
Mutation Analysis for
System of Systems Policy Testing

Wonkyung Yun, Donghwan Shin, Doo-Hwan Bae
School of Computing

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea

{wkyun, donghwan, bae}@se.kaist.ac.kr

Abstract—A System of Systems (SoS) is a set of the constituent
systems (CS) which has managerial and operational indepen-
dence. To address an SoS-level goal that cannot be satisfied by
each CS, an SoS policy guides or forces the CSs to collaborate
with each other. If there is a fault in the SoS policy, SoS may
fail to reach its goal, even if there is no fault in the CSs. Such
a call for SoS policy testing leads to an essential question—how
can testers evaluate the effectiveness of test cases?

In this paper, we suggest a mutation analysis approach for
SoS policy testing. Mutation analysis is a systematic way of
evaluating test cases using artificial faults called mutants. As a
general mutation framework for SoS policy testing, we present an
overview of mutation analysis in SoS policy testing as well as the
key aspects that must be defined in practice. To demonstrate the
applicability of the proposed approach, we provide a case study
using a traffic management SoS with the Simulation of Urban
Mobility (SUMO) simulator. The results show that the mutation
analysis is effective at evaluating fault detection effectiveness of
test cases for SoS policies at a reasonable cost.

Keywords-System of Systems, Mutation Analysis, Simulation of
Urban MObility (SUMO), System of Systems Policy, System of
Systems Testing

I. INTRODUCTION

In recent years, unsolved problems within a single system
have grown rapidly along with software and system complex-
ity. In order to address such problems, existing systems can
be integrated to become a more complex and larger system,
incurring more complexity in the integrated systems. This is
called a System of Systems (SoS) [1], which is a collection
of Constituent Systems (CS). CSs are expected to cooperate
with each other in order to achieve an SoS-level goal; each CS
also operates independently in order to achieve its own goals.
To guide how CSs cooperate with each other as an SoS, in
response to changing environments, there are predefined rules
called SoS policies [2], [3], [4]. An SoS policy is a means
used to influence a system in order to achieve its goals [5].
For instance, according to the SoS policy, a manager of a
disaster response SoS can guide or order ambulances and
fire engines to rescue patients from the conflagration together.
Interestingly, the SoS-level goal could fail not because of faults
in the CSs but because of faults in the SoS policy. In this
regard, SoS policy testing is important in SoS engineering.
However, there is no way to evaluate the quality of test cases
for SoS policy testing.

To address this problem, we propose mutation analysis
for SoS policies to evaluate the fault detection effectiveness
of SoS policy test cases. In the detection of real faults,
mutation criteria have been considered more effective than
structural coverage [6], [7]. In mutation analysis for general
testing, many artificial faults (i.e., mutants) are generated from
an original program and used to assess the fault detection
effectiveness of the test cases. However, adapting the notion
of mutation in SoS policy testing is not straightforward. For
example, in SoS policy testing, we must define what a mutant
is and what it means to kill mutants. Thus, we provide an
approach and also a case study of an SoS scenario for a traffic
congestion control, which has been used in several studies [8],
[9], [10], to demonstrate the effectiveness and time complexity
of mutation analysis for SoS policy testing. To execute SoS
policies in a traffic congestion control SoS, we use an open-
source simulation engine called Simulation of Urban MObility
(SUMO) [11].

This paper is organized as follows. Section II introduces
related work on SoS policy and SoS testing. Section III
describes the basic concepts and the processes of mutation
analysis and SUMO. In Section IV, we propose mutation
analysis for SoS policy testing. Section V explains experimen-
tal subjects and Section VI shows the effectiveness and the
time complexity of the proposed mutation analysis approach.
Section VII concludes the paper.

II. RELATED WORK

Testing a policy in SoS is very important in that SoS may
fail even if its CSs do not have faults in them. However, to
our knowledge, SoS policy testing has not been studied.

