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Semi-Dynamic User-Specific Clustering for
Downlink Cloud Radio Access Network
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Abstract—This paper studies user-specific clustering for down-
link cloud radio access network (C-RAN), where a central
unit, connected to all base stations (BSs) via limited-capacity
backhaul links, coordinates the BSs to form cooperative clusters
for every user. By taking into account the training overhead
for channel estimation in C-RAN, we design the clustering
scheme aimed at maximizing the average net throughput of the
network subject to the constraint on backhaul capacity, where
a hybrid coordinated multi-point (CoMP) transmission mode is
considered. The proposed clustering scheme can be operated in
a semi-dynamic manner merely based on large-scale channel
information, has low computational complexity, and performs
close to the optimal scheme found by exhaustive searching. Under
two special cases where the backhaul capacity are very stringent
and unlimited, the proposed scheme is then tailored for pure
coordinated beamforming (CB) mode and pure joint transmission
(JT) mode to further reduce the clustering complexity. Simulation
results show that the proposed semi-dynamic clustering schemes
are superior to the dynamic clustering scheme due to the
reduction of required training overhead.

Index Terms—Cloud radio access network (C-RAN), coordi-
nated multi-point (CoMP), user-specific clustering, semi-dynamic,
backhaul capacity.

I. INTRODUCTION

The telecom industry has been witnessing a traffic explosion
in recent years, and has reached a broad consensus on the
strong continuation of this trend for the next decade. To meet
the ever demanding expectations of mobile broadband users
in fifth-generation (5G), network densification and cloud radio
access network (C-RAN) are recognized as two key enabling
technologies [?]. By centralizing the baseband processing
resources of all base stations (BSs) into a super resource pool
at central unit (CU) and incorporating coordinated multi-point
(CoMP) transmission techniques, C-RAN can significantly
improve the system performance with affordable cost [?].

CoMP transmission can be generally divided into coordi-
nated beamforming (CB) and joint transmission (JT). With
CB, each BS only transmits the data intended for the user
equipments (UEs) in its own cell, and forms beams to reduce
interference to the UEs in neighboring cells. With JT, the
cooperating BSs jointly transmit data to the UEs so that inter-
cell interference (ICI) can be converted into useful signals.
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In general, JT outperforms CB when the CU can perfectly
share the data of all UEs to the BSs [?]. However, if existing
backhaul links are employed, which are capacity-limited [?, ?],
JT may become inferior to CB [?]. A hybrid CoMP scheme
switching between CB and JT was proposed in [?] for down-
link CoMP transmission, which shows evident performance
gain over the pure JT and pure CB modes.

In C-RAN systems, more channel information should be
available to facilitate CoMP transmission compared with
traditional single-cell transmission systems, i.e., Non-CoMP
systems, which will cause larger training overhead [?]. The
overhead increases with the number of cooperating BSs, and
may even counteract the performance gain of CoMP transmis-
sion [?]. Considering that a UE choosing faraway BSs as its
coordinated BSs will gain little in performance but with the
penalty of increasing training overhead and complexity, CoMP
is usually implemented within a cluster consisting of a limited
number of BSs [?, ?, ?, ?]. The clustering schemes proposed in
[?] and [?] form non-overlapped clusters based on geometrical
information or instantaneous channel state information (CSI).
These approaches are easy for implementation, but the UEs
located at the cluster edge still suffer from severe interference
from nearby clusters. The problem can be solved with user-
specific clustering schemes as studied in [?] and [?], where
each BS may belong to different clusters simultaneously,
which inevitably leads to overlapped clusters for different UEs
with different channel conditions.

However, acquiring instantaneous CSI for the existing user-
specific clustering schemes will introduce large training over-
head, which causes the performance degradation of CoMP
systems as mentioned before. User-specific clustering based on
large-scale channel information was studied in our preliminary
work [?], where only pure CB mode was considered under the
assumption of unlimited-capacity backhaul.

In this paper, we strive to study user-specific clustering
schemes for downlink C-RAN to maximize the net system
throughput by taking into account the training overhead for
CSI acquisition. The main contributions of this paper are
summarized as follows:
• We derive the closed-form expression of the asymptotical

average data rate of UEs in high signal-to-noise ratio
(SNR) regime, where a hybrid CoMP transmission is
introduced considering that different kinds of backhaul
links may be employed in C-RAN. Then, a weak inter-
ference estimation mechanism is provided to improve the
accuracy of the asymptotical results for general SNRs.

• We design a low-complexity semi-dynamic user-specific
clustering scheme merely based on large-scale channel
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information subject to the constraint on backhaul ca-
pacity. We proceed to study two special cases where
the backhaul capacity is very stringent and is unlim-
ited, respectively, under which the proposed scheme is
tailored for pure CB and pure JT to further reduce
the clustering complexity. Simulation results show that
the proposed low-complexity semi-dynamic user-specific
clustering schemes perform close to the optimal solution
found by exhaustive searching, and outperform the opti-
mal dynamic clustering scheme due to the reduction in
the training overhead.

