent release of molecules from axons, such glutamate 
and ATP.  

 Both OPC and OL, express -amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), kainate and N-Methyl-D-
aspartate (NMDA) receptors for glutamate. While AMPA/kainate 
receptors are predominantly expressed in the cell body, particularly 
in immature OL, NMDA receptors are mainly present in the myeli-
nating processes [132-134]. It was reported that OL AMPA recep-
tors lack GluR2 subunit and therefore are Ca

2+
-permeable, which 

has a crucial relevance for the damaging actions of glutamate on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Oligodendrocyte development and myelination are regulated by neuronal signals. A) Oligodendrocytes (OL) do not myelinate axons with diameters 

above 0.2 μm and dendrites. B) In absence of electrical activity oligodendrocyte precursor cells (OPC) do not differentiate and are not able to myelinate. C) 

Electrical activity leads to release of neurotransmitters by neurons like glutamate that includes OL maturation and myelination. D) Electrical activity leads to 

adenosine triphosphate (ATP) release from axons, which in turn generates adenosine that induces OL maturation and myelination. E) Electrical activity alters 

the expression of cell adhesion molecules on the axons, like polysialic acid-neural cell adhesion molecule (PSA-NCAM), L1 and leucine-rich repeat- and Ig 

domain-containing nogo receptor-interacting protein (LINGO)-1, that are involved in cell-cell interactions and consequently in myelination onset. F) After 

OPC differentiation into mature oligodendrocytes, ATP release from axons will stimulate the release of leukemia inhibitory factor (LIF) from astrocytes, 

which in turn will promote myelination. 
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OL [135]. However, it is not clear how glutamate signalling induces 
changes in OL maturation. Studies performed in in vitro cultures 
showed that glutamate response is more pronounced in OPC and 
immature OL than in mature OL (Fig. 2C) [136, 137]. Furthermore, 
it seems that glutamate-evoked current do not generate different 
responses in OPC and mature OL [138]. Studies with cells in cul-
ture and organotypic slices demonstrated that activation of 
AMPA/kainate inhibits PDGF-induced proliferation and promotes 
OPC differentiation [139, 140]. NMDA receptor preferential loca-
tion in the distal process of OL suggests that it may have a role in 
controlling axon-OL interactions [139]. More recently, activation of 
NMDA receptors in OPC derived from subventricular zone mul-
tipontent cells was shown to increase their differentiation and mye-
lination rate in vitro [141]. It is now established that NMDA acti-
vates PKC/NADPH oxidase/p67 signalling, which in turn generates 
intracellular reactive oxygen species (ROS) that in parallel can set 
off PI3K/mTOR and/or ERK pathways to induce OL differentiation 
[142]. However, contradictory data have demonstrated that NMDA 
receptors play no role in OL differentiation and myelination [143, 
144]. A recent study showed that there are two distinct modes of 
OL myelination: one independent of neuronal activity and other 
dependent on action potentials. It was demonstrated that neuregulin 
switches OL between these two myelination programmes by in-
creasing NMDA receptor-mediated currents in OL, making them 
more sensitive to glutamate released from active neurons and con-
sequently increasing myelination due to accelerated glutamatergic 
signalling [145].  

 OL in different stages of maturation also express ATP-gated 
P2x7 receptors that are permeable to Ca

2+
. Whereas glutamate has 

been mostly shown to regulate the early development of OL, adeno-
sine and ATP are recognized as modulators of late OL development 
and myelination. It is believed that ATP, released by action poten-
tial firing, does not act directly on OL. Instead, the adenosine re-
sulting from conversion of ATP by extracellular ATPases, promotes 
an increase in OPC intracellular Ca

2+
, inhibiting their proliferation 

and stimulating their differentiation, consequently promoting the 
myelin assembly (Fig. 2D) [146]. In later development, adenosine 
acts indirectly by inducing astrocytes to release LIF, which in turn 
enhances myelination by mature OL (Fig. 2F) [123].  

 Gamma-aminobutyric acid type A (GABAA) receptors are ex-
pressed in OL at different maturation stages [147, 148] and GABA 
is known to depolarize both mature and progenitor cells. Moreover, 
OPC present in both grey and white matter receive GABAergic 
synaptic input from axons [149], through GABAA receptors present 
in OPC, inhibiting outward rectifying potassium channels [147] that 
can lead to a reduction in proliferation.  

 As described here, Ca
2+

 influx across OL plasma membrane 
may occur through different routes, e.g. ligand-operated channels, 
such as ATP-gated P2x7 and glutamate receptors and voltage-
operated Ca

2+
 channels (VOCC). Several studies have addressed the 

importance of Ca
2+

 signalling in OPC differentiation and myelina-
tion [150], as well as for process extension and OPC migration [64, 
151]. VOCC regulate the extension/retraction of OPC processes 
[152] through an increase of the amplitude of spontaneous Ca

2+
 

oscillations in the soma and in the front process of migrating OPC 
leading to an accelerated cell migration by promoting Ca

2+
 depend-

ent soma translocation and front processes formation [153]. Moreo-
ver, activation of VOCC by plasma membrane depolarization in-
creases OPC morphological differentiation, expression of mature 
OL markers and myelination [154].  

 Nitric oxide (NO), in the CNS, is generated largely by the neu-
ronal subtype of NO synthase (nNOS) in response to a rise in intra-
cellular Ca

2+
. OL are also a target of physiological NO and in vitro 

OL responded to low NO concentrations with a striking increase in 
arborisation, revealing that NO can contribute to the maturation of 
OL [155].   

3.4.2. Cell Adhesion Molecules 

 Other candidates for axonal signalling to OL that regulate mye-
lination are the cell adhesion molecules. These molecules have the 
ability to bring the axon and glial cell into close apposition and to 
transduce the signals between such cells [156]. The best-studied 
adhesion molecules are the polysialic acid-neural cell adhesion 
molecule (PSA-NCAM), L1 cell adhesion molecule and leucine-
rich repeat- and Ig domain-containing nogo receptor-interacting 
protein 1 (LINGO-1) (Fig. 2E). During development, the haemo-
philic NCAM-NCAM adhesion, i.e. cell-cell interaction, is pre-
vented because all growing nerve fibres in the CNS express the 
PSA-NCAM [157], persisting in areas of adult brain that exhibit 
plasticity [158-160]. So, in order to occur interactions between OL 
and neurons and consequently myelination, PSA-NCAM has to be 
downregulated when neurons are electrically active [161-164]. In a 
more recent study it was demonstrated that PSA-mediated signal-
ling mechanism is one of the regulators of primary myelination in 
the human foetal brain [165].   

 L1, an adhesion molecule also expressed in axonal surface 
[166], is diffusely expressed on the non-myelinated axons, while it 
drastically reduces upon myelination, presenting low levels on mye-
linated axons [42]. However, in this case, the L1 expressed in axons 
promotes myelination, probably acting at the very early stage of 
OL/axon adhesion, through binding possibly to a specific oligoden-
droglial receptor not yet identified. After an initial stage of adhe-
sion, the downregulation of L1 from the axonal surface is necessary 
to the myelination onset and the beginning of wrapping process 
[167].  

