
Practical Human Resource Allocation in Software Projects Using Genetic
Algorithm

Jihun Park, Dongwon Seo, Gwangui Hong, Donghwan Shin, Jimin Hwa, Doo-Hwan Bae
Department of Computer Science

Korea Advanced Institute of Science and Technology
{jhpark, dwseo, gwangui.hong, donghwan, jmhwa, bae}@se.kaist.ac.kr

Abstract

Software planning is becoming more complicated as the
size of software project grows, making the planning process
more important. Many approaches have been proposed to
help software project managers by providing optimal hu-
man resource allocations in terms of minimizing the cost.
Since previous approaches only concentrated on minimiz-
ing the cost, there has not been a study that considers the
practical issues affecting project schedule in practice.

We elicited the practical considerations on the human re-
source allocation problem by communicating with a group
of software project experts. In this paper, we propose an ap-
proach for solving the human resource allocation problem
using a genetic algorithm (GA) reflecting the practical con-
siderations. Our experiment shows that our algorithm con-
siders the practical considerations well, in terms of continu-
ous allocation on relevant tasks, minimization of developer
multitasking time, and balance of allocation.

1 Introduction

As the size of software project increases, software plan-
ning process becomes more complicated and important. In
addition, an inappropriate software plan often results in the
failure of a project [15]. For these reasons, software project
managers can significantly benefit from the human resource
allocation technique. The human resource allocation tech-
nique automatically allocates each employee to the tasks to
make an optimal plan of the project in terms of time and
money.

Many researches have been proposed to deal with the
human resource allocation problem. For example, Alba
et al. [1] and Chang et al. [6] suggested a genetic algo-
rithm (GA) approach for minimizing the project duration
and project cost. Chang et al. [7] suggested a fine-grained
representation of a human resource allocation result and

used GA to find a schedule minimizing payment and delay
penalty.

While these approaches only considered minimizing the
cost in terms of time or money, they did not consider practi-
cal issues which can affect the actual development process
when the plan is applied in a real world. We discussed with
a group of software experts to elicit practical issues that af-
fect the project schedule in practice. We then suggest a GA
approach to minimize the inefficient assignments which can
delay the schedule.

The rest of this paper is organized as follows. Section 2
explains the practical considerations for the human resource
allocation problem and Section 3 describes our genetic al-
gorithm. Section 4 presents a case study, Section 5 dis-
cusses threats to validity, Section 6 introduces related work,
and Section 7 summarizes our findings.

2 Practical Considerations

By consulting with an expert group, we elicited practi-
cal issues which can affect the project schedule. The expert
group consisted of managers and developers from a soft-
ware development and consulting company, military soft-
ware experts from a research institute, and a professor and
graduate students. The derived practical considerations are
described below.
C1. Short project plan The basic objective of human re-
source allocation problem is to generate a project plan that
can be finished within the minimum time span, in order to
reduce the entire project cost in terms of time and money.
C2. Minimization of multitasking time In practice, a de-
veloper can work on more than one task at the same time,
while many researches assumed that a developer can work
on only one task at a time [3, 9, 18]. Thus, we allow as-
signing developers to work on multiple tasks at the same
time. If a developer is involved in too many tasks at a cer-
tain moment, however, productivity will decrease since the
developer cannot concentrate on one task due to the fre-

688

quently switching tasks. In addition, a developer involved
in multiple tasks at the same time is more likely to introduce
bugs. [11].
C3. Assignment on relevant tasks Since the task prece-
dence relationship indicates closely related tasks, assigning
a developer to both of the pre-task and the post-task is ef-
ficient in terms of minimizing the context-switching cost.
If a developer should work on a series of tasks that are not
related to each other, the developer must learn the new con-
text for every assigned task, e.g., requirements or design of
an unfamiliar module.
C4. Balance of allocation Task size should be considered
in the human resource allocation problem. On the one hand,
if a few developers are assigned to a huge task, developers
will be overwhelmed by the heavy workload. On the other
hand, if too many developers are assigned to a small task,
the high communication overhead causes inefficiency. The
staff level (e.g., director/manager/engineer) of developers
also should be considered. Developers with high staff level
have more experiences than lower level developers, so they
will manage a task rather than concentrating on the imple-
mentation, which is the main work of a low staff level de-
veloper. To manage each task efficiently, developers having
different staff levels should be assigned together.