The remainder of the paper is organized as follows. In
Section II, we present the system model. In Section III, the
hybrid CoMP transmission under limited-capacity backhaul
is introduced and the semi-dynamic user-specific clustering
scheme is proposed. The proposed clustering scheme is then
redesigned for pure CB and pure JT in Section IV. Simulation
results are provided in Section V, and the conclusions are
drawn in Section VI.

II. SYSTEM MODEL

Consider a downlink C-RAN consisting of Nb BSs each
equipped with Nt antennas and connected with the CU via
a backhaul link. The number of users scheduled by each BS
is less than Nt, and Nu users are scheduled in total in the
network. Each scheduled UE is served by a cluster of BSs
with a hybrid mode, where several master BSs send data to the
UE and several coordinated BSs avoid interference to the UE.1

The hybrid CoMP mode can be degenerated to three special
cases as follows. When a UE has only one master BS and no
less than one coordinated BS, the UE is served with pure CB.
When a UE has multiple master BSs and no coordinated BS,
the UE is served with pure JT. When a UE has one master
BS and no coordinated BS, the UE is served with Non-CoMP,
i.e., the UE receives the desired signal from one master BS
and suffers interference from all the other BSs. An example
of the considered C-RAN system is shown in Fig. ??.

Fig. 1. Example of the considered C-RAN. A solid arrow stands for the
connection between a UE and its master BS, and a dash arrow represents the
connection between a UE and its coordinated BS. For instance, the master BSs
of UE1 include BS1, BS5 and BS6, the coordinated BSs of UE7 include BS1

and BS6, the served UEs of BS1 include UE1 and UE4, and the coordinated
UEs of BS3 include UE2 and UE4.

Fig. 2. Illustration of the considered three-stage transmission strategy.

We consider time division duplex (TDD) systems with
a three-stage transmission strategy, which is illustrated in
Fig. ??. In the first stage, each UE measures and reports the
large-scale fading gains to the nearest BS (step (a1)), then
each BS sends the large-scale fading gains to the CU (step
(b1)), at which the clusters are formed for all UEs based

1In the sequel, the BSs that send signal to UEu are called the master BSs
of UEu, the BSs that avoid interference to UEu are called the coordinated
BSs of UEu, the UEs that receive data from BSb are called the served UEs by
BSb, and the UEs to which BSb avoids interference are called the coordinated
UEs by BSb. An example of the relationship is shown in Fig. ??.

on those reported large-scale fading gains (step (c1)). In the
second stage, each UE is informed to send uplink training
sequences for CSI acquisition (step (a2)), with which each
BS estimates the downlink channels and computes the CoMP
precoders for downlink transmission (step (b2)). In the third
stage, the CU shares the data of UEs to the BSs according
to the clustering results obtained in the first stage (step (a3)),
and then the BSs transmit the downlink data (step (b3)). Since
the large scale channel information including user location and
shadowing changes slowly, the interval of the first stage can
be relatively large compared with the intervals of the second
and third stages.

A. Signal Model

To describe the clustering for different CoMP modes in a
unified framework, we introduce transmission matrix S =
[sub]Nu×Nb and coordination matrix C = [cub]Nu×Nb to
reflect the relationship of a UE with its master BSs and
coordinated BSs, respectively, whose elements are either 0 or
1. Specifically, if BSb is a master BS of UEu, then sub = 1;
otherwise, sub = 0. If BSb is a coordinated BS for UEu, then
cub = 1; otherwise, cub = 0. After the transmission matrix S
and coordination matrix C are found, the clusters for all UEs
are obtained.

Denote Tu = {b|sub = 1} and Pu = {b|cub = 1} as the set
of the indices of the master BSs and the indices of the coor-
dinated BSs of UEu, respectively. Denote Sb = {u|sub = 1}
and Ib = {u|cub = 1} as the sets of the indices of the UEs
served by and coordinated by BSb, respectively. Then, we can
find that Cu = Tu ∪ Pu is the set of the indices of all BSs
in the cooperative cluster for UEu, which is referred to as the
cluster for UEu.

Let αub and hub ∈ CNt×1 denote the large-scale channel
gain and the small-scale channel vector from BSb to UEu,
respectively. The small-scale channel vectors are assumed as
independent and identically distributed (i.i.d.) complex Gaus-
sian random vectors with zero mean and covariance matrix
E{hubhHub} = I. Denoting the unit-norm precoding vector
for UEu at BSb as wub ∈ CNt×1, then the received signal of
UEu can be expressed as

yu =
∑
b∈Tu

αubh
H
ubwub

√
pubxu︸ ︷︷ ︸

desired signal

+
∑
m6=u

( ∑
i∈Tm∩Cu

αuih
H
uiwmi

√
pmi︸ ︷︷ ︸

intra-cluster interference

+
∑

j∈Tm,j /∈Cu

αujh
H
ujwmj

√
pmj︸ ︷︷ ︸

inter-cluster interference

)
xm + nu, (1)

where pub is the transmit power allocated to UEu at BSb, xu
is the data symbol with unit variance destined to UEu, and nu
is the additive white Gaussian noise (AWGN) with zero mean
and variance σ2

u at UEu. In (??), the interference received by
UEu includes two parts. The intra-cluster interference comes
from the signal transmitted by BSi (i.e., a master BS of
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UEm that is located inside the cluster of UEu) to UEm,
which is received by UEu via channel hui. The inter-cluster
interference comes from the signal transmitted by BSj (i.e., a
master BS of UEm that is located outside the cluster of UEu)
to UEm, which is received by UEu via channel huj .