Hall-May et al. defined an SoS policy as a set of rules
to control the behavior of an SoS in order for it to ap-
propriately operate in a given environment [2]. DeLaurentis
et al. suggested an SoS lexicon with respect to categories
and levels, and applied this lexicon to analyze the National
Transportation System [3]. According to them, an SoS policy
is a function that can guide the entities of the SoS. Based on
the view of Walker [12], Agusdinata stated that a policy is
a means to influence the system in order to achieve certain
goals [5]. Later, Agusdinata et al. presented an approach to
the design of an adaptive SoS policy that would consider
uncertainty and complexity [13]. Mostafavi et al. recently



proposed an ex-ante policy analysis framework by combining
an agent-based modeling approach and system dynamics [14],
[15]. They considered an SoS policy to establish a sustainable
infrastructure on changing environment.

In SoS testing, Luna et al. [16] suggested a framework
for Integration, Verification, Validation, Test, and Evaluation
of SoS. They combined several existing approaches: the De-
partment of Defense Architecture Framework to identify SoS,
the Decision Structure Matrix to optimize the interactions
between CSs, and the pairwise testing technique to determine
the minimum test set. In order to overcome complexity and
cost issues, Liang et al. suggested a framework for SoS
testing using randomization theory to prioritize test cases [17].
Nielsen et al. categorized SoS testing challenges into areas
of complexity, management, multiple standards, and issues
related to the dynamic evolution of the SoS configuration [10].
They insisted model-based testing as one solutions [10], [18]
because this solution can provide a capability view of SoS and
the possibility of extracting test cases.

In addition to testing an SoS itself, we believe that it is also
very important to test the SoS policy. In SoS, the role of the
SoS policy becomes more significant because individual CSs
are not designed to support SoS-level goals. Our work aims
at evaluating the fault detection effectiveness of test cases for
SoS policies, and provides guidelines to manage and operate
CSs.

III. BACKGROUND

A. Mutation Testing

Mutation testing is a fault-based testing technique proposed
in 1970s by Lipton [19] and developed by DeMillo [20]. It
originated from the idea that if a test case can detect an
artificially seeded fault, the test case also can detect a real fault.
In mutation testing, a program that has a seeded fault is called
a “mutant", and the rules of injecting faults are called mutation
operators. If the execution result of a mutant is different from
that of the original program for a test case, it is said that
the mutant is killed by the test case. The ratio of mutants
killed for a set of test cases is called the mutation score of
the set of test cases. This situation has been widely studied
and it has been stated that making higher mutation scores is
effective at detecting real faults [7], [21]. In this paper, we
apply a mutation criterion in order to evaluate test cases for
SoS policy.

B. Simulation of Urban MObility

Simulation of Urban MObility (SUMO) is an open-source
modeling and simulation tool for the transportation do-
main [11]. It was developed by the Institute of Transportation
Systems at the German Aerospace Center and has been con-
sistently updated so far since 2000. With SUMO, users can
visually see the simulation results and conduct experiments
using algorithms related to traffic, such as routing. An example
of the simulation is shown in Figure 1.

In order to simulate SUMO, it is necessary to include the
map (roads and intersections) and vehicle (types, routes and

vehicle

traffic light

intersection

Fig. 1. An example of SUMO simulation. SUMO provides the visual
simulation of traffic flow.

instances) information. Map information involves the details
of the roads and intersections, such as the length of roads and
their location. Vehicle information includes vehicle types and
routes, and generate vehicle instances. Vehicle type can be
comprised of max speed, acceleration, deceleration, length of
types, etc.; route specifies where the vehicle leaves from and
the destination. A vehicle instance is generated by assigning a
vehicle type and a route. The users can provide supplemental
information such as traffic lights. Since transportation SoS
have been widely studied, we modeled a traffic congestion
control SoS as an example scenario through SUMO.

IV. MUTATION ANALYSIS FOR SOS POLICY TESTING

Test 
data

Original 
policy

Mutant generator

Mutated 
policies

Mutation 
score Factor &

operation 
checker

Simulator (policy executor)

Simulation
Engine

Policy 
parser

Original result

Kill checker
Mutant result

iteration

Kill
criterion

Fig. 2. Overview of mutation analysis for SoS Policy Testing

The overall mutation analysis approach for SoS policy
testing is shown in Figure 2. The approach is composed of
three key parts: a mutant generator, a simulator, and a kill
checker.