Previous project scheduling algorithms do not reflect the
inefficiencies caused by these practical issues, but in prac-
tice, project managers consider them very important. Our
GA approach takes into account of these practical consider-
ations by representing them as a part of the fitness function.

3 Human Resource Allocation with GA

3.1 Problem Description

Our problem is described by the tasks and develop-
ers. A software project consists of a set of tasks T =
{t1, t2, · · · , tn}. We use the task precedence graph (TPG)
to represent the precedence relationship between tasks. Fig-
ure 1 shows an example of a TPG. In Figure 1, task t1
must be completed before t2, t3 and t4 begin. Each task
ti(i = 1, 2, · · · , n) is defined by the following attributes.

• typei: The type of the task. In our research, four task
types which are the basic phases for software process
models are used: analysis, design, implementation,
and testing.

• efforti: The effort estimated by the project manager,
which is assumed to be available as an input. Project
manager can use existing effort estimation techniques,
such as COCOMO models [4, 5], or analogy-based
software effort estimation [16]. The unit of effort is
man-hours.

• PTi: A set of preceding tasks for the task. A task can-
not begin if any of the preceding task is not completed.
TPG is constructed based on the precedence relation-
ship.

3 | totalpage

1

4

2
6

3

5

7

9

8

10

11

12
13

14

15

16

17

18

19

20

21

Figure 1. A Task Precedence Graph (TPG)

A set of developers D = {d1, d2, · · · , dm} is allocated
to tasks. We assume that the developer information is man-
aged by a database, and the project manager can access it
for planning a project. Developer dj(j = 1, 2, · · · ,m) is
defined by the following attributes

• slj : The staff level of the developer. In our problem,
we assume that there are three hierarchical staff levels
—director, manager, and engineer.

• abilitykj : The ability of the developer for task type k.
Developers have different levels of proficiency on each
task type. If a developer has 0.7 as the ability value on
the design task type, he decreases 0.7 remaining man-
hour per a time unit when he is only working on the
task.

A single allocation for a task is represented by
{ti, {dk, · · · , dl}}, and the assignment result consists of the
allocations for each task.

3.2 Genetic Algorithm

A genetic algorithm (GA) is an evolutionary search-
based heuristic algorithm introduced by Holland [12].
Many researches tried to utilize the GA to find an optimal
solution for the human resource allocation problem, which
has a very large search space [1, 2, 6, 7]. We develop a
GA approach reflecting the practical considerations to min-
imize inefficient allocations that can delay the schedule in
practice. Figure 2 shows the pseudocode of our GA. Each
step of the algorithm is explained in this section.
Representation We define a chromosome to represent an
assignment result as a fixed length of genes. The chromo-
some has |T | number of genes, where each gene records the
assigned developers for each task. For example, the first
gene contains a set of developers who are assigned to the
task t1. Figure 3 shows an example of a chromosome.
Initial population The first step of our GA algorithm is to
generate an initial population of chromosomes. The initial

689

//Initial population
Generate initial population P0

Initialize generation counter g ← 0

while(g < the maximum number of generation counter){
Generate empty population Pg+1

//Assessment
Evaluate each chromosome in population Pg

//Elitism Selection
Copy a chromosome cbest which has the highest fitness

value from Pg

Copy cbest into Pg+1

while(the number of chromosome in Pg+1 != the number
of chromosome in Pg){

//Tournament Selection
Select c1 and c2 from P0 using tournament selection

//Crossover
Generate c3 from Crossover c1, c2

//Mutation
for (genei in c3)