The downlink signal-to-interference-plus-noise ratio (SINR)
at UEu can be obtained from (??) as

γu =

∣∣ ∑
b∈Tu

√
λu,bh

H
ubwub

∣∣2
∑
m6=u

∣∣ ∑
i∈Tm∩Cu

√
λu,mihHuiwmi+

∑
j∈Tm,j/∈Cu

√
λu,mjhHujwmj

∣∣2+σ2
u

,
Su

Iu + σ2
u

, (2)

where Su is the received power of desired signal, Iu is the
power of interference, λu,b , α2

ubpub, λu,mi , α2
uipmi, and

| · | denotes the magnitude of a complex number. Then the
downlink data rate of UEu can be expressed as

ru = log2(1 + γu). (3)

In TDD systems, the channels can be estimated at the BS
through uplink training by exploiting the reciprocity between
uplink and downlink channels. With the minimum mean-
square error (MMSE) criterion, the relationship between the
estimated channel ĥub and the true value of the channel hub
satisfies [?]

hub = ρubĥub + eub, (4)

where eub ∼ CN (0, 1
1+ηub

I) is the channel estimation error,

ĥub ∼ CN (0, I), ρub =
√
ηub√

1+ηub
, ηub = ηub,0τtr is the

equivalent average uplink receive SNR from UEu to BSb.
Herein, τtr is the number of uplink training symbols, and ηub,0
is the average uplink receive SNR from UEu to BSb.

B. Training Overhead

For the considered three-stage transmission strategy, training
may be required in the downlink precoding stage as well as
the clustering stage if the clustering is based on instantaneous
CSI. After taking into account the uplink training overhead,
the net downlink data rate of UEu can be expressed as

Ru(S,C) = (1− vT )ru, (5)

where v = τtr
τ represents the percentage of resources taken

by the uplink training of each UE in TDD systems, τ is the
total number of symbols of each frame, and T reflects the
occupied uplink resources to ensure the orthogonality among
the training signals of multiple UEs [?], where we assume that
the training duration is smaller than the channel coherence
time because CoMP is typically adopted in low-mobility
environments. The impact of training overhead v on the net
downlink data rate is twofold. On one hand, increasing v leads
to accurate channel estimation (noting that ηub = ηub,0τv) and
hence improves the data rate. On the other hand, however, a
large value of v wastes more system resources that decreases
the net downlink data rate.

The value of T depends on the formed clusters Cu, u =
1, · · · , Nu. When all the clusters are not overlapped,2 only the
training signals of the UEs located in the same cluster should
be orthogonal, i.e., UEu and UEm should use orthogonal
training signals if Cu = Cm. In this case, T simply equals
to the number of scheduled UEs in each cluster, which is
T = n

(
∪

b∈Cu
(Sb ∪ Ib)

)
, where n(·) denotes the size of a set.

When the clusters of different UEs are overlapped, the training
signals of the UEs in different clusters served or coordinated
by the same BS should also be orthogonal so that the BS can
distinguish the UEs, i.e., UEu and UEm should use orthogonal
training signals if Cu ∩ Cm 6= ∅ (empty set). In overlapped
clusters the value of T can be computed by using the algorithm
proposed in [?], which is briefly summarized in Appendix ??
by taking the clusters shown in Fig. ?? as an example for the
reader’s convenience.

If the clusters are formed statically based on geographical
information or semi-dynamically based on large-scale channel
information, then uplink training is only needed in the second
stage for downlink precoding and the overhead is determined
by the already formed clusters. By contrast, if the clusters
are formed based on small scale channels, uplink training is
required in the first stage before clustering, which generally
leads to more training overhead for a large pool of master BSs
and coordinated BSs, from which the clusters are selected.

III. SEMI-DYNAMIC USER-SPECIFIC CLUSTERING WITH
HYBRID MODE

As previously mentioned, dynamically forming cooperative
clusters based on small-scale fading channels yields frequently
changing clusters and leads to large signaling overhead among
BSs and UEs, making it infeasible in practical systems.
Therefore, in the sequel, we propose to form cooperative
cluster for each UE based on large-scale channels, aiming
at maximizing the average rather than the instantaneous net
downlink throughput. As a result, the proposed scheme can
be implemented in a semi-dynamic manner.

The average net throughput of C-RAN system depends
on the employed CoMP mode, which relies on the available
backhaul capacity. It has been shown that pure JT or pure
CB only works well when the backhaul capacity limitation is
very loose [?] or very stringent [?], but both perform poorly
in other cases. In this section, we first introduce a so-called
hybrid CoMP mode, with which the average net throughput
of C-RAN system is derived. Then, a semi-dynamic user-
specific clustering scheme is proposed under limited-capacity
backhaul.