 LINGO-1, a transmembrane protein with leucine-rich repeats 
and an immunoglobulin domain expressed in both OL and neurons, 
interacts with Nogo-receptor, and negatively regulates OL differen-
tiation and myelination [168]. Loss of LINGO-1 function in OL 
leads to increased myelination while its overexpression inhibits 
myelin assembly [169]. In zebrafish, the lack of LINGO-1 was 
shown to enhance myelination and OL differentiation during em-
bryogenesis [170]. LINGO-1 is also able to inhibit MBP transcrip-
tion by constitutive inhibition of Fyn kinase, a kinase involved in 
the upregulation of MBP transcription during OL maturation [169]. 
Although the molecular mechanism by which LINGO-1 influences 
membrane generation is not clear, it is known that LINGO-1 in OL 
inhibits process extension once it is a constitutive activator of RhoA 
[171]. In addition, the inhibition of LINGO-1 leads to the down-
regulation of RhoA activity thus promoting in vitro OPC differen-
tiation [172]. Consistent with these observations, it was demon-
strated that OPC differentiation can be inhibited both by intercellu-
lar signalling and activation of RhoA [173]. Furthermore, a recent 
study revealed a new regulatory mechanism that involves interac-
tion between LINGO-1 and ErbB2, since LINGO-1 can directly 
bind to ErbB2, block ErbB2 translocation into lipid rafts and inhibit 
its phosphorylation for activation, thus preventing consequently OL 
differentiation [174]. 

3.4.3. Axo-Glial Contact and Node of Ranvier Formation 

 During the first stages of myelination, mature OL interacts with 
axons, resulting in the formation of an axon-glial contact, depend-
ent on adherens junctions, between the distal uncompact loops of 
myelin and the axolemma that will define the paranodal region and 
separate the node of Ranvier (unwrapped axonal membrane) from 
the juxtaparanode. In this context, the differentiation of these struc-
tural and functional regions of the axonal membrane is another 
important factor that regulates OL differentiation and myelination.  

 Internodal segments alternate with nodes of Ranvier, where 
voltage-gated Na

+
 channels are accumulated allowing the genera-

tion of the action potential during saltatory conduction [175]. The 
precise localization of Na

+
 channels in the node is a critical process 

during myelination. So, to ensure the high concentration and the 
anchoring of these channels specific neuronal and OL proteins have 
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to interact, like the cytoskeletal adaptor ankyrin G (Ank-G) [176, 
177], the actin-binding protein spectrin IV [178] and cell adhesion 
molecules of the immunoglobulin superfamily Nrcam and neuro-
fascin-186 [179]. The nodes and the initial segment are enriched in 
Ank-G that has an essential role in the formation of the node of 
Ranvier, since it binds not only to Na

+
 channels but also to para-

nodal adherens junction proteins contactin 1, neurofascin 186 [180-
183]. Regarding to Na

+
 channels, they bind through their cytoplas-

mic loops with Ank-G that in turns bind to the actin cytoskeleton 
through spectrin IV [176, 177, 181]. During node formation oc-
curs a developmental switch of sodium channel isoform expression 
from Nav1.2 in immature nodes to Nav1.6 in mature nodes and 
besides the precise mechanisms that regulates this switch are still 
not clear, it is thought to be required for myelination [184]. It has 
also been described that interaction between Ank-G and contactin 1 
enhances the expression of Na

+
 channels, indicating that this pro-

tein might have an important role in the expression of these chan-
nels in the node [181, 185]. In other hand, contactin 1 interact with 
neurofascin 155 and contactin 2/Tag 1, proteins of the oligodendro-
glial paranodal loops to guarantee the myelin-axolemma adherens 
junction integrity [182].  

 In order to define and initiate the formation of nodes of Ran-
vier, interaction between cell adhesion molecules and the extracel-
lular matrix has to occur in paranodal regions, which are present 
immediately in the adjacent area of nodes on both sides [182]. In 
the paranodes, the compact myelin membrane opens up and the 
cytoplasm of the OL is pushed to the edges forming cytoplasm-
filled glial loops that are attached to the axolemma and wind heli-
cally around the axon. These axo-glial septate junctions appear late 
during myelination and comprise three major components, two cell 
recognition molecules, the contactin-associated protein (Caspr) 
[186, 187] and contactin [184] on the axonal side, and the 155-kDa 
isoform of Nfasc (NfascNF155) on the glial side [188]. Caspr is a 
transmembrane protein that is involved in cell adhesion and inter-
cellular communication, contactin is a glycosylphosphatidylinositol 
(GPI)-anchored protein [189]. Caspr and contactin interaction is 
necessary for the correct export of Caspr from de endoplasmic re-
ticulum (ER) to the plasma membrane [190], and regulates the gly-
cosylation and transport of contactin [191], whereas Caspr is re-
quired to maintain contactin at the paranodes [191, 192]. It is also 
described that both proteins are crucial for the establishment of the 
axo-glial septate junction, since their absence lead to the disappear-
ance of septa and a widening of the space between the paranodal 
loops and the axon [191, 193]. However, besides the role of 
NfascNF155 is not clear, it is known that glial-specific ablation of 
NfascNF155 results in loss of septate junctions and paranodal dis-
organization [194].   

 In the juxtaparanodes, regions flanking the paranode, are ex-
pressed delayed rectifier K

+
 channels, including KV1.1 and KV1.2, 

that are thought to be responsible for the maintenance of the resting 
potential in the internodes and the axo-glial communication [195]. 
Juxtaparanodal K

+
 channels are thought to act as an active damper 

of re-entrant excitation and to help in the maintenance of the inter-
nodal resting potential [196]. These channels co-localize and form a 
complex with the axonal transmembrane Caspr2 [197]. In addition, 
two other proteins are present in juxtapanodal regions, the transient 
axonal glycoprotein-1 (Tag1), a GPI-anchored cell adhesion mole-
cule [198], and connexin (Cx29) in the glial membrane [199]. Re-
cent studies showed that Tag1 and Caspr2 form a complex, which 
consists of a glial Tag1 molecule and an axonal Caspr2/Tag1 het-
erodimer, being that essential for the accumulation of K

+
 channels 

in the juxtaparnodes [200, 201]. In addition, compact myelin is also 
needed for proper K

+
 channel localization and stabilization [202].  

4. MECHANISMS OF OLIGODENDROCYTE INJURY 

 OL have a great metabolic rate in order to myelinate properly. 
Some studies pointed out that during myelination peak, OL produce 

three times its weight in myelin per day, and support membrane up 
to 100 times the weight of its cell body [203, 204]. This feature 
turns OL into cells highly vulnerable to several pathways of dam-
age resulting from activation of numerous intracellular mecha-
nisms, most of them produced by extracellular factors released by 
other CNS cells. In this context, OL frequently respond by produc-
ing poor-quality myelin, which may contribute to the pathology 
observed in several neurological diseases. 

4.1. Molecular Mechanisms 

 Among the molecular mechanisms that mediate OL damage, 
several authors indicate excitotoxicity, oxidative damage ER stress 
and cytokine signalling as the key events. 

4.1.1. Excitotoxicity 

 As described before, OL express several receptors such as 
AMPA, kainate and NMDA receptors that predispose them to exci-
totoxic cell death. Additionally, OL also express the ATP receptor 
P2x7 that make them vulnerable to increased levels of extracellular 
ATP. OL are the predominant cells for glutamate clearance in hu-
man white matter, and in this context they express the excitatory 
amino acid transporter (EAAT)-1 and -2 [132, 205]. In situations of 
ATP depletion these transporters revert their action, promoting 
changes in ion gradients and glutamate release from OL [135, 206], 
as shown in Figure 3. 