if (rand(0,1) < mutation rate) Mutate genei

Copy c3 into Pg+1

}
}
Evaluate each chromosome in population Pg

Copy cbest which has the highest fitness value from Pg

return cbest

Figure 2. Genetic algorithm

1 | totalpage

t1 {d1} t2 {d2, d4} t3 {d1, d2, d3} t4 {d3, d5}

gene1 gene2 gene3 gene4

Figure 3. An example of a chromosome

population comprises the populationSize number of chro-
mosomes. We randomly assign a developer to a task, until
every task has at least one assigned developer.
Assessment We evaluate each chromosome to identify a
superior one among the population. The fitness function
assesses a chromosome by simulating the solution and in-
specting the assignment structure. Details of the fitness
function is described in Section 3.3.
Selection Selection step identifies superior chromosomes
that should survive until the next generation and pass their
genes down to the next generation. On the one hand, the
elitism selection passes on the fittest chromosome of the
current generation to the next generation. It prevents degra-
dation of the fittest chromosome. On the other hand, the
tournament selection chooses a chromosome to be a parent
of the next generation. It randomly selects k (tournament
size) chromosomes from the current population, and picks
the fittest one among them. In this study, k=5 is used.
Crossover Crossover step generates chromosomes for the

next generation using two parent chromosomes selected by
the tournament selection. We use uniform crossover which
generates a new chromosome by randomly taking each gene
from the parents. We repeat the tournament selection and
crossover steps to make new chromosomes until the number
of chromosomes in the next generation becomes equal to the
predefined population size. Figure 4 shows an example of
the uniform crossover.

2 | totalpage

t1 {d1} t2 {d2, d4} t3 {d1, d2, d3} t4 {d3, d5}

t1 {d2, d3} t2 {d1} t3 {d1, d5} t4 {d1, d3, d5}

c1 :

t1 {d1} t2 {d1} t3 {d1, d2, d3} t4 {d1, d3, d5}

0.3 0.6 0.15 0.8

c2 :

cnew :

Random number :

Figure 4. An example of the uniform
crossover

Mutation Mutation step maintains genetic diversity. With
a certain probability of the mutation (mutation rate), each
gene is mutated using one of the three mutation operators:
assigning a random developer to the task, removing a ran-
dom developer from the task, and replacing an assigned de-
veloper with a random developer. In this study, we use 0.05
for the mutation rate.

3.3 Fitness Function

A fitness function assesses each chromosome to identify
a superior one among the population. The fitness function
encodes the requirements of our GA, which means the bet-
ter human resource allocation results in the higher fitness
score. The formula for our fitness function is as follows.

FitnessScore = w1 ∗CMscore+w2 ∗CEscore+w3 ∗
CCscore+ w4 ∗BAscore

Each wi represents the weight for each score, and each
score encodes our practical considerations. CM (Cost Min-
imization) score assesses whether the project cost is mini-
mized in terms of time, and CE (Concentration Efficiency)
score represents how many developers are involved in mul-
titasking at each time unit. CM and CE scores are calculated
with the scheduling simulation. CC (Concentration Con-
sideration) score assesses whether developers are assigned
to tasks that have precedence relationships, and BA (Bal-
ance of Allocation) score represents whether developers are
evenly allocated to tasks considering the task size and the
staff level. The CM, CE, CC, and BA scores reflect the
practical consideration C1, C2, C3, and C4, respectively.

3.3.1 Scheduling Simulation

We inspect the estimated time span of an assignment re-
sult and how assigned developers perform each task, using

690

AllocationResult solution
List<Task> remainingTasks
List<Task> enabledTasks
List<Task> runningTasks
List<Task> completedTasks

Add tasks that do not have pre-task to enabledTasks
while(completedTasks.size() != totalNumOfTasks) {
TimeTick++
Assign developers to enabled tasks using solution
running task ← enabled task

for(runingTask in runningTasks){
// Perform task
Decrease remaining man-hour of running tasks
if (runningTask.remainingMH <= 0){

// Complete the task
completed task ← running task}

}
for(remainingTask in remainingTasks){
if (all preTask of a remainingTask is completed)

// Enable the task
enabled task ← remaining task}

}
}

Figure 5. Scheduling simulation algorithm

a scheduling simulation algorithm (Figure 5).
The allocation result (variable solution) is an input of

this algorithm. At the beginning of the algorithm, every
task is added to remainingTasks and then the task which
does not have any pre-task is added to enabledTasks.

At the beginning of the while loop, the time tick in-
creases. The start and finish time of each task are calcu-
lated with this time tick. The finish time of the last task is
regarded as total time span of a project.