• The mutant generator generates many mutants from an
original SoS policy by applying mutation operators.

• The simulator simulates (or executes) the generated mu-
tants and the original SoS policy for the given test cases.
To maintain our mutation analysis approach general, we
keep the simulation engine as abstract as possible.

• The kill checker uses the kill criterion to determine
whether individual mutants are killed by the test cases
or not. It finally returns the mutation score for the test
cases, indicating the fault detection effectiveness of the
test cases. A set of test cases is said to be more effective



if it kills more mutants, which can be represented as a
higher mutation score.

In the following subsections, we explain the essential as-
pects of the proposed mutation analysis approach for SoS
policy testing.

A. SoS Policy and its Structure

Although the SoS policy has been studied in different
ways by several researchers, all researchers to this point have
essentially thought of the SoS policy as a set of rules to guide
and influence the SoS in achieving goals [2], [3], [4]. By
deriving from the definition of SoS policy in [4], we define a
basic SoS policy structure as pairs of factors and operations.
The operation part refers to how an SoS policy affects an SoS,
including the CSs. The factor part refers to times at which the
operation should be activated in terms of the SoS environment.
Each part must have elements to perform its roles, as shown
in Table I.

TABLE I
STRUCTURE OF AN SOS POLICY

Category Elements

Factor
Monitoring CSs
Monitoring targets
Satisfying states

Operation Operating CSs
Description of functions
(e.g. function name, sustaining time)

The first element of a factor is a set of monitoring CSs which
refers to what CSs monitor the environment of SoS. Since each
CS is capable of monitoring multiple environmental targets,
specific monitoring targets should be described in the factor
as well. Finally, the satisfying state specifies in what state the
factor is determined to be satisfied. For example, consider a
traffic control SoS. Let each CS is composed of the traffic
monitoring cameras as sensors and the traffic control lights
as actuators in each direction, and placed at each intersection.
The factor could be described in such a way that the number
of vehicles waiting for signal in one direction exceeds ten
vehicles. If the factor is satisfied, a corresponding operation
should be triggered. The operation should include which CSs
will operate (i.e., operating CSs), and how they operate (i.e.,
description of functions). In above example, the corresponding
operation could be described in such a way that turns the
signal in the direction in which the factor is satisfied into blue
light. Depending on the domain and the capabilities of the
SoS, detailed requisites in the operations and factors can be
slightly different.

B. Mutant Generator

Once an SoS policy is defined, it is mutated using mutation
operators for testing. This mutation process is conducted on a
mutant generator. A mutation operator is a rule that makes syn-
tactic changes in a target program. Since there is no mutation
operator for an SoS policy, we develop 8 mutation operators
for the SoS policy with reference to the mutation operators

for Fortran and Simulink [22], [23]. Mutation operators and
corresponding descriptions are shown in Table II. For instance
on the example of Section IV-A, a mutant generated by ROR
mutation operator can turn the signal intro blue light fan when
the number of vehicles waiting for the signal is less than ten,
instead of more than ten. In Section VI-B, we evaluate whether
the mutants generated by the mutation operators for the SoS
policy can mimic real faults.

C. Simulator

After mutants are generated, the mutants and the original
SoS policy must be executed for the test cases. The policy
parser converts the format of the SoS policies in order to
execute them in the simulation engine. When the policy parser
returns the parsed pairs of factors and operations, the factor
and operation checker repeatedly verifies whether each factor
is satisfied during the whole simulation. When some factors
are satisfied, the corresponding operations are marked as exe-
cuted by the simulation engine. Finally, the simulation engine
simulates a target SoS according to the marked operations.

D. Kill Checker

After executing the test cases on the original SoS policy and
the mutated policies, the effectiveness of the test cases should
be evaluated. In traditional mutation testing, a mutant is said
to be killed if the result of the mutant is different from the
result of the original program. A test case is more effective if it
kills more mutants than other test cases. However, because of
non-determinism, an SoS may produce different results even
when executing the same test case on the same policy. Thus,
we should execute the test cases several times to identify the
mutants. Further, the number of needed executions and the
meaning of the difference between a mutant and its original
program must be defined based on the domain knowledge of
the tester.