A. Hybrid CoMP Mode

In hybrid CoMP mode, each BS has multiple served UEs
and multiple coordinated UEs, and the clusters for different
UEs are generally overlapped, such that existing multiuser

2In non-overlapped clusters each BS only belongs to a single cluster, or in
other words, if BSb is selected by UEu and UEm as a master or coordinated
BS, then Cu = Cm holds, i.e., UEu and UEm select the same cluster. By
contrast, when the clusters of different UEs are overlapped, some BSs will be
shared by multiple users, which belong to different clusters simultaneously.
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multi-input multi-output (MU-MIMO) based CoMP precoders
that regard a non-overlapped cluster as a super cell can not be
applied, unless one considers the whole C-RAN as a cluster,
which however is computationally prohibitive in practice. To
decoupled the precoders of the BSs under overlapped clusters,
the precoder of a BS is designed to avoid ICI to its coordinated
UEs, and also to ensure that the signal sent to a served UE
is co-phased with the signals from other master BSs of the
UE for constructive combination. Under the principle of zero-
forcing (ZF), which is with low complexity and widely used
for CoMP transmission, the precoder in hybrid CoMP mode
can be designed as follows.

Let BSb denote a master BS of UEu. To avoid generating
the interference to all coordinated UEs in Ib and all served
UEs in Sb except UEu, the ZF precoding vector for UEu at
BSb is designed as

wub =
Πūbĥub∥∥Πūbĥub

∥∥ , b ∈ Tu, (6)

where Πūb = I − ĤH
Ku,b

(
ĤKu,bĤ

H
Ku,b

)−1

ĤKu,b is the null

space of ĤKu,b ∈ Cn(Ku)×Nt , which is the estimated channel
matrix from BSb to the UEs inside Ku with Ku = Sb∪Ib−{u}
denoting all served and coordinated UEs by BSb except UEu.
With the precoding vector in (??), the signals of UEu sent
from all master BSs in Tu will be constructively combined if
the CSI is perfect, because the equivalent channels hHubwub are
all real-positive for b ∈ Tu. Imperfect channel estimation will
degrade the strength of the desired signal since the equivalent
channels from multiple BSs are no longer perfectly co-phased.

Note that the hybrid CoMP mode degenerates to the pure
CB or JT mode when n(Tu) = 1 or Pu = ∅. With the above
ZF precoder, the overall number of UEs that are served and
coordinated simultaneously by BSb is restricted by the number
of antennas at BSb, i.e., Mb , n(Sb)+n(Ib) =

∑Nu
u=1(sub +

cub) ≤ Nt, b = 1, · · · , Nb.
Intuitively, as analyzed in [?], a BS should allocate more

power to the users that have strong links to the BS in order
to achieve higher sum rate. Further considering that we aim
to propose semi-dynamic clustering schemes based on large-
scale channel gains, the semi-dynamic power allocation given
in [?] is employed, where pub is set proportional to α2

ub, which
is pub =

α2
ub∑

k∈Sb
α2
kb
P for u ∈ Sb with P denoting the transmit

power of each BS. With {pub} and {wub}, we can compute
the SINR of UEu based on (??) and then analyze the average
net throughput of the C-RAN system.

B. Average Data Rate of Each User

In this subsection we derive the average data rate of each
user under hybrid CoMP mode, which will be used in the
subsequent design of clustering methods. We first obtain the
distributions of the signal and interference terms in the SINR
given in (??). Then, we derive the asymptotical average data
rate of UEu and obtain a closed-form expression in high SNR
regime.

1) Signal Term:
Proposition 1: The signal term can be approximated as

Su ≈
( ∑
b∈Tu

√
λu,bρubĥ

H
ubwub

)2

,
( ∑
b∈Tu

Su,b

)2

, (7)

where Su,b follows Nakagami-m distribution with parameters
Ωub = Kbλu,bρ

2
ub and mb = Kb G(Kb, 1). Herein, λu,b =

α2
ub

α2
ubP∑

k∈Sb
α2
kb

and Kb = Nt −Mb + 1.
Proof: See Appendix ??.

From Proposition 1, we can see that the signal term Su is
the square of the sum of Nakagami-m random variables (RVs),
Su,b. However, the probability density function (PDF) of the
sum of independent non-identically distributed Nakagami-m
RVs has no closed-form expression in general [?], which
makes it difficult to derive the distribution of the signal term
Su. Fortunately, the distribution of the sum of independent
non-identically distributed Nakagami-m RVs can be well
approximated by a Nakagami-m distribution over a wide
range of parameters via matching the first two moments (i.e.,
the moment matching method) [?, ?]. Since the square of
a Nakagami-m distributed RV follows Gamma distribution.
Therefore, Su can be well approximated by a Gamma dis-
tributed RV denoted as Ŝu ∼ G(k̂u, θ̂u) via matching the first
two moments of Su, which will be verified through simulations
later.

Proposition 2: By matching the first two moments of Su
and Ŝu, the parameters k̂u and θ̂u can be derived as

θ̂u =
E{S2

u} − E2{Su}
E{Su}

, (8a)

k̂u =
E2{Su}

E{S2
u} − E2{Su}

, (8b)

where E{Su} and E{S2
u} are given in Appendix ??.