For each task in enabledTasks, developers are assigned
as recorded in solution, and the task is moved to running-
Tasks. The remaining man-hour of each task in running-
Tasks is decreased by the sum of the assigned developers’
ability. The ability of the developer is assumed to exist as
an input. If a developer is working on more than one task,
his ability on each task is divided by the number of assigned
tasks, because his capability is divided among the tasks.

After decreasing the remaining man-hours of running
tasks, running tasks with its remaining man-hour less than
or equal to zero is moved to completedTasks. Tasks in re-
mainingTasks that every pre-task is completed are moved
to enabledTasks.

3.3.2 Fitness Scores

Cost Minimization (CM) Score The CM score assesses
whether the solution finishes early. (C1) The formula for
CM score is as follows.

CM score =
minTS(S)

TS(S)

minTS(S) =
∑

k∈types

∑
{ti∈T |typei=k} efforti

max(abilityk1 , · · · , abilitykm) ∗ |D|

The minTS(S) refers to the minimum time span, and
TS(S) refers to the time span of the solution S which can
be calculated by the simulation algorithm. The minTS(S)
is calculated with the assumption that every developer has
the highest ability among developers at the given task type
and there is no multitasking overhead or communication
cost. The CM score becomes higher if the time span of
the solution comes to the minimum time span.
Concentration Efficiency (CE) Score To assess the burden
of multitasking (C2), we calculate the number of tasks that
a developer has to deal with at each time unit. At a certain
moment, a developer might work on more than one task be-
cause the assigned tasks are performed at the same time, but
such multitasking can cause inefficiency in practice, which
delays the project progress behind the expected schedule.
The formula for the CE score is as follows.

CE score =
1

|D|
∑
dj∈D

|{∀t||#involve(dj , t)| ≥ 1}|∑finishTime
t=1 |#involve(dj , t)|

|#involve(dj , t)| refers to the number of tasks that de-
veloper dj is involved in at time t. For each developer, we
divide the total working time units by the sum of the num-
ber of involved tasks at those time units to get the partial
CE score. For example, if a developer performs [2, 1, 0, 4]
tasks on time unit 1 to 4, the developer level CE score is cal-
culated by 3 / 2+1+4. We average all the partial scores for
each developer to get the CE score. The CE score comes to
1.0 if every developer performs only one task at every time
unit that he works.
Continuity Consideration (CC) Score The CC score as-
sesses how well the human resource allocation result con-
siders the precedence relationship between tasks (C3). We
count the number of unit allocation uax = {tx, dx} that
do not consider continuity, in which the developer is not
assigned any pre-tasks of the task tx. The solution of hu-
man resource allocation S′ is represented by a set of unit
allocation (S′ = {ua1, ua2, ..., uan}), and the CC score is
calculated with the formula below.

CC score = |{uax∈S′|(∃(uak)∈S′)∧(tk∈PTx)∧(dk=dx)}|
|S′|

The numerator of the formula counts how many times
the developer of a unit allocation (dx) is assigned to any
pre-task of the task (PT x). The CC score comes to 1.0 if
every unit assignment considers continuity.
Balance of Allocation (BA) Score We assess how evenly
the developers are allocated to tasks considering the task
size and staff level using the BA score (C4). The BA score
uses Shannon entropy [17] which assesses the uncertainty in
a distribution. The normalized Shannon entropy is defined

691

as: H = −
∑n

i=1(pi ∗ lognpi), where pi is the probability
that each element occurs (pi ≥ 0 and

∑n
i=1 pi = 1). The

value is maximized when all pis have the same probability,
i.e., pi = 1/n,∀i ∈ 1, 2, ..., n. We calculate the BA score
with the formula below.

BA score =

∑
s∈staff level Entropys

|{staff level}|
Entropys = −

∑n
i=1(p

s
i ∗ lognpsi)

psi =

#assigneds
i

efforti∑
tk∈T

#assigneds
k

effortk

Entropys represents the entropy value at each staff
level, and psi represents the normalized value for the num-
ber of assigned developers of the staff level s at task ti
(#assignedsi) divided by the effort of the task (efforti).
The avearge of the entropy values for each staff level is cal-
culated to assess the BA score. The BA score becomes 1.0
if all pi are the same, meaning that the number of assigned
developers to a task is proportional to the effort of the task.