After collecting the results of repeated executions, statisti-
cal methods are applied to compare multiple results among
mutants and the original program. Following the guideline for
statistical analysis provided by Arcuri and Briand [24], the
Mann-Whitney U test is used to compare the distribution.

V. EXPERIMENTAL DESIGN

A. Example Scenario

We extend the scenario from the previous work [25] and
use as an example scenario for simulation in SUMO. The
transportation SoS has been studied in the SoS research field,
because it can satisfy the characteristics of an SoS. Thus, our
example scenario is to control the traffic and to speed up the
flow of traffic in Daejeon, South Korea. Using the graphical
editor in SUMO, the target city is manually modeled as the
map shown in Figure 3. The dotted circles are congested
intersections.

We design 14 SoS policies to deal with traffic jams and
special traffic situations like emergencies involving ambu-
lances and few traffic. Detailed traffic jam conditions are
defined as the factor of SoS policies. Each CS is comprised of



TABLE II
MUTATION OPERATORS FOR SYSTEM OF SYSTEMS POLICY

Operators Description
Attribute Replacement (AR) Replace an attribute of a node in a policy. For example, a target of an operation can be replaced.
Variable Replacement (VR) Replace a variable of a node in a policy. For example, a variable of a formula to determine whether a

factor is satisfied can be replaced.
Variable Deletion (VD) Delete a variable of a node in a policy. Target is same as VR operator.
Numeric Constant Replacement (NCR) Replace a numeric constant if a node in a policy has numeric value.
Relational Operator Replacement (ROR) Replace a relational operator (>, <, =, ≥, ≤) with another relational operator.
Arithmetic Operator Replacement (AOR) Replace an arithmetic operator (+,−,×,÷) with another arithmetic operator.
Function Replacement (FR) Replace a function with another function. For example, a CS function of can be replaced with another

function.
Node Value Exchange (NVE) If a policy has nodes that have same type of value, exchange values with each other.

Fig. 3. Targeted area in Daejeon. The dotted circles are congested intersec-
tions.

monitoring cameras as sensors and traffic lights as actuators in
each direction, and located at each intersection. Under normal
situations with no traffic jam or emergency, each traffic light of
the CS in each direction changes green in a clockwise manner
according to the changing cycle. However, according to the
information from the monitoring cameras, if it is judged that
there is a traffic jam or an emergency, the traffic light stops
the cycle and follows the operation of the corresponding SoS
policy. A traffic jam is determined by the number of vehicles in
each direction and the sustained time of the traffic jam. Vehicle
instances are stochastically generated, and detailed properties
of vehicles are assigned to each instance. A route is given to
an instance, and so the vehicle instance goes along its own
route. In short, an instance is generated by assigning a vehicle
type and a route.

B. SoS Policy for Traffic Control

Before designing an SoS policy, we define what should be
included in a factor and an operation. Because the format of
input files in SUMO is XML, we make the structure of the
SoS policy in XML format.

We divide the factors into three parts of vehicle, location,
and time. The category “vehicle” represents which type of
vehicle we will monitor, for example, an ambulance or all
types of vehicles. The location includes the locations we will
monitor as targets, and, in order to monitor whether the factor
is satisfied, the CS in charge of that location. When monitoring
CSs, we observe the Number of Vehicles (NV) and the Aver-

age Waiting time (AW). These values are frequently used in
traffic signal controlling algorithms [26], [27]. The satisfying
state can be specified as NV (edge1)+NV (edge2)≥ 30 . Time
is how long the factor should be satisfied to trigger the
operation.

An operation also has three elements of location, time, and
light. Location specifies the place where we will exert control;
it could be edges, all locations, or part of the route that the
vehicle instance has. Depending on the location, operating CSs
are determined. Time is how long the operation is sustained
and is represented by a number or a formula. Light means
which light the traffic sign changes to, so the possible types
of light are yellow, green, and red.