 The toxicity induced by glutamate and ATP primarily depends 
on excessive Ca

2+
 influx (Fig. 3), given the activation of OL 

NMDA receptors, consequent membrane depolarization and rise in 
cytosolic Ca

2+
 [132]. Since NMDA receptors are preferentially 

located on the distal processes of OL, the myelin sheaths are the 
most vulnerable targets for excitotoxic insults, leading to osmotic 
swelling, loosening, and vacuolation [205]. Activation of 
AMPA/kainate receptors, preferentially located in OL cell body, 
lead to an increase in intracellular Ca

2+
, its accumulation within 

mitochondria, and consequent depolarization of this organelle with 
increased ROS production [207, 208]. Elevated levels of free radi-
cals and Ca

2+
 overload in mitochondria lead to the opening of the 

permeability transition pore [209], an inner mitochondrial mem-
brane channel that regulates exit of cytochrome c to the cytoplasm 
and other proapoptotic substances [210, 211]. This process leads 
consequently to activation of caspase-9 and -3 culminating in the 
execution of the intrinsic apoptotic cascade [211]. In addition, ne-
crosis may be seen upon AMPA receptor activation [207, 211]. 
Sustained activation of P2x7 in the presence of excessive ATP in-
duces an increase in intracellular Ca

2+
 that results in caspase-3 acti-

vation, chromatin condensation and cell death by apoptosis and 
necrosis depending on the intensity of the insult [212].  

 Excessive cytosolic Ca
2+

 can activate other pathways, such as 
calpains, phospholipases, endonucleases and NOS with consequent 
NO production (Fig. 3). The reaction of NO with superoxide leads 
to the production of peroxynitrite that may promote oxidative toxic-
ity in OL [213]. Calpains, which are intracellular Ca

2+
-activated 

cysteine proteases, can mediate necrosis and caspase-independent 
apoptosis. These proteases cleave cytoskeletal proteins and 
proapoptotic members of the Bcl-2 family, like Bax [214-216], thus 
facilitating the release of the apoptosis-inducing factor from mito-
chondria, presumably through proteolytic cleavage of a membrane 
anchor that retains this factor on the inner mitochondrial membrane 
[217]. Other studies suggest that calpain activation can lead to cell 
death by necrosis due to lysosomal rupture and cathepsin-mediated 
cell death [218, 219]. Moreover, calpains can cleave numerous 
substrates including key components of the Ca

2+
 signalling system, 

like the plasma membrane Ca
2+

-ATPase, leading to a decrease in 
Ca

2+
 removal from the OL cytoplasm [220].   

4.1.2. Oxidative Damage 

 Several features are responsible for the high vulnerability of OL 
to oxidative damage. As described before, mitochondria depolariza-
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tion by increased intracellular concentrations of Ca
2+

 leads to ROS 
production with deleterious effects in OL viability [207, 208]. OL 
consume large amounts of oxygen and ATP in order to produce 
myelin, which leads to the formation of hydrogen peroxide and 
other reactive oxygen species with toxic properties to these cells 
[221, 222]. On the other hand, OL have the largest intercellular 
stores of iron in the brain [221, 223], since it is used as co-factor for 
myelin synthetic enzymes [224]. Besides the critical role of iron in 
the myelin production, when in the presence of hydrogen peroxide 
it may trigger the formation of hydroxyl radicals by the Fenton’s 
reaction. These radicals are very potent inducers of lipid peroxida-
tion and, along with peroxidation products (e.g. 4-hydroxy-2-
nonetal), are capable of impairing protein and acid nucleic func-
tions, as well as promoting membrane destruction [225]. This effect 
is further amplified in OL by their low content of antioxidant de-
fences, namely reduced glutathione [221, 226], an electron donor 
for the function of glutathione peroxidase that scavenges peroxides. 
OL have less than half of the glutathione content of astrocytes and 
<15% of the glutathione peroxidase activity [226]. Additionally, 
oxygen and NO radicals are particularly toxic to mitochondria 
through interaction and blockade of various proteins of the respira-
tory chain [227]. 

4.1.3. Endoplasmic Reticulum Stress 

 The ER is mainly recognized as a protein-folding factory, re-
sponsible for biosynthesis, folding, assembly and modification of 
several proteins [228]. However, during ER stress caused by accu-

mulation of unfolded proteins or Ca
2+

 depletion, ER initiates the 
unfolded protein response (UPR) [229], in order to ensure the fidel-
ity of protein folding and prevent accumulation of these non-
functional proteins. In mammalian cells, three ER-localized protein 
sensors initiate UPR signalling: inositol-requiring enzyme 1  (IRE-
1 ), pancreatic ER kinase (PERK) and activating transcription fac-
tor (ATF)-6 [230, 231]. During ER stress, glucose-regulated protein 
(GRP)78, the best characterized ER chaperone protein, is seques-
tered through binding to unfolded or misfolded proteins, leading to 
the release and consequent activation of the ER stress sensors [232]. 
GRP78 dissociation leads to mobilization of ATF-6 for the Golgi 
and activation of IRE-1  and PERK through autophosphorylation. 
Activated IRE-1  induces X-box binding protein 1 (XBP1) splicing 
that translocates to the nucleus and binds to UPR elements in order 
to induce several UPR genes that assist in protein synthesis and 
secretion [233]. In situations of ER stress, ATF-6 is translocated to 
the Golgi complex where it suffers cleavage and its cytoplasmic 
fragment is released and translocated to the nucleus in order to acti-
vate the transcription of target genes [234, 235]. Finally, activated 
PERK initiates the phosphorylation, and consequent inactivation, of 
eukaryotic translation-initiation factor 2  (eIF2 ), which in turns 
increases the expression levels of the transcription factor ATF-4 
[236]. ATF-4 translocation to the nucleus upregulates the transcrip-
tion of UPR target genes. 

 Curiously myelinating cells respond to ER stress in a distinct 
manner from other cell types. Activation of CCAAT-enhancer-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Molecular mechanisms of toxicity to oligodendrocytes. Primarily, glutamate- and adenosine triphosphate (ATP)-induced toxicity to oligodendrocytes 

(OL) depends on excessive calcium (Ca2+) influx, following activation of Ca2+-permeable -amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), 

kainate, N-methyl-D-aspartate (NMDA) and ATP activated P2x7 receptors. Increased concentrations of intracellular Ca2+ lead to mitochondrial dysfunction and 

consequent reactive oxygen species (ROS) production and caspase activation. On the other hand, iron (Fe2+) can react with hydrogen peroxide (H2O2) with 

consequent production of hydroxyl radicals and oxidative stress. In addition, superoxide anion (O2
-) reacts with nitric oxide (NO) leading to peroxynitrite 

formation that is toxic to OL. In addition, increased intracellular concentrations of Ca2+ can lead to calpain activation that mediates necrosis-like cell death or 

caspase-independent apoptosis. In situations of endoplasmic reticulum (ER) stress, the unfolded protein response program can fail leading to increased Ca2+ 

release from this organelle and augmented Ca2+ intracellular concentration. In situations of ATP depletion excitatory amino acid transporters (EAAT) revert 

their action leading to changes in ion gradients and consequent glutamate release from OL. The preferential location of NMDA receptors on the distal proc-

esses of OL turns the myelin sheaths particularly vulnerable to insults triggering osmotic swelling, myelin vacuolation and disruption. 
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binding protein homologous protein (CHOP), a downstream effec-
tor molecule of the PERK signalling pathway, in OL promotes OL 
survival during ER stress [237], in contrast to the UPR-induced 
apoptotic demise triggered in other cell types. Moreover, OL activa-
tion of caspase-12, an ER-localized caspase, fails to contribute to 
OL apoptosis or myelin abnormalities in PLP mutant mice [238]. 