Proof: See Appendix ??.
The value of k̂u may not be integers, which makes it difficult

to obtain a closed-form expression of the average data rate. To
tackle this problem, we further approximate Ŝu by rounding
off k̂u. Let S̃u ∼ G(k̃u, θ̃u) denote the resultant Gamma
distributed RV, where k̃u is the nearest integer to k̂u, and
θ̃u = k̂uθ̂u

k̃u
guaranties the match of the first moment between

Ŝu and S̃u.
2) Interference term: The interference term Iu is∑
m 6=u

∣∣∣ ∑
i∈Tm∩Cu

√
λu,mih

H
uiwmi +

∑
j∈Tm,j /∈Cu

√
λu,mjh

H
ujwmj

∣∣∣2
,
∑
m 6=u

∣∣∣J Intra
um + J Inter

um

∣∣∣2, (9)

where J Intra
um and J Inter

um are the intra-cluster interference and
inter-cluster interference experienced at UEu from the signals
sent to UEm, respectively.

The first term J Intra
um can be derived as

J Intra
um =

∑
i∈Tm∩Cu

√
λu,mi(ρuiĥui + eui)

Hwmi

=
∑

i∈Tm∩Cu

√
λu,mie

H
uiwmi, (10)



5

where ĥHuiwmi = 0 due to ZF precoding, and eHuiwmi ∼
CN (0, 1

1+ηui
) for i ∈ Tm∩Cu since eui is a complex Gaussian

vector and independent from the unit-norm vector wmi. Thus,
J Intra
um ∼ CN (0,

∑
i
λu,mi
1+ηui

).
The second term is

J Inter
um =

∑
j∈Tm,j /∈Cu

√
λu,mjh

H
ujwmj . (11)

Due to the mutual independence between hHuj and wmj ,√
λu,mjh

H
ujwmj ∼ CN (0, λu,mj), we have J Inter

um ∼
CN (0,

∑
j λu,mj). Therefore, |J Inter

um +J Intra
um |2 follows expo-

nential distribution with mean λum ,
∑
i
λu,mi
1+ηui

+
∑
j λu,mj ,

and the interference term Iu is the sum of exponential dis-
tributed RVs, whose PDF can be obtained from [?] as

fIu(x) =
∑
m 6=u

δume
− x
λum , (12)

where δum = 1
λum

∏
m′ 6=m

λum
λum−λum′

and λum′ 6= λum for
m′ 6= m.

Even with the distributions of Su and Iu, the noise term σ2
u

still makes it hard to obtain a closed-form expression of the
average data rate. In the following proposition, an asymptotic
result in high SNR regime (i.e., σ2

u → 0) is derived, which
can be used as an approximated average date rate of UEu and
is accurate for high SNRs.

Proposition 3: When σ2
u is ignorable, the average data rate

of UEu can be approximated as

r̄u ≈
∑
m6=u

ξum

(
− ln ζ̃um +

k̃u−1∑
k=1

1

k
+

(−ζ̃um)k̃u ln ζ̃um

(1− ζ̃um)k̃u

−
k̃u−1∑
k=1

(
k̃u − 1

k

)
(1− ζ̃kum)(−ζ̃um)k̃u−k

k(1− ζ̃um)k̃u

)
, (13)

where ξum = 1
ln 2

∏
m′ 6=m

λum
λum−λum′

, ζ̃um = λum
θ̃u

, and k̃u and

θ̃u are defined after Proposition 2.
Proof: See Appendix ??.

Note that the parameters ξun, ζ̃um, k̃u and θ̃u in (??) only
depend on the large-scale channel gains αub, u = 1, · · · , Nu
and b = 1, · · · , Nb. Moreover, the expression in (??) only
consists of arithmetic operations of real numbers, which can
be computed with low complexity.

C. Average Net Throughput Under Limited-Capacity Backhaul

Given the transmission matrix S and the coordination matrix
C as well as the semi-dynamic power allocation specified in
Section ??, the average downlink data rates of all UEs under
limited-capacity backhaul, denoted by r̄∗ = (r̄∗1 , · · · , r̄∗Nu),
can be obtained by solving the following linear programming
(LP) problem,

max
r̄∗

(r̄∗)T1 (14a)

s.t. ST r̄∗ ≤ C · 1 (14b)
r̄∗ ≤ r̄, (14c)

where r̄ = (r̄1, · · · , r̄Nu) consists of the average downlink
data rate of each UE without considering the backhaul capacity
constraint, C is the normalized capacity of each backhaul link
by the transmission bandwidth, and 1 ∈ RNb×1 is an all-one
vector. Constraint (??) indicates that the average traffic load of
each backhaul link is limited by its capacity, where the entry of
the vector ST r̄∗ denotes the sum data rate transmitted by each
BS,3 and constraint (??) indicates that the average downlink
data rate of each UE under limited-capacity backhaul is no
larger than that without backhaul capacity constraint. Problem
(??) can be solved efficiently by standard convex optimization
algorithms [?].

Then, the average net throughput of the C-RAN system
under limited-capacity backhaul can be expressed as

R̄∗(S,C) =

Nu∑
u=1

(1− vT )r̄∗u, (15)

where r̄∗u for u = 1, · · · , Nu are the optimal solution to
problem (??).