Next, we illustrate an SoS policy for an intersection with
the example shown in Figure 4. Each policy has its ID and
priority; the policy that has the lower priority is preferentially
triggered. In the policy, factor is satisfied if the number of
vehicles at edges gneE196 and gneE198 is greater than 30
and if this state continues for five ticks. The formula node
contains an operator and the left and right sides of the formula,
so it is NV (gneE196)+NV (gneE198)>30 . Since the target of
vehicles is all, any vehicles on gneE196 and gneE198 will
be counted. If the factor is satisfied, traffic lights of CS on
gneE196 and gneE198 will change to green for the ticks same
as the total number of the vehicles on edges gneE196 and
gneE198.

An SoS policy for an intersection is designed in such a
way that if a specific edge is jammed, the traffic light from a
jammed edge to any direction changes to green. Each direction
of the intersection has its own policy, and so a three-way
intersection has at least three policies. Furthermore, we have
two more SoS policies that are not related to traffic jams. The
first one is a policy for ambulances in order to quickly move
ambulances along by changing the traffic lights for ambulances
to green. The second is a policy for free passage when there
are only a few vehicles on the whole map. This policy models
a situation in which the traffic light is a blinking yellow
light under low traffic situations, allowing vehicles to freely
travel regardless of the signal. These two policies are applied
throughout the whole map. Finally, the number of SoS policies
in the set is 14; in detail, there are 12 policies for traffic jams
and 2 policies for low traffic and ambulance situations.

After the simulation, we obtain results for the Total Sim-



<policySet>
<policy id="emergency_by_traffic_jam" priority="10">
<factor>

<vehicle target="all"/>
<location target="edges">
<formula side="left">
NV(gneE196)+NV(gneE198)</formula>
<formula side="operator">G</formula>
<formula side="right">30</formula> </location>

<time>5</time> </factor>

<operation>
<location target="edges">
<edge>gneE196</edge>
<edge>gneE198</edge></location>

<time>NV(gneE196)+NV(gneE198)</time>
<light>g</light> </operation>

</policy>
</policySet>

Fig. 4. Example of the SoS policy for a traffic jam. SoS policy is divided
into a factor and an operation. The factor specifies a vehicle as a monitoring
target, location, time as a monitoring CS, and a satisfying state. The operation
describes the location as an operating CS, and the time and light as a detailed
description of function.

ulation Time (TST) and Average Travel Time (ATT). TST
indicates the overall time spent for the last vehicles to arrive
after the first vehicle has left; ATT is the average time spent
for each vehicle to arrive at its destination after leaving. The
effectiveness of the SoS policy is assessed based on how short
TST and ATT are.

C. Mutant Generation

Mutants for SoS policy testing can be automatically gener-
ated using the 8 mutation operators shown in Table II.In order
to describe how to apply mutation operators, Figure 5 presents
an example of applying an FR mutation operator, which
replaces one function with another function. The function of
traffic lights to change to green is modified to change to red.
The original policy is planned to speed up the traffic flow by
changing traffic lights to green under traffic jam situations;
however, the mutant policy will restrict the flow by changing
the light to red in spite of congestion.

<operation> ...
<light>r</light>
<!-- <light>g</light> -->...

</operation>

Fig. 5. An example of a mutant. FR operator modifies the function to change
red light instead of green light.

In experiments, the eight mutation operators are applied in
set of 14 SoS policies whenever possible. As a result, we
generate 523 mutants.

D. Simulation

We use SUMO as the simulation engine because SUMO is
capable of mimicking realistic traffic situations. However, the
basic SUMO system cannot simulate dynamic changes accord-
ing to operations triggered by factors during the simulation.

To tackle this limitation, using SUMO APIs, we additionally
implement a simulation engine wrapper to provide dynamic
intervention.

E. Test Case Evaluation

To test the SoS policies, test cases can be a set of several
inputs such as a traffic light algorithm, data on the types of
vehicles, or generation rate of routes. A preliminary study on
the composition of one test case showed that vehicle types and
their routes are the main items that affect the traffic situation.
We randomly generate 10 test suites considering the diversity
of vehicle types and routes.