 Accumulation of misfolded proteins in the ER can trigger Ca
2+

 
release from this organelle, possibly through inositol-triphosphate 
receptors [239]. The Ca

2+
 released from the ER is accumulated in 

mitochondria and causes its depolarization, disrupting electron 
transport chain and increasing ROS production [240]. On the other 
hand ROS can in turn increase Ca

2+
 release from the ER by sensi-

tizing ER Ca
2+

-release channels and causing protein misfolding. 
This cycle of Ca

2+
 release, ROS production and protein misfolding 

act together to activate calpains [241], which in turn induce cell 
death as described before.  

4.1.4. Cytokines 

 Although cytokines have some important roles in OL develop-
ment, elevated levels of TNF-  and IFN-  are correlated with OL 
toxicity and white matter defects.  

 As far as we know, the mechanism by which TNF-  causes 
toxic effects to OL lineage remains unresolved. While some studies 
found signals of TNF-  toxicity on cultured OL with a developmen-
tal-depend toxicity, others did not [242-245]. However, some 
authors demonstrated that increased concentrations of TNF-  have 
the ability to induce OL apoptosis both through the engagement of 
death receptors and by activation of sphingomyelinase and release 
of ceramide [245-247]. Another study has shown that recombinant 
TNF-  injection into the optic nerve leads to demyelination [248]. 
Recently, TNF-  was identified as a critical factor released by acti-
vated M1-polarized myeloid cells that decreases OPC survival, thus 
influencing OL differentiation [249]. In what concerns IFN- , the 
susceptibility of OL to this cytokine is more complex, since it is 
highly toxic for actively proliferating OPC, much less toxic for 
immature OL, and not toxic for mature OL [250].   

 Some evidences pointed out that cytokine-induced OL damage 
may be mediated by iron and involves mitochondrial dysfunction 
[251]. Indeed, the release of cytokines and free radicals diminish 
the glutamate uptake due to reduced expression of the glutamate 
transporters EAAT-2 (GLAST) and EAAT-2 (GLT1), thus result-
ing in elevated concentrations of this neurotransmitter and conse-
quent overactivation of Ca

2+
-permeable glutamate receptors that in 

turn leads to excitotoxicity [252].  

4.2. Mechanisms Mediated by other Central Nervous System 
Cells 

 Toxicity to OL may also be mediated by other cell types in the 
environment being reactive astrocytes and microglia the most stud-
ied ones. 

 The role of reactive astrocytes and microglia in oligodendro-
genesis remains unclear, but it is known that they are involved in 
OL toxicity through the release of highly reactive oxygen/nitrogen 
species and pro-inflammatory cytokines like TNF-  [253-255]. 
Activated microglia show altered glutamate metabolism producing 
the enzyme glutaminase and the glutamate-cystine exchanger xCT

-
, 

which result in impaired expression or function of glutamate trans-
porters, together with a consequent disruption of glutamate homeo-
stasis and excitotoxicity [252, 256, 257]. In addition, microglia also 
express ATP P2x7 receptors that besides having an important role in 
microglial proliferation and activation [258] are also linked to the 
release of several substances including pro-inflammatory cytokines. 
Finally, activated microglia may reduce OL survival through the 
release of peroxynitrite that is toxic to OL [213].  

 Despite the fact that astrocytes are generally considered protec-
tive by releasing trophic factors such as LIF, some studies are now 
pointing out a pathological role for reactive astrocytes in white 

matter diseases. A recent work demonstrated that exogenous levels 
of TNF-  do not cause significant pre-OL death in contrast with 
cultures where these cells are in contact with astrocytes. These data 
suggest a role for astrocytes in promoting toxicity to OL via TNF 
receptor 1 activation in a contact-dependent manner [259]. This 
contact-dependent toxicity can be due to the presence of gap junc-
tions since they are known to couple astrocytes and OL [260, 261] 
and to be involved in the propagation of cell injury [262, 263]. 
Moreover, when regeneration is not possible or the damage is too 
big, astrocytes may limit remyelination and CNS repair, through the 
formation of a glial scar, a physical barrier against inflammatory 
cells entering in demyelinated areas, which prevents OPC migration 
and maturation as well as axonal regeneration [264, 265].  

5. OLIGODENDROCYTE INVOLVEMENT IN SOME NEU-

ROLOGICAL DISORDERS 

 Since OL and their ability to myelinate neuronal axons are so 
important for the fast conduction of the action potential and the 
maintenance of the axonal integrity, their pathophysiology is 
emerging as a key event in the occurrence of neurological disorders. 
Defects in myelin insulation can lead to several CNS disorders 
along life journey. Indeed, impairment of OPC and OL function 
may occur during the perinatal life, in conditions such as periven-
tricular leukomalacia (PVL), hypoxia/ischemia (HI) and neonatal 
hyperbilirubinemia that can trigger the emergence of long-lasting 
neurological and neurodegenerative conditions, such as schizophre-
nia, multiple sclerosis (MS) and Alzheimer disease (AD).  

5.1. Periventricular Leukomalacia 

 PVL is traditionally classified as a white matter disorder and is 
the most common manifestation of brain injury that occurs in pre-
term infants, typically those born at a gestational age of 24-32 
weeks with a body weight at birth of less than 1,500 g [43, 266]. 
PVL influences the development and maturation of myelin in 
thalamus, basal ganglia, cerebral cortex and cerebellum that may 
result in neurological deficits due to neuronal loss and axonal dam-
age [267]. PVL consists of two basic components, focal necrosis 
deep in periventricular white matter with loss of all cellular ele-
ments, and a more diffuse and cell-specific lesion, consisting of an 
acute loss of pre-OL, which comprises about 90% of all OL during 
the high-risk period for PVL [43, 268], with accompanying astro-
gliosis and microgliosis [269-272]. The diffuse focal necrosis can 
be microscopic in size (several millimetres or more) and evolve 
over several weeks to multiple cystic lesions, being known as cystic 
PVL. Current data indicate that the incidence of cystic PVL is de-
clining and is observed in less than 5% of infants with very low 
birth weight [273-276]. In contrast, non-diffuse focal necrosis is 
emerging as the predominant lesion. This condition, termed non-
cystic PVL, is characterised by marked astrogliosis and microglio-
sis and evolve over several weeks to glial scars that are not readily 
seen by neuroimaging. In both PVL conditions, injury to pre-OL 
occurs since these cells are even more susceptible than mature OL. 
This vulnerability is related with: (1) the existence of amplified 
oxidative damage as result of a developmental deficit in superoxide 
dismutases and of hydrogen peroxide-scavenging deficit [277-279] 
combined with active iron acquisition [224]; (2) higher vulnerabil-
ity to reactive NO species attack by direct mitochondrial toxicity 
with translocation of apoptosis inducing factor [280] and formation 
of peroxynitrite [213, 281]; (3) significant developmental upregula-
tion of non-NMDA glutamate receptors [138, 282] accompanied by 
enhanced AMPA-mediated Ca

2+
 signalling, which increases excito-

toxicity [283] and (4) transient increase in EAAT2, which may 
become another source of glutamate under pathological conditions 
[284]. Pre-OL injury results in cell death or process loss (with intact 
soma) [281, 285-288]. However, pre-OL may survive with loss of 
cell processes but these cells do not appear to differentiate subse-
quently [288]. In addition, some OL may synthesize MBP, but are 
not able to do a proper myelination due to impairment in MBP lo-
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calization [288]. The cell loss is mainly related with AMPA recep-
tors activation in cell soma [137, 289-291], while processes loss is 
associated to NMDA receptors activation on pre-OL ramifications 
[139, 292, 293]. The ultimate result of these disturbances in pre-OL 
development is a deficit in mature OL with consequent cerebral 
hypomyelination, the hallmark of PVL. Another source of damage 
to pre-OL in PVL is microglia activation, especially as the number 
of microglia in cerebral white matter peaks during the period of 
highest vulnerability to PVL [294]. Reactive astrocytes, microglia 
and macrophages also damage pre-OL by the release of IFN-  that 
leads to an increase in inducible NOS [295]. 