4 Case Study

We assess how well our GA reflects the practical consid-
erations, by comparing the result when the GA only con-
siders cost minimization (Casetime, weights for the fit-
ness score = {1, 0, 0, 0}), and the result when considering
all the objectives (Caseall, weights for the fitness score =
{0.25, 0.25, 0.25, 0.25}).

4.1 Experimental Setup

We generate three experiment sets. Set1, Set2, and Set3
consist of 11 tasks / 7 developers, 11 tasks / 10 developers,
and 21 tasks / 10 developers respectively. Table 1 and Ta-
ble 2 describe a task set T1 with 11 tasks and a developer set
D1 with 7 developers. The detail of a developer set with 10
developers and a task set with 21 task set is omitted because
of the space limit.

Our GA uses 100 population sizes, and we set the max-
imum generation count to 400. We inspect the tendency
of the fitness value along different GA parameters, then
we determine the appropriate parameters that GA explores
enough search space to get the optimal solution. Selecting
the optimal parameters is beyond the scope of this paper.

We compare 1) the time span of the result, 2) the aver-
age time units that each developer works on more than one
task, 3) the number of assignments not considering the task
precedence, 4) the number of tasks that only one level de-
velopers are assigned, and 5) the mean and variance of (the
number of assigned developers / efforti) for each task. We
repeat each experiment 100 times to compare the average
value. Table 3 summarizes the results.

ID typei efforti PTi

t1 Analysis 400
t2 Design 320 1
t3 Design 240 1
t4 Design 240 1
t5 Implementation 240 2
t6 Implementation 600 3
t7 Implementation 160 4
t8 Test 100 5
t9 Test 80 6
t10 Test 70 7
t11 Test 80 8,9,10

Table 1. Task set T1

ID slj
abilitykj

analysis design implementation test
d1 3 1.25 1 1.25 1.25
d2 3 1.25 1 1.25 0.75
d3 2 0.75 0.75 1 1
d4 2 0.75 1 1 0.75
d5 1 1 0.75 0.75 1
d6 1 0.75 1 0.75 0.75
d7 1 1 0.75 1 0.75

Table 2. Developer set D1

4.2 Experimental results

The time span of the result We find that Casetime take
5.99% to 12.07% shorter time span than Caseall. We sim-
ulate the time span of each solution, but in practice, several
issues can affect the actual time span, such as multitasking
overhead, context switching cost, and hierarchical manage-
ment efficiency. Considering that we minimize these prac-
tical issues that can delay the project schedule, we conclude
that the difference is acceptable.
The average multitasking time We investigate how long
developers are involved in multitasking, by studying the av-
erage time that a developer works on more than one task.
We find that the average multitasking time of each devel-
oper in Casetime is 3.51 to 6.94 times of Caseall. High
multitasking time represents that developers should work
more than one task at the same time for a longer time in
Casetime schedule than in Caseall.
Assignments not considering precedence relationship
We assess whether the human resource allocation result re-
duces the inefficiency of context switching, by comparing
the number of unit assignment (see section 3.3.3) which do
not consider the task precedence relationship. We find that
the number of assignments not considering precedence rela-
tionship in Casetime is 2.31 to 2.72 times of Caseall. The
result indicates that developers are assigned to a task of dif-
ferent context from previous task more often in Casetime

692

Metric
Set1 Set2 Set3

#task=11 #dev=7 #task=11 #dev=10 #task=21 #dev=10
All Time All Time All Time

Time (h) 342.71 322.17 239.70 225.04 846.30 744.14
Multitasking Time (h) 28.96 101.76 12.49 54.94 58.38 404.93
no precedence assignments 7.91 18.31 10.92 27.08 15.11 41.17
tasks only one level asisgned 3.73 3.05 1.69 3.07 5.74 6.56
Mean (# assigned devs / efforti) 2.15e-02 3.50e-02 2.80e-02 4.70e-02 1.07e-02 1.88e-02
Variance (# assigned devs / efforti) 1.71e-04 7.47e-04 2.69e-04 1.48e-03 4.29e-05 1.24e-04