Considering the randomness of simulation, the more exe-
cutions imply the more statistically sound results. However, a
small number of executions is preferred in practice because
of budgetary limits. In order to identify that each mutant
in M is killed, each O and M are executed 10 times and
there are 10 results of TST and ATT. We define the kill
criterion in terms of timeout of TST and distribution of ATT.
The timeout criterion distinguishes killed mutants if the TST
of a mutant is over twice the average TST in O once. For
example, if O takes 300 ticks on average and M takes over
600 ticks once, the execution of M is immediately terminated
and M is determined as killed. Since the execution of a mutant
in SoS takes a long time, the timeout criterion is crucial.
If the simulations of M are not terminated by the timeout
criterion, the distribution criterion is considered. Because of
non-determinism, we have multiple results of ATT and must
compare them at the same time between O and M . The Mann-
Whitney U Test is conducted in order to compare the ATT
distributions of O and M . The null hypothesis is that the
distribution of M is equal to the distribution of O. If not,
we say the distributions are not equal, which means that M
is killed. Since 0.01 is used as the p-value, M is determined
as killed if its p-value is less than 0.01.

VI. EXPERIMENTAL RESULTS

A. Research Questions

The followings are the questions that we want to answer:
• RQ1: Are mutation scores correlated with fault detection

ratios?
• RQ2: How long does it take to execute the mutants?
• RQ3: How much will the mutation score change if we

use mutant sampling?
To address the research questions, we use Intel(R) Core

i7-6700(3.40GHz) CPU, 32.0GB memory, Windows 10 Pro
version of OS, and 0.25.0 version of SUMO.

B. RQ1: Correlation with Real Fault Detection

For real faults, a mutation testing expert injects 20 faults
in the SoS policy. Two faults out of 20 faults are not used
because they are not complied, and thus we conduct an
experiment with 18 real faults. We abbreviate the SoS policy
with real faults as RF01,· · · ,RF20, and exclude RF02 and
RF04. The number of test suites is 10; these are represented
as TS01,· · · ,TS10. The original policy O, mutants M , and



real faults RF01,· · · ,RF20 are executed 10 times for non-
determinism in our experiment. We use the kill criterion
mentioned in Section V-E to determine killed mutants. The
evaluation is done with the following process:

1) Execute the original policy and 523 mutant policies on
all TSs 10 times. Calculate mutation scores of TSs.

2) Execute RFs on each test suite 10 times. Then observe
whether a fault is detected or not.

3) Analyze the correlation between the number of detected
real faults and the mutation score for each test suite.

Figure 6 shows the results. To measure correlation coeffi-
cients between the RF detection ratio and the mutation score,
we calculate Pearson’s linear correlation coefficient and Spear-
man’s rank correlation coefficient. Pearson correlation is 0.951
with p-value 2.38e-05, and Spearman correlation is 0.896 with
p-value 4.54e-05. This confirms that the RF detection ratio is
very closely correlated with mutation score. It also implies that
the proposed mutation operators listed in Table II successfully
mimic the real faults made by the competent expert. As a
result, it is possible to select effective test suites for SoS
policies using the proposed mutation analysis approach.

Fig. 6. Correlation between real fault detection ratio and mutation score for
all test suites. There is a strong correlation between the number of detected
real faults and the mutation score. A test suite with a high mutation score can
detect more real faults.

C. RQ2: Execution Time of Mutants

0

200

400

600

800

1000

1200

20 40 60 80 100

ex
ec

u
tio

n 
tim

e(
m

in
)

the number of mutants

Execution time on mutants

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 AVERAGE

Fig. 7. Execution time of all mutants. Execution time increases linearly
according to the number of mutants.

Since the time for execution is the largest part of the process
of mutation testing, we decided to measure the execution time.

In the experiment, we randomly extract 20, 40, 60, 80, and 100
mutants from the mutant pool, and measure how long it takes
to execute a specified number of mutants in each test suite.
Table 7 shows the execution time in minutes; the thickest line
is the average of all test suites.