D. Measurement Set and Weak Interference Estimation Mech-
anism

It can be found from (??), (??) and (??) that the obtained
average net throughput only depends on the large-scale chan-
nel gains αub, u = 1, · · · , Nu and b = 1, · · · , Nb, which can
be measured at each UE by averaging the channels in multiple
time slots and then be reported to the UE’s nearest BS. Then,
the CU can gather the large-scale fading gains of all UEs
from all BSs, based on which the cooperative clusters can be
formed.

In fact, reporting all large-scale fading gains is unnecessary
because it benefits little for a UE to choose faraway BSs as its
master or coordinated BSs. More importantly, it can be seen
later that the complexity of the clustering schemes proposed
in the sequel will increase quadratically with the number of
reported large-scale fading gains. Therefore, we restrict that
UEu only reports the large-scale channel gains from the BSs
in a so-called “measurement set”, denoted by Fu. Intuitively,
the measurement set of each user should contain the BSs
with strong channel gains, which can be determined with the
following two simple ways.

1) Fixed-size measurement set: Let Nf , n(Fu) denote the
size of Fu, u = 1, . . . , Nu. Then, each UE only reports
Nf strongest large-scale channels.

2) Threshold-based measurement set: Each UE selects the
BSs with relatively large channel gains, e.g., with the
method in [?],

Fu =

b
∣∣∣∣∣∣ α2

ub

max
{
α2
uj

}Nb
j=1

> β

 ,

where 0 < β ≤ 1 is a predefined threshold. The resultant
measure sets may have different sizes for different UEs.

3Recalling that the ZF precoder is computed at each BS based on its own
channels, it is not necessary to share CSI via backhaul links. Therefore, only
the backhauling traffic caused by data sharing is taken into account.
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The problem of introducing measurement set is that the
CU only has a part of large-scale fading gains so that we
cannot compute the average data rate based on Proposition 3
directly. A simple way to cope with this problem is to set the
unknown large-scale fading gains as zeros. However, although
the interference from each of the BSs outside the measurement
set is very weak when the measurement set is large, the total
interference from those BSs may not be ignorable. If the CU
simply ignores the interference when selecting cluster for each
UE, it will overestimate the net throughput of the network,
which may lead to improper clustering results and degrade
the system performance.

Next, we propose a weak interference estimation mecha-
nism to address the problem. First, except for reporting the
large-scale fading gains from the BSs in measurement set,
we also let each UE measure and report its total average
received power, which is a scalar feedback and can be easily
implemented via the reference signal receiving power (RSRP)
measurement and the reporting mechanism in long term evolu-
tion (LTE) systems. Denote the total average received power
of UEu as Qu. Then, the total average interference power
outside the measurement set plus the noise power for UEu
can be obtained as∑

i/∈Fu

Pα2
ui + σ2

u = Qu −
∑
b∈Fu

Pα2
ub. (16)

Assume that the distances between UEu and the BSs gen-
erating weak interference follow uniform distribution. Then,
with the total average power of weak interference and noise,
we can estimate the large-scale fading gains α2

ui for the weak
interference channels with i /∈ Fu as

α2
ui =

θ−νui∑
j /∈Fu

θ−νuj
· 1

P

(
Qu −

∑
b∈Fu

Pα2
ub

)
, (17)

where ν denotes the path loss exponent, and {θuj} are i.i.d.
random variables following the uniform distribution [0, 1],
which denote the normalized distances from BSj to UEu
within [0, 1] because it is shown in (??) that any scaling over
{θuj} will not affect the value of α2

ui. In Section VI, we verify
that with such an estimation, the CU can compute the average
net throughput more accurately than directly using (??). This
is because the weak interference estimation mechanism takes
into account the noise power in Qu, while the noise is set as
zero in the asymptotical result given in (??).

The measurement and reporting of the large-scale channel
information from the UEs cause negligible extra overhead on
training or signaling, since these information changes slowly
and thus the measurement and the reporting interval can be
very large.

E. Semi-dynamic User-specific Clustering in Hybrid CoMP
Mode

After obtaining the large-scale channel gains, the semi-
dynamic user-specific clustering can be optimized aimed at
maximizing the average net throughput of the network under
limited-capacity backhaul. The clustering in the hybrid CoMP

mode is to jointly design the transmission matrix S and
coordination matrix C, which can be formulated as,

max
S,C

R̄∗(S,C) (18a)

s.t. cubsub = 0 (18b)
sub = 0, b /∈ Fu (18c)
cub = 0, b /∈ Fu (18d)
Nu∑
u=1

(cub + sub) ≤ Nt, (18e)

where (??) indicates that a BS cannot be a master BS and
a coordinated BS for a UE at the same time, (??) and (??)
indicates that the master BSs and the coordinated BSs for UEu
should be selected from its measurement set, and (??) indicates
that the total number of served and coordinated UEs by BSb
should be less than the number of antennas at BSb.

Since the possible values of (sub, cub) can be (0, 1), (1, 0),
or (0, 0) considering the constraint in (??), the complexity of
finding the optimal transmission matrix S and coordination
matrix C by exhaustive searching is O(3NuNf ), which is of
prohibitive complexity. In the following, we propose a sub-
optimal low-complexity algorithm to design S and C, where
the transmission links and cooperative links are successively
selected from the initialization of Non-CoMP until the average
net throughput of the network under limited-capacity backhaul
stops increasing. The algorithm can be briefly summarized
as follows.