Table 3. Experiment results

than in Caseall
The number of tasks that only one staff level of develop-
ers are allocated To investigate whether developers having
different staff levels are evenly assigned to each task, we
compare the number of tasks that only one staff level of de-
velopers are assigned in Casetime and Caseall. We find
that the number is higher in Casetime than in Caseall for
Set2 and Set3, but the result is reversed on Set1. Because
the number of high level developer is limited and our GA
minimize multitasking time in Caseall, there is no signif-
icant difference of the number in Caseall and Casetime.
We find that the average multitasking time and the number
of tasks with only one staff level developers are inversely
proportional. The result shows that our GA in Caseall con-
siders the staff level slightly better than Casetime, but min-
imize multitasking time in Caseall significantly.
The mean and variance of (the number of assigned de-
velopers / efforti) for each task To identify how many
developers are assigned to each task proportional to the ef-
fort, and how stable the value is, we investigate the mean
and variance of # of assigned developers / efforti . Over-
all, the means and variances are higher in Casetime than in
Caseall. This results indicate that more developers are as-
signed when we only consider time, which can cause com-
munication overhead and longer multitasking time. More-
over, large variances indicate there are more cases that too
many developers are assigned to a small task or small num-
ber of developers are assigned to a large task.

5 Discussion

We use the task type to represent a type of the task, rather
than defining a skill set needed to do a task. Many previous
approaches [7, 8, 18] used skill sets to represent required ca-
pability of a task, but we abstract the skill sets using the task
type. Our assumption is that defining and inputting each
skill set and the capability of developers for each skill is
difficult for project managers, especially when the number
of skill is large. A project manager can use our tool by cat-
egorizing tasks into several types, and defining proficiency
of developers on each category type, which is simpler than

a skill set representation.
Our approach generates only one solution which is the

fittest one, not considering relative proportion of each sub-
scores. We can apply MOEA approach [13], which gener-
ates a set of non-dominated solutions when the fitness func-
tion comprises the weighted sum of multiple sub-scores.

6 Related Work

Duggan et al. [9] suggested a GA approach as an multi
objective evolutionary approach to consider package prece-
dence, full team utilization, and cross-communication over-
head. They only considered that the successor package
should be developed after the predecessor, not considering
that the developers should be assigned to tasks with a prece-
dence relationship to lessen the context switching cost. Bar-
reto et al. [3] suggested a optimization-based approach to
find teams satisfying constraints established by the software
development organization. These work assumed that devel-
opers can work on only one task at a time, which was unre-
alistic in practice. Their approaches required a fine-grained
project plan in which a task size was small enough to be
finished by a developer.

Chang et al. [7] proposed a human resource allocation
technique based on GA with the concept of time-line. The
assignment was represented by a three-dimensional array
with time, tasks, and employee axes. As time goes with the
pre-defined time unit, the human resources were allocated
to tasks. Genetic algorithm was used to search the sched-
ule that minimized payment and delay penalties. Chen et
al. [8] improved Chang et al.’s work [7] by introducing the
event-based scheduler and the ant colony optimization tech-
nique. These approaches could allocate human resources in
a fine-grained manner, but the allocation was often too frag-
mented. In addition, they only concentrated on minimizing
the cost, not considering practical issues that we consider in
this paper.

Gerasimou et al. [10] investigated the human resource al-
location problem using a particle swarm optimization tech-
nique. Their fitness function evaluated whether each task
finished before the deadline and whether an appropriate de-

693

veloper was assigned to a task considering the ability of the
developer. Their approach allowed developers to work on
more than one task at the same time, but did not limit or
manage the number of tasks on which a developer can work.

Kang et al. [14] proposed a constraint-based approach
considering constraints that affected the project schedule.
Their constraints included continuous allocation to related
tasks, minimization of sharing developers among tasks, re-
striction on the number of developers assigned to a task, and
avoiding novice teams. These constraints encoded some of
practical considerations of ours, but they assumed that each
program module can always be developed in parallel, not
considering the precedence between modules and the inte-
gration of the modules.