 The aetiology of PVL is multifactorial but HI is considered one 
of the primary causes that can lead to microglial activation, cyto-
kine release, excitotoxicity and free radicals attack to OL, the major 
causes of OL damage as indicated above.  

5.2. Hypoxia/Ischemia 

 HI is an important cause of perinatal brain injury both in term 
infants suffering from intrapartum asphyxia and in preterm infants 
exposed to hypotensive events [271]. Moreover, premature infants 
are especially vulnerable to brain injury due to HI, particularly in 
white matter. This propensity relates to underdeveloped lungs that 
often cannot deliver enough oxygen and a heart that is relatively 
weak in pumping blood to the brain, as well as insufficiencies in 
processing oxygen and in energy metabolism. Additionally, white 
matter is particularly affected since distal fields in this region are 
not fully developed, which leads to very low basal values for blood 
flow to cerebral white matter in premature infant. 

 The pathophysiological mechanisms of HI are complex and 
processes such as apoptosis, necroptosis ( a form of regulated ne-
crosis), mitochondrial impairment, oxidative stress and inflamma-
tion are involved [296]. 

 Pre-OL are acutely damaged by short periods of HI. After 30 
min of arterial occlusion is possible to observe swelling, and a large 
number of OL die within a few hours [297]. Indeed, 90% of OL die 
within 3 h of oxygen-glucose deprivation [298]. Furthermore, the 
increasing developmental resistance of cerebral white matter to HI 
is related to the onset of pre-OL differentiation to myelinating OL 
that display reduced susceptibility to HI [268]. Although it was 
initially hypothesized that persistent loss of pre-OL was the origin 
of abnormal myelination, subsequent findings have supported an 
alternative mechanism where myelination disturbances involve a 
potentially reversible process linked to arrested pre-OL maturation. 
Despite substantial acute and delayed pre-OL degeneration after HI, 
surviving pre-OL in preterm-equivalent rats rapidly increased in 
number to regenerate depleted pre-OL [299, 300]. This expansion 
appeared to be driven mostly by pre-OL that proliferated locally at 
the sites of white matter [299] and cortical injury [301] rather than 
from the subventricular zone, where less robust generation of OL 
has been observed [302, 303]. Regeneration of pre-OL from the 
surviving cells compensates its death, but these newly generated 
pre-OL display persistent arrested differentiation and fail to myeli-
nate intact axons. 

 The excitotoxicity mediated by glutamate receptors is the prin-
cipal mechanism for pre-OL death exposed to oxygen-glucose dep-
rivation in vitro [137, 304, 305], while blockade of NMDA and 
AMPA/kainate receptors prevents OL death and myelin loss during 
ischemic injury [282, 298, 306, 307]. Glutamate-mediated axonal 
injury appears to be related with a mechanism of excessive gluta-
mate release from OL and axons [292, 308], indicated as the major 
sources of extracellular glutamate during HI energy failure. Moreo-
ver, ischemia leads to an energy crisis and consequent lactic acido-
sis that result in mobilization of protein-bound iron stores. This 
increases the levels of cytosolic iron that participates in Fenton’s 
reaction [309, 310] leading to oxidative stres.  

 As described before, OL are extremely sensitive to disruptions 
in intracellular Ca

2+
 homeostasis. In HI, metabolic stress and energy 

crisis lead to prolonged overstimulation of neurotransmitter recep-
tors, resulting in an increase in cytosolic Ca

2+
 that is worsened by 

the activation of voltage-gated Ca
2+

channels and the reversal of the 
Na

+
/Ca

2+
 exchanger [311]. This Ca

2+
 is sequestered by mitochon-

dria and leads to mitochondrial bioenergetic dysfunction, which is 
characterized by impaired oxidative phosphorylation, ROS genera-
tion, release of apoptogenic proteins and consequent cell death by 
apoptosis or necrosis [312, 313]. Although, it is clear that caspase-
mediated mechanisms of apoptosis contribute at least in part to 
acute pre-OL death from HI, the magnitude of caspase activation 
differs among studies and appears to be related to the severity of the 
insult [268, 299, 314-316].  

 During ischemia, ATP-mediated toxicity to OL can also occur, 
mainly via P2X7 receptor. Sustained activation induces cell death, 
myelin damage and white matter injury [212, 317, 318]. Further-
more, ATP release by OL during ischemia leads to depolarization 
of mitochondria and generation of ROS [317]. ATP released by 
dying cells can continue to aggravate P2X7-mediated injury [319]. In 
HI, oxidative stress is characterized by enhanced production of the 
superoxide radical, lipid peroxidation, and reduction of Fe

3+
 to the 

oxidant Fe
2+

 [320]. Pre-OL are the most susceptible cells from OL 
lineage to HI. A recent study has shown that oxygen-glucose depri-
vation lead to disarrangement of MBP distribution, decreased levels 
of phosphorylated MBP and disturbed capacity to contact with neu-
rons [321]. Additionally, mice exposed to chronic hypoxia show 
OL regeneration and the return of myelin proteins to normal levels 
within a few weeks after the injury, but myelin structure is abnor-
mal [322]. Interestingly, mice genetically altered to mimic high 
local oxygen tension in OL lineage cells display arrested OPC 
maturation and subsequent hypomyelination, developing white 
matter disease resembling cystic PVL [323].  

5.3. Neonatal Hyperbilirubinemia 

 Hyperbilirubinemia or jaundice is a frequent condition during 
the neonatal period that affects 60% of full-term newborns and 80% 
of preterm infants [324, 325], although neurological injury is rarely 
seen in healthy infants with serum bilirubin levels below 25 mg/dL 
[5]. The current understanding on the development of bilirubin 
encephalopathy is that when the level of serum unconjugated bili-
rubin (UCB) exceeds the bilirubin binding capacity of albumin, 
occurs an increase in the amount of unconjugated unbound UCB 
(free bilirubin), therefore increasing its passage across the blood-
brain barrier (BBB) and saturating the brain cellular defensive 
mechanism. In these conditions, either UCB uniformly distributes 
in the brain parenchyma bilirubin-induced neurological dysfunction 
(BIND) or specifically precipitates in some areas such as basal 
ganglia, central and peripheral auditory pathways, hippocampus, 
diencephalon, subthalamic nuclei and cerebellum (kernicterus or 
bilirubin encephalopathy), thus resulting in lesions that may be 
reversible or not, depending on opportune intervention therapies, 
duration, developmental age, and concomitant pathologies [4, 326, 
327]. BIND and kernicterus can thus culminate in neonatal death or 
multisystem disabilities, including athetoid cerebral palsy, as wel as 
speech, oculomotor, auditory, and other sensori-processing disabili-
ties [5]. Interestingly, concerns about subtle manifestations of 
BIND, due to levels of hyperbilirubinemia that are not generally 
considered severe enough to indicate treatment, or to prolonged 
exposure to lower levels of bilirubin in a vulnerable infant, have 
already been validated in previous studies [328-330]. A recent work 
has demonstrated that bilirubin levels falling short of developing 
acute bilirubin encephalopathy affects neurodevelopmental out-
come, with a proportional increase in the abnormal developmental 
quotient and peak of serum bilirubin [331]. These results corrobo-
rate previous studies, which demonstrated that neonatal jaundice 
could have an impact in learning and memory and changes in long-
term cognitive ability [332, 333]. Long term consequences of hy-
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perbilirubinemia above 20 mg/dL in newborns 2500 g birth weight 
and 37 weeks of gestation include neurobehavioral disorders (hy-
peractivity/impulsivity and inattention at childhood) and cognitive 
abnormalities (problems with reading, writing and mathematics) in 
adulthood [334]. In fact, an increased risk of psychological devel-
opment disorders, especially autistic disorders, was observed for 
children exposed to jaundice during neonatal life [335-337]. 
Moreover, schizophrenia has also a higher incidence in patients that 
developed neonatal jaundice when compared with patients without 
jaundice [338]. 