1) Initialization: Initialize S(0) by letting each UE select
the BS with the largest average channel gain as a master
BS, and let C(0) = 0. Compute R̄∗(0)

max = R̄∗(S(0),C(0)),
which is the average net throughput under limited-
capacity backhaul when all UEs are served in Non-CoMP
mode. Set i = 1.

2) Iteration:
a) Find the optimal transmission link or cooperative link

maximizing the average net throughput by solving
the following problem over 2(NuNf − i) possible
candidates,

max
D(i)

max
{
R̄∗(S(i−1) + D(i),C(i−1)),

R̄∗(S(i−1),C(i−1) + D(i))
}

(19a)

s.t.

Nu∑
u=1

Nb∑
b=1

d
(i)
ub ≤ 1, d

(i)
ub ∈ {0, 1} (19b)

d
(i)
ub = 0, b /∈ Fu (19c)

d
(i)
ub c

(i−1)
ub = 0 (19d)

d
(i)
ubs

(i−1)
ub = 0 (19e)

Nu∑
u=1

(c
(i−1)
ub + sub + d

(i)
ub ) ≤ Nt, (19f)

where D(i) = [dub]Nu×Nb is a zero matrix except for
one element which equals to “1” to denote the newly
added link, constraint (??) indicates that the number
of “1”s in D(i) is no larger than 1, constraints (??),
(??) and (??) indicate that each UE can only choose
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the newly added master BS or coordinated BS from its
measurement set excluding the already selected BSs,
and constraint (??) indicates that the total number of
served and coordinated UEs at each BS should be
limited by the number of its antennas. The searching
space to solve this problem is 2(NuNf − i), which
shrinks with the increase of iteration times i.

b) Denote D
(i)
opt as the optimal value of D(i),

and define R̄
∗(i)
max , max

{
R̄∗(S(i−1),C(i−1) +

D
(i)
opt), R̄

∗(S(i−1) + D
(i)
opt,C

(i−1))
}

.
c) If R̄∗(S(i−1),C(i−1) + D

(i)
opt) ≥ R̄∗(S(i−1) +

D
(i)
opt,C

(i−1)), then add a new cooperative link into the
system, i.e., update C(i) = C(i−1) + D

(i)
opt; otherwise,

add a new transmission link into the system, i.e. update
S(i) = S(i−1) + D

(i)
opt.

d) With the increase of the number of cooperative links,
the training overhead grows and the available antenna
resources diminish, which finally leads to the reduction
of the average net throughput. The iteration stops when
R̄
∗(i)
max ≤ R̄

∗(i−1)
max , and S(i−1) and C(i−1) are the final

results of the transmission matrix and the coordination
matrix, respectively.

The overall computational complexity of this algorithm is
O(
∑NuNf
i=0 2(NuNf − i)) = O(N2

uN
2
f ), which is much less

than exhaustive searching with O(3NuNf ).

IV. SEMI-DYNAMIC USER-SPECIFIC CLUSTERING WITH
PURE CB AND PURE JT MODES

As described in Section II, the hybrid CoMP mode is a
combination of two CoMP transmission, pure CB and pure
JT. It is not hard to understand that if the backhaul capacity
is very stringent, pure CB is the optimal CoMP transmission
scheme since it has the least backhaul capacity requirement,
while if the backhaul capacity is unlimited, pure JT is optimal
since it can make full use of the data sharing capability of
backhaul links. Compared to the hybrid CoMP mode, the
clustering complexity can be further reduced in pure CB or
pure JT because only coordinated BSs or master BSs need
to be selected for each mode. In the sequel, the clustering
methods for pure CB and pure JT are studied, respectively.

A. Semi-dynamic User-specific Clustering with Pure CB Mode
The degeneration from hybrid CoMP to pure CB simplifies

the signal model, which gives us the opportunity to improve
the accuracy of the obtained average net throughput and also
to further reduce the complexity of the proposed semi-dynamic
user-specific clustering scheme.

1) Average Net Throughput in Pure CB Mode:
a) Signal Term: With pure CB, each UE has only one

master BS. Then, we have Tu = {bu} with bu denoting the
master BS of UEu and the signal term in (??) reduces to
Su ≈ λu,buρ

2
ubu
|ĥHubuwub|2, which follows Gamma distribu-

tion G(ku, λu,buρ
2
ubu

) with integer ku = Nt−Mbu + 1. Since
Su has only one term following exact Gamma distribution
with integer parameter ku, the Gamma approximation in
Proposition 2 and the round-off approximation in Section ??
can be removed.

b) Interference Term: Since n(Tu) = 1, the interference
term in (??) can be simplified into

Iu =
∑

m 6=u,bm∈Cu

∣∣√λu,mbmhHubmwmbm

∣∣2 +
∑

k 6=u,bk /∈Cu

∣∣√λu,kbkhHubkwkbk

∣∣2
,
∑

m 6=u,bm∈Cu

IIntra
um +

∑
k 6=u,bk /∈Cu

IInter
uk , (20)

where IIntra
um and IInter

uk are the intra-cluster interference power
and inter-cluster interference power suffered by UEu from
UEm and UEk, respectively. The first term IIntra

um can be
derived as,

IIntra
um =

∣∣√λu,mbm(ρubm ĥubm + eubm)Hwmbm

∣∣2
= λu,mbm

∣∣eHubmwmbm

∣∣2, (21)

where ĥHubmwmbm = 0 due to ZF precoding, and
eHubmwmbm ∼ CN (0, 1

1+ηubm
). Thus, IIntra

um follows exponen-

tial distribution with mean λum , λu,mbm
1+ηubm

. The second term

IInter
uk = λu,kbk

∣∣hHubkwkbk

∣∣2 follows exponential distribution
with mean λuk , λu,kbk due to the independence between
hHubk and wkbk .