From the graphs of execution time for each test suite, time
complexity according to the number of mutants is deemed
to be O(n). In other words, the execution time will increase
linearly depending on the number of mutants. It takes about
714 minutes to execute 100 mutants on average. However,
the number of mutants can be very large, even with a small
number of policies. For example, we use 14 policies in our
case study, and the number of mutants is nearly 500. This
means that it will take at least about 60 hours for the test
suite. In Section VI-D, we seek possible solutions to reduce
the execution time of mutants and to make the overall process
more practical.

D. RQ3: Cost Reduction through Mutant Sampling

As discussed in Section VI-C, the cost of SoS policy testing
is one of the barriers to the application of mutation analysis. In
the area of traditional mutation testing, one solution to reduce
the cost is mutant sampling. In mutant sampling, a subset
of mutants from the entire mutant set is randomly selected
and executed. One study has experimentally showed that by
randomly selecting 10 percent of mutants, the mutation score
is lowered by only 16 percent compared to the mutation score
of the whole set. We apply this technique and compare the
mutation score between sampled mutants and comprehensive
mutants. In the sampling process, we randomly select mutants;
the mutation score is measured in increments of 10%. This
means that the mutation score of 100% is the mutation score
of the whole set of mutants. Figure 8 shows the difference
between the mutation score for the total mutants and the score
for the mutants sampled in units of 10%.

-10

-8

-6

-4

-2

0

2

4

6

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%M
S

 r
ed

uc
tio

n 
o

n 
sa

m
p

le
d

 m
u

ta
nt

s

Sampling rate over all mutants

Trend of Mutation Score (MS) on sampled mutants

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

2.6% in average

9.2% maximum

Fig. 8. Difference of mutation scores of sampled mutants and all mutants
using mutation sampling. There is no significant difference between the
mutation scores for sampled mutants and all mutants.

The rightmost points are the mutation scores of all mutants
for each test suite; these points indicate that the sampling rate
is 100%. This result shows that the difference between the
mutation scores for the sampled mutants and for all mutants
is less than 9.2%. The average difference when using 10%



of the whole set of mutants is 2.6%. This means that the
10% sampling rate, which is considered reasonable for general
mutation testing, is appropriate even for mutation analysis for
SoS policies, despite the new kill criterion. Thus, the sampling
rate can be set to reduce costs, depending on the budget and the
accuracy of results desired by the tester. Higher sampling rates
will bring about results much closer to the mutation scores of
comprehensive mutants.

VII. CONCLUSION

This paper suggests a mutation analysis approach for SoS
policy testing. We define 8 mutation operators for SoS policies
and a kill criterion to deal with the non-determinism of the
SoS. In a case study, a traffic congestion control SoS is
simulated by SUMO.

For the experiment, we try to find answers in three areas:
correlation between mutation score real faults detection ratio,
time complexity, and the possibility of cost reduction through
the mutant sampling. First, there is a strong correlation be-
tween mutation score and real fault detection ratio. It means
that test suites with a higher mutation score can detect more
real faults. Second, the time taken to execute mutants increases
linearly according to the number of mutants: 714 minutes
are needed to execute 100 mutants on average. Third, if the
sampling rate is 10%, which is the general sampling rate in
mutation testing, the score difference is 2.6% on average. This
means that testers can reduce the cost by sampling about 10%
of mutants, in spite of the different kill criterion.

Our future work will be to apply existing test data gen-
eration techniques to SoS policy testing. We will perform
experiments with other simulators to test SoS policy in other
SoS domains. Through experiments with SoS policies in other
domains, the mutation operators and the kill criterion that are
statistically defined in this paper can be further evaluated.

ACKNOWLEDGMENT

This research was supported by Institute for Information
& communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (No.R0126-16-1101, (SW
Star Lab) Software R&D for Model-based Analysis and Ver-
ification of Higher-order Large Complex System. We also
would like to thank anonymous reviewers for their valuable
comments.

REFERENCES

[1] M. W. Maier, “Architecting principles for systems-of-systems,” INCOSE
International Symposium, vol. 6, no. 1, pp. 565–573, 1996.

[2] M. Hall-May and T. Kelly, “Defining and decomposing safety policy for
systems of systems,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2005, pp. 37–51.