 UCB accumulation in the brain triggers cell death in neurons, 
astrocytes, microglia and OL [339-343]. Regarding to mechanisms 
of UCB toxicity some studies have demonstrated that UCB leads to 
oxidative stress, release of glutamate and long-lasting alterations in 
neuritic arborisation [327]. Both astrocytes and microglia respond 
to UCB exposure by releasing pro-inflammatory cytokines [339, 
340]. The cascade of events implicated in glial reactivity involves 
TNF-  and IL-1  receptor signalling pathways [344], as well as 
activation of mitogen-activated protein kinases (MAPKs) and nu-
clear factor (NF)- B [345, 346].  

 Concerning the UCB effects on OL, we have demonstrated that 
UCB induces an increase in OPC death by apoptosis and necrosis-
like cell death, involving early signals of ER stress and mitochon-
drial dysfunction and later activation of calpains, without inflamma-
tory response or glutamate release [341] (Fig. 4A). Moreover, UCB 
impairs OPC differentiation into myelinating OL, as well as the 
morphological maturation process of OL by impairment of process 
extension, reduction of the myelin membrane surface and diameter 
of mature OL [347] (Fig. 4B). Consequently, UCB causes myelina-
tion deficits evidenced by a decrease in both the number of myeli-
nated internodes per OL and the internode length in an in vitro 
myelination model composed of a co-culture of dorsal-root gan-
glion neurons and OL [347] (Fig. 4C). One of our recent studies 
performed in ex vivo cerebellar slice cultures have also demon-
strated that UCB is able to trigger an increase in immature OL, a 
decrease in the number of myelinated fibres and an increase in as-
trogliosis and microgliosis [348] (Fig. 4D). Most attractive, UCB-
induced myelination impairment involved the activation of TNF-  
and AMPA signalling pathways [348]. In addition, there are some 
evidences that UCB can lead to changes in human white matter. 
Recent results have demonstrated that myelination is altered in a 
premature infant with kernicterus, showing a decrease in the den-
sity of myelinated fibres and loss of axons in the cerebellum [349]. 
These findings are in line with previous studies demonstrating that 
cerebellum is the most common pigmented region of the brain in 
kernicterus, after basal ganglia, with a marked decrease in the num-
ber of neurons, an increase in gliosis and a reduction in the myeli-
nation pattern [350]. Moreover, white matter volume reduction and 
delay in hemispheric myelination was also observed in infants with 
severe UCB encephalopathy outcomes [351]. To this regard, it was 
demonstrated that UCB is able to bind mainly to MBP and that high 
concentration of this pigment is found in the myelin fraction of rat 
brains injected with UCB [352, 353]. In more detail, an early study 
performed in an experimental model of kernicterus showed that this 
condition lead to significant changes in myelin sheath, with separa-
tion of myelin lamellae, suggesting that its compaction did not 
properly occurred [354]. Interestingly, another study in Gunn rats, 
an animal model of kernicterus, using electronic microscopy 
showed that myelin figures were present as tongues or remnants of 
cytoplasm and irregular spaces or vacuoles. This study also re-
vealed the presence of myelin around vacuoles, bits of cytoplasm 
and other cytoplasmic debris [355].    

5.4. From neonatal Damage to Neurological and Neurodegen-

erative Diseases 

 Although there are marked changes in myelination during the 
perinatal period that can be easily identified by the clinicians and 

give the diagnosis of a sequelae during young childhood, if the 
myelin alterations are very subtle they may pass unnoticed and give 
rise to later neurologic conditions or even be a first trigger for fu-
ture neurodegenerative disorders. 

5.4.1. Schizophrenia 

 Schizophrenia is considered a severe psychiatric disorder due to 
its chronic course and often poor long-term outcomes in social and 
vocational realms [356]. Furthermore, schizophrenia is the most 
common psychotic illness, with approximately 7 in 1000 people 
developing the disorder in their lifetime [357]. This condition is 
characterized by: 1) positive symptoms, such as delusions, halluci-
nations and disorganized speech/thinking; 2) negative symptoms, 
like social withdrawal, anhedonia and blunted affect; and 3) cogni-
tive dysfunction, including deficits in attention, working memory 
and executive function [358]. 

 The exact cause for schizophrenia is still unknown. However, 
their association with previous exposure to prenatal infection was 
demonstrated [359] and a toxic role of cytokines in neurite forma-
tion [360], which is in accordance with the neuropathology of this 
disease. In addition, the incidence of schizophrenia is increased in 
patients that present Gilbert syndrome, a UDP-glucuronosyl trans-
ferase activity deficiency that leads to mild hyperbilirubinemia 
[361], or had hyperbilirubinemia during the neonatal period [338, 
362]. More recently, it is hypothesized that the aetiology of schizo-
phrenia is the result of both abnormalities in local neuronal activity 
within various brain regions and dysfunctional interactions between 
cortical and subcortical circuits [363], probably due to alterations in 
brain development during foetal/neonatal life long before manifes-
tation of illness in adolescence or early adulthood is observed [364].  

 Concerning to changes in neuronal circuits, impairment in syn-
apse formation and plasticity has been implicated in schizophrenia 
[365-368]. In addition, it is accepted that dopaminergic activity can 
modulate symptoms of schizophrenia, although the degree to which 
dopaminergic activity is a primary or secondary consequence of the 
disease is still unsolved. However, some studies identified neuro-
anatomical changes in prefrontal cortex due to loss of glutamatergic 
pyramidal cell spines and axons, loss of GAGAergic interneurons 
and decreased mesocortical dopaminergic innervation, while others 
attributed cognitive impairments to cell loss within thalamic subre-
gions and subsequent decrease in excitatory thalamic afferents to 
the prefrontal cortex [369-371]. Alterations in glutamatergic, 
GABAergic and dopaminergic signalling have also been reported, 
leading to loss of neuronal connections and neurons in other brain 
regions, like hippocampus, striatum, amygdala as well as in audi-
tory and visual cortex [372-376]. This disorder leads to an increase 
in dopamine release in the striatum in parallel to its depletion in 
prefrontal cortex [377]. Another important feature observed is a 
decreased NMDA receptor function in subcortical regions, disin-
hibiting glutamate and dopaminergic signalling in the cortex, with 
consequent sensory, cognitive and behavioural deficits [378-380].  