7 Conclusion

Many approaches have been proposed to find optimal hu-
man resource allocations. The majority of them only con-
sidered minimizing the expected cost of the plan, and not
practical issues that can affect the actual schedule in prac-
tice. With a group of software experts, we elicited the prac-
tical considerations for the human resource allocation prob-
lem. We design a genetic algorithm to reflect the practi-
cal issues, by encoding them as a part of the fitness func-
tion. The fitness function consists of weighted sum of the
four fitness scores considering cost minimization, concen-
tration efficiency, continuity consideration, and balance of
allocation. Our experiment shows that when the four fitness
scores are considered altogether, our GA generates a prac-
tical human resource allocation result, in terms of less mul-
titasking time, less assignments not considering task prece-
dence, and more even allocations than an algorithm which
the objective only aims at minimizing the time span.

As future work, we will find the optimal parameters and
operations for GA, by studying the effect of mutation rate,
tournament size, and weight values for the fitness func-
tion, and investigating different selection, crossover, muta-
tion approaches. We will also identify more practical issues
that can be applied to our approach.

Acknowledgements

This work was partially supported by Defense Acquisi-
tion Program Administration and Agency for Defense De-
velopment under the contract.

References

[1] E. Alba and J. Francisco Chicano. Software project manage-
ment with gas. Information Sciences, 177(11):2380–2401,
2007.

[2] G. Antoniol, M. Di Penta, and M. Harman. Search-based
techniques applied to optimization of project planning for
a massive maintenance project. In Proceedings of the 21st
IEEE International Conference on Software Maintenance,
ICSM ’05, pages 240–249, Washington, DC, USA, 2005.
IEEE Computer Society.

[3] A. Barreto, M. Barros, and C. Werner. Staffing a software
project: A constraint satisfaction approach. SIGSOFT Softw.
Eng. Notes, 30(4):1–5, 2005.

[4] B. W. Boehm. Software engineering economics. 1981.
[5] B. W. Boehm, R. Madachy, B. Steece, et al. Software Cost

Estimation with Cocomo II with Cdrom. Prentice Hall PTR,
2000.

[6] C. K. Chang, M. J. Christensen, and T. Zhang. Genetic
algorithms for project management. Ann. Softw. Eng.,
11(1):107–139, Nov. 2001.

[7] C. K. Chang, H. yi Jiang, Y. Di, D. Zhu, and Y. Ge. Time-
line based model for software project scheduling with ge-
netic algorithms. Information and Software Technology,
50(11):1142 – 1154, 2008.

[8] W.-N. Chen and J. Zhang. Ant colony optimization for soft-
ware project scheduling and staffing with an event-based
scheduler. Software Engineering, IEEE Transactions on,
39(1):1–17, Jan 2013.

[9] J. Duggan, J. Byrne, and G. J. Lyons. A task allocation opti-
mizer for software construction. IEEE Softw., 21(3):76–82,
May 2004.

[10] S. Gerasimou, C. Stylianou, and A. S. Andreou. An inves-
tigation of optimal project scheduling and team staffing in
software development using particle swarm optimization. In
ICEIS (2), pages 168–171, 2012.

[11] A. E. Hassan. Predicting faults using the complexity of code
changes. In Proceedings of the 31st International Confer-
ence on Software Engineering, pages 78–88. IEEE Com-
puter Society, 2009.

[12] J. H. Holland. Adaptation in natural and artificial systems:
An introductory analysis with applications to biology, con-
trol, and artificial intelligence. U Michigan Press, 1975.

[13] H. Ishibuchi and T. Murata. A multi-objective genetic local
search algorithm and its application to flowshop scheduling.
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 28(3):392–403, Aug 1998.

[14] D. Kang, J. Jung, and D.-H. Bae. Constraint-based human
resource allocation in software projects. Software: Practice
and Experience, 41(5):551–577, 2011.

[15] H. R. Kerzner. Project Management-Best Practices: Achiev-
ing Global Excellence. John Wiley & Sons, 2014.

[16] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter. A flexible
method for software effort estimation by analogy. Empirical
Software Engineering, 12(1):65–106, 2007.

[17] C. E. Shannon. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications
Review, 5(1):3–55, 2001.

[18] V. Yannibelli and A. Amandi. A knowledge-based evolu-
tionary assistant to software development project schedul-
ing. Expert Systems with Applications, 38(7):8403–8413,
2011.

694