[3] D. DeLaurentis, R. K. Callaway et al., “A system-of-systems perspective
for public policy decisions,” Review of Policy Research, vol. 21, no. 6,
pp. 829–837, 2004.

[4] D. B. Agusdinata and D. DeLaurentis, “Specification of system-of-
systems for policymaking in the energy sector,” Integrated Assessment,
vol. 8, no. 2, 2008.

[5] B. Agusdinata, Exploratory modeling and analysis: a promising method
to deal with deep uncertainty. TU Delft, Delft University of Technology,
2008.

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654–665.

[8] D. DeLaurentis, “Understanding transportation as a system-of-systems
design problem,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit,
vol. 1. Reno, NV New York, NY, 2005.

[9] M. Mansouri, A. Gorod, T. H. Wakeman, and B. Sauser, “Maritime
transportation system of systems management framework: A system of
systems engineering approach,” International Journal of Ocean Systems
Management, vol. 1, no. 2, pp. 200–226, 2009.

[10] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

[11] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[12] W. E. Walker, “Policy analysis: a systematic approach to supporting
policymaking in the public sector,” Journal of Multicriteria Decision
Analysis, vol. 9, no. 1-3, p. 11, 2000.

[13] D. B. Agusdinata and L. Dittmar, “Adaptive policy design to reduce car-
bon emissions: a system-of-systems perspective,” IEEE Systems Journal,
vol. 3, no. 4, pp. 509–519, 2009.

[14] A. Mostafavi, D. Abraham, and D. DeLaurentis, “Ex-ante policy analysis
in civil infrastructure systems,” Journal of Computing in Civil Engineer-
ing, vol. 28, no. 5, p. A4014006, 2013.

[15] A. Mostafavi, “Integrated policy simulation in complex system-of-
systems,” in Proceedings of the 2013 Winter Simulation Conference:
Simulation: Making Decisions in a Complex World. IEEE Press, 2013,
pp. 4004–4005.

[16] S. Luna, A. Lopes, H. Y. S. Tao, F. Zapata, and R. Pineda, “Integration,
verification, validation, test, and evaluation (ivvt&e) framework for
system of systems (sos),” Procedia Computer Science, vol. 20, pp. 298–
305, 2013.

[17] Q. Liang and S. H. Rubin, “Randomization for testing systems of
systems,” in Information Reuse & Integration, 2009. IRI’09. IEEE
International Conference on. IEEE, 2009, pp. 110–114.

[18] O. AT&L, “Systems engineering guide for systems of systems,” Wash-
ington, DC: Pentagon, 2008.

[19] R. Lipton, “Fault diagnosis of computer programs,” Student Report,
Carnegie Mellon University, 1971.

[20] R. J. Lipton, R. A. DeMillo, and F. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE computer, vol. 11,
no. 4, pp. 34–41, 1978.

[21] R. Geist, A. J. Offutt, and F. C. Harris, “Estimation and enhancement of
real-time software reliability through mutation analysis,” IEEE Transac-
tions on Computers, vol. 41, no. 5, pp. 550–558, 1992.

[22] K. N. King and A. J. Offutt, “A fortran language system for mutation-
based software testing,” Software: Practice and Experience, vol. 21,
no. 7, pp. 685–718, 1991.

[23] N. T. Binh et al., “Mutation operators for simulink models,” in
Knowledge and Systems Engineering (KSE), 2012 Fourth International
Conference on. IEEE, 2012, pp. 54–59.

[24] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[25] W. Yun, J. Song, E. Jee, and D.-H. Bae, “A suitability analysis of sumo
for modeling system of systems in traffic domain example,” in 2016
Korea Computer Congress. Korean Computer Congress, 2016, pp.
631–633.

[26] D. An and G. Cho, “Adaptive traffic light control system in vanet
environment,” 2012 Korea Computer Congress, vol. 39, no. 1D, pp.
343–345, 2012.

[27] H.-S. Lee, W.-H. Han, and W.-K. Choi, “Improved crossroad signal
system using etm,” 2008 Korea Entertainment Industry Association,
vol. 2, no. 2, pp. 517–523, 2008.