 Although most studies in schizophrenia brain defects were fo-
cused on alterations in neurons and grey matter, more recent reports 
also implicate defects in white matter damage, including the fibre 
bundles of the internal capsule and corpus callosum, which are 
strongly associated with abnormal or decreased structural and func-
tional connectivity [6, 381]. Indeed, given the clear impact that 
changes in glutamate have on neuronal plasticity and synaptic con-
nectivity, it can be postulated that it may compromise the integrity 
of the white matter by directly acting on OL. Moreover, disorgan-
ized thought and cognitive impairments observed in schizophrenia 
can be related with altered conduction velocity [382], since defined 
conduction velocity is necessary for several learning processes 
[383]. Indeed, specific abnormalities in myelin are increasingly 
observed in patients with schizophrenia [384], including decreased 
numbers of OL [385]. Additionally, the expression levels of Olig2, 
MBP, MOG and MAG are lower in dorsolateral prefrontal and 
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cortex and visual cortex of patients with schizophrenia when com-
pared with control subjects [386-388]. Moreover, is has been shown 
in the last years that even the molecular and functional organization 
of the nodal, paranodal and juxtaparanodal regions are affected in 
schizophrenia patients. In this context, the expression of contactin 2 
and Nav1.6, which participate in the formation and maintenance of 
nodes of Ranvier and adherens junctions, as described before, are 
diminished in the brains of schizophrenia patients [389]. Decreased 
AnkG expression was also found in the cortical layers of persons 
with schizophrenia [390]. Many studies have demonstrated impair-
ment in white matter integrity and in organization at several brain 
regions, including prefrontal, temporal and occipital lobes [391-
394], as well as reduced white matter tracts connecting corti-
cothalamic and cortolimbic structures, evidencing the disconnection 
of these networks [395]. A recent study performed in an animal 

model of schizophrenia demonstrated myelination impairment with 
a decrease in MBP expression [396]. The possible explanation for 
the decreased white matter and the down expression of myelin-
related genes in this disorder is that OL are either present in re-
duced number or are dysfunctional. Interestingly, some authors 
have already shown that patients with schizophrenia present a more 
disperse arrangement of OL and lower density of OL in grey mat-
ter, in white matter at the superior frontal gyrus [397], in anterior 
cingulate cortex [398] and in anterior thalamic nucleus [399]. By 
electron microscopy it was possible to observe damaged myelin 
sheath lamellae forming lamellar bodies in schizophrenic brains, as 
well as irregularities in OL mitochondria and their apoptosis [400]. 
Finally, ultrastructural studies showed OL loss in the fascicular 
white matter, with shrinkage in the diameter of neuronal axons 
[401], confirming myelination alterations in schizophrenic patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Schematic representation of the major effects produced by unconjugated bilirubin (UCB) in oligodendrocyte (OL) development. In vitro studies using 

oligodendrocyte precursor cell (OPC) primary cultures, in oligodendrocyte (OL) maturation model and in dorsal root ganglia (DRG) neuron-OL co-culture, 

showed that UCB causes OPC death, decreased differentiation and reduced myelination, respectively. In addition, ex vivo studies developed in cerebellar slice 

cultures demonstrated that UCB exposure induces a decrease in OL morphological maturation and myelination, probably as a result of astrocyte and microglia 

activation.  
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 Any of these alterations ultimately result in changes in nerve 
conductivity, leading to abnormalities of nerve transmission along 
the myelinated fibres in the circuitries, as well as aberrant connec-
tivity and disorganized axonal trajectories, which are consistent 
with findings of white matter abnormalities in schizophrenia brains 
by imaging studies [402]. Moreover, compensation and adaptation 
to these abnormal processes may occur at the cell and circuitry 
levels that altogether contribute to schizophrenia phenotypes [403]. 

 Although it is clear that there is not a single locus of dysfunc-
tion within the schizophrenic brain, several questions remain to be 
elucidated, principally the identification of factors leading to OL 
and neuronal dysfunction, the most affected cells.  

5.4.2. Multiple Sclerosis 

 MS that is the most common neurological disease between 
young adults (with ages between 20 and 40 years) has a worldwide 
prevalence estimated between 1.3/1000 cases in the developed 
world [404]. MS is a very complex disease, with variable onset and 
clinical course that involve several pathophysiological mechanisms, 
including axonal/neuronal damage, demyelination, inflammation, 
gliosis, oxidative stress and excitotoxicity, followed by remyelina-
tion and repair, together with immune system alterations and BBB 
disruption [405, 406]. The first symptoms of the disease are epi-
sodes or relapses of symptoms like impaired vision and deficits in 
sensation, but disease progression can lead to severe disabilities as 
paralysis, memory loss and incontinence [407]. Besides the course 
of this disease is highly variable, most patients initially present a 
period of relapsing-remitting MS (RRMS). However, after 10-15 
years, the disease becomes progressive (secondary progressive MS, 
SPMS) in up to 50% of untreated patients. However, about 10 to 
20% of MS patients have progressive disease progression since the 
disease onset with no relapse or remission episodes (progressive 
MS, PPMS) [408]. RRMS is dominated by multifocal inflammation 
and cytokine physiological actions [405] through the gradual accu-
mulation of these biomolecules at this phase and consequent irre-
versible neurological deficits, leading to SPMS that is characterized 
by clinical attacks and remissions, with progression of the clinical 
symptoms [409, 410]. PPMS is generally characterized by a lesser 
degree of inflammation and a greater proportion of axonal loss, 
even during the early disease course [411].  

 Although the aetiology of MS remains elusive, plaques of in-
flammatory demyelination within the CNS are considered the 
pathologic hallmark of MS, being destructed myelin an essential 
element within these plaques [412]. Some studies also reveal that 
BBB is a key structure [413], since the entry of cells from the im-
mune system into the CNS is a critical step for the onset of the dis-
ease especially during the acute phases. Relapses are fundamentally 
a manifestation of an inflammatory response occurring mostly in 
the white matter, but also in the myelin tracts of the grey matter 
resulting in focal demyelination and relative axonal sparing. During 
the past years, MS research has mostly focused on the role of CD4+ 
T cells in the disease pathogenesis. Immune phase begins with 
CD4+ T cells activation in response to dendritic cells that take up 
the exogenous or endogenous antigen in order to present it to the 
immune cells. As a result, CD4+ T cells become activated and se-
crete IFN- , TNF- , TGF- , IL-10 and IL-17 [414]. Moreover, T 
cells from MS patients can recognize MBP [415, 416], PLP [417] 
and MOG [418]. These cells have also the ability to stimulate mi-
croglia, macrophages and astrocytes and to recruit B cells, ulti-
mately resulting in demyelination and damage of OL and axons 
with concomitant neurological deficits [419]. Moreover, B cells 
may directly participate in the demyelination process by secreting 
pathogenic antibodies that target OL with or without the presence 
of complement [420]. A recent study have also demonstrated that 
FGF-9 can induce the production of pro-inflammatory chemokines, 
which in turn contribute to microglia and macrophage recruitment 
into MS lesions and consequent appearance of pre-myelinating OL 

that are able to interact with axons but fail the myelin sheath as-
sembly [421].  

 Demyelination has long been considered a marked feature of 
MS in proportion to the loss of axons. However, axonal damage is 
an important finding in this disease that correlates with its progres-
sion and permanent neurologic disability in patients [422]. In fact, 
some studies proposed that axonal impairment occurs in areas of 
active inflammatory demyelination and in an early phase of the 
disease course [423]. This axonal loss contribute to the clinical 
decline observed in MS patients, since a reduced number of surviv-
ing corticospinal axons are correlated with high levels of motor 
disability [424]. The exact mechanism by which axonal damage 
arises is not completely solved. Nevertheless, some studies have 
already shown that Na

+
 channel clusters are no longer stable at 

nodes in MS, what is thought to contribute for axonal degeneration 
[425, 426]. Another study performed in an animal model of MS 
showed a decrease in the developmental switch from Nav1.2 to 
Nav1.6 [427]. Since antibodies against Nfasc have been described 
in MS, another possible explanation for node disruption is that these 
antibodies are disrupting the localization of Na

+
 channels and con-

sequently the nerve conduction [428]. MS patients present also 
disruption of panodal organization due to loss of Caspr [426, 429], 
decreased levels of NfascNF155 with decreased lipid raft associa-
tion [430, 431] and disrupted K

+
 channel localization [426]. In 

other hand, axonal damage can be induced by CD8+ T cells via the 
release of cytotoxic granules, induction of apoptosis through activa-
tion of surface receptors, the release of cytokines from surrounding 
glia or immune cells, or direct transection of axons [432, 433]. 
Moreover, microglia can also release toxic molecules such as glu-
tamate, proteases, TNF-  and nitrogen species leading not only to 
axonal degeneration but also to OL injury, demyelination and BBB 
dysfunction [434]. In fact, glutamate is increased in plaques and 
normal appearing white matter of MS patients [435, 436]. As a 
consequence of the immune injury to myelin, glutamate mediated 
toxicity and higher energy demands may further increase the dam-
age [437].  

 Although little is known about the association of perinatal con-
ditions with multiple sclerosis a few reports suggest that exposure 
of the immature brain to inflammation, namely microglia activity, 
may enhance the CNS vulnerability for the development of a neuro-
logical disorders including MS [438]. 

5.4.3. Alzheimer Disease 

 AD is the most frequent cause of senile dementia in elderly 
people over 65 years old, representing 60 to 80 % of the cases. In 
2010, approximately 5.5 million of people live with dementia 
worldwide [439]. Taking into account that both established and 
developing nations are rapidly aging, the frequency is expected to 
almost double every 20 years, reaching values of 65.7 million in 
2030 and 115.4 million in 2050 [439]. In people over 65 years old 
the prevalence of AD is around 4.4% [440], doubling for every 5 
years [441]. AD is a progressive neurodegenerative disorder that 
usually begins with difficulty in the ability to remember newly 
learned information because this disease changes typically begin in 
the part of the brain that affects learning. However, as AD advances 
through the brain it inevitably affects all intellectual function and 
leads to complete dependence for all basic functions of daily life 
and premature death, as severe symptoms include disorientation, 
deepening confusion of time and place, serious memory loss, diffi-
culty speaking, swallowing and walking [442, 443]. The main 
pathological manifestations of AD include extensive neuronal loss 
and synaptic dysfunction [444], oxidative stress [445], imbalance of 
metal ions [446], disturbances of cholesterol and lipid metabolism 
[447], damage of cellular membranes by amyloid toxins [448], 
neuroinflammation [449], extracellular -amyloid (A ) that form 
senile plaques following the amyloidogenic cleavage of amyloid 
precursor protein (APP), and deposits of mictotubule-associated 
protein tau that forms neurofibrillary tangles (NFTs) [450].  
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 Research on AD has mostly focused in A  accumulation and its 
induction of the neuronal damage, being widely believed that AD is 
initiated as a synaptic dysfunction that correlates with memory loss 
in the early stages of the disease and structural damage of the brain 
at the later stages of AD [451]. Nevertheless, as senile plaques con-
tain also activated microglia at the centre and is surrounded by a 
crown of activated astrocytes, the importance of these glial cells 
gained recognition in the last few years [452, 453]. In this context, 
glial activation leads to sustained production of proinflammatory 
molecules and consequently to a chronic inflammatory process. In 
addition, it has also been shown the presence of dystrophic micro-
glia in humam brain autopsy samples from AD patients that proba-
bly result in a reduced ability to clear altered proteins from the CNS 
[454]. 

 Regarding to OL and myelin, some in vivo studies in AD mod-
els shown that myelin and OL lineage alterations occurs first than 
the appearance of A  and tau pathology [455, 456]. In fact, it has 
been suggested that myelin breakdown releases iron and conse-
quently promotes the development of toxic A  fibrils that can de-
posit in the brain, enhancing the formation of senile plaques, which 
in turn destroys more myelin [457]. Besides immunohistochemical 
and in situ hybridisation studies have shown that APP is mainly 
expressed by neurons [458, 459], some studies have revealed the 
presence of APP-reactive OL in white matter and APP mRNA tran-
scripts in OL, respectively [459, 460]. More recently, Skaper el al 
have demonstrated that rat cortical differentiated OL in vitro, ex-
press not only APP protein, but also secrete A 40 and A 42 to 
culture media in amounts similar to those found in cultured cortical 
neurons [461]. Furthermore, A  is able to activate the neutral 
sphingomyelinase-ceramide cascade via an oxidative mechanism 
and consequently induce OL dysfunction [462]. Exposure of OL to 
A  induces also cell death and morphological changes suggestive 
of damage like breakdown of OL processes and appearance of 
shrunken cell bodies [463]. Desai et al have also shown that A  
leads to an increase in caspase-3 expression and apoptotic cell death 
of OPC [455]. As referred before, oxidative stress is a hallmark of 
AD and the molecular mechanism of OL cell death probably also 
involves oxidative stress, since OL are particular susceptible be-
cause their reduced glutathione content and high iron concentration 
and consequent impaired ability to scavenge oxygen radicals. In 
addition, A  has increased ability for damaging cholesterol rich 
membranes like the ones found in OL and myelin [464]. Several 
studies have already demonstrated the presence of white matter 
lesions and myelin abnormalities in the brain of AD patients [465-
468]. It is also known that total amounts of protein, lipids and cho-
lesterol were significantly reduced its composition in AD patients 
[469, 470]. A strong correlation between A  levels and myelin 
damage was found in postmortem brain tissue of patients with AD 
[466]. In fact, myelin disruption and intracellular lipids deposits in 
AD have been described early by Alzheimer et al [471] and after 
that another studies shown that AD patients present a great loss of 
myelin integrity [472], which precedes the onset of cognitive im-
pairment [473]. Analysis of postmortem brain tissue of AD showed 
a decrease in MBP, PLP and CNPase levels [466, 474] and conse-
quent regional atrophy of the corpus callosum [475]. More recently, 
Zhan et al have shown that AD patients present a significant reduc-
tion in intact MBP and consequently an increase in degraded MBP 
in periventricular white matter adjacent to a denuded ependymal 
layer together with the appearance of increased number of vesicles 
containing degraded MBP, myelin lipid and neurofilament [476]. In 
other hand, myelin can also be altered in AD due to changes in the 
communication between axons and OL. In this context, a recent 
study reported that in different animal models of AD the expression 
of Ank-G is downregulated, being this protein essential for the for-
mation of the node of Ranvier and consequently a proper myelina-
tion [477].  

 Curiously, a few reports bridge changes during the neurodevel-
opmental age with the later emergence of AD. Martisova and col-
leagues showed that neonatal stressed animals showed changes in 
CNS growth factors and synaptic density which were associated 
with increased levels of A  or hyperphosphorylation of tau in the 
brain of those aged animals [478]. In addition, also a disproportion-
ate activation of microglia during neurodevelopment of young 
adulthood may be beyond an altered CNS response later life deter-
mining the cognitive decline during AD [479].  

CONCLUSION 

 OL have the important function of axon myelination that is 
critical not only for OL development and maintenance, but also to 
support axons and sustain their structural integrity and survival. OL 
have a highly regulated process of differentiation and maturation in 
order to be able to myelinate the axons. In order to myelinate prop-
erly, OL have a high metabolic rate turning these cells very suscep-
tible to oxidative, excitotoxic and inflammatory damage. Taking all 
these aspects into account several targets for OL protection and 
induction of OL maturation and myelination can be developed in 
order to prevent or attenuate OL damage and myelin injury. How-
ever, further studies in animal models of specific diseases that in-
volve impairment of OL development and myelination as well as 
well-designed clinical trials are essential to extrapolate the findings 
obtained on experimental models to human neurologic diseases.   
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