Since Su follows Gamma distribution with integer param-
eter ku and Iu is the sum of exponential distributed RVs,
by following the same steps as in Appendix ??, we can
approximate the average data rate for pure CB mode when
σ2
u is ignorable as

r̄u ≈
∑
n 6=u

ξun

(
− ln ζun +

ku−1∑
k=1

1

k
+

(−ζun)ku ln ζun
(1− ζun)ku

−
ku−1∑
k=1

(
ku − 1

k

)
(1− ρkun)(−ζun)ku−k

k(1− ζun)ku

)
, (22)

where ξun = 1
ln 2

∏
n′ 6=n

λun
λun−λun′

, ζun = λun
λu,buρ

2
ubu

, and ku =

Nt −Mbu + 1.
Then, the average net throughput of the C-RAN system

under the backhaul of stringent capacity can be obtained as

R̄∗(S,C) =

Nu∑
u=1

(1− vT )r̄∗u, (23)

where r̄∗u can be obtained by solving problem (??).
2) Semi-dynamic User-specific Clustering in Pure CB

Mode: Since each UE has only one master BS in pure
CB mode, the transmission matrix S can be determined by
letting each UE select the BS with the largest average channel
gain as the master BS. Then, the clustering problem reduces
to designing the coordination matrix C. We redesign the
previously proposed clustering scheme in Section ?? to find
C, which is summarized as follows.

1) Initialization: Set S by letting each UE select the BS
with the largest average channel gain as the master BS,
and let C(0) = 0. Compute R̄∗(0)

max = R̄∗(S,C(0)) and set
i = 1.

2) Iteration:
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a) Find the optimal cooperative link maximizing the av-
erage net throughput by solving the following problem
over NuNf − i candidates,

max
D(i)

R̄∗(S,C(i−1) + D(i)) (24a)

s.t.

Nu∑
u=1

Nb∑
b=1

d
(i)
ub ≤ 1, d

(i)
ub ∈ {0, 1} (24b)

d
(i)
ub = 0 (b /∈ Fu) (24c)

d
(i)
ub c

(i−1)
ub = 0, (24d)

d
(i)
ubsub = 0, (24e)
Nu∑
u=1

(c
(i−1)
ub + sub + d

(i)
ub ) ≤ Nt, (24f)

The searching space to solve this problem is (NuNf −
i), which shrinks with the increase of iteration times i.

b) Denote D
(i)
opt as the optimal value of D(i), and define

R̄
∗(i)
max , R̄∗(S,C(i−1) + D

(i)
opt). If R̄∗(i)max > R̄

∗(i−1)
max ,

update C(i) = C(i−1) + D
(i)
opt, i.e., add a new cooper-

ative link into the system, set i = i + 1, and go back
to step 2-a). Otherwise, stop the iteration and C(i−1)

is the final result of the coordination matrix.
The overall computational complexity of this clustering

scheme is O( 1
2N

2
uN

2
f ), which is less than the clustering

scheme for hybrid CoMP, which is O(N2
uN

2
f ).

B. Semi-dynamic User-specific Clustering with Pure JT Mode

The average net throughput in pure JT mode can be obtained
from (??) by letting C = 0, since each user has no coordinated
BS now (all BSs in the cluster are master BSs). Therefore,
the user-specific clustering problem reduces to designing the
transmission matrix and the clustering scheme designed for
the hybrid CoMP can be tailored as follows.

1) Initialization: Initialize S(0) by letting each UE select
the BS with the largest average channel gain as a master
BS. Compute R̄(0)

max = R̄(S(0),0), and set i = 1.
2) Iteration:

a) Find the optimal transmission link maximizing the av-
erage net throughput by solving the following problem
over NuNf − i candidates,

max
D(i)

R̄(S(i−1) + D(i),0) (25a)

s.t.

Nu∑
u=1

Nb∑
b=1

d
(i)
ub ≤ 1, d

(i)
ub ∈ {0, 1} (25b)

d
(i)
ub = 0 (b /∈ Fu), (25c)

d
(i)
ubs

(i−1)
ub = 0 (25d)

Nu∑
u=1

(s
(i−1)
ub + d

(i)
ub ) ≤ Nt. (25e)

b) Denote D
(i)
opt as the optimal value of D(i), and define

R̄
(i)
max , R̄(S(i−1) + D

(i)
opt,0). If R̄(i)

max > R̄
(i−1)
max ,

update S(i) = S(i−1) +D
(i)
opt, set i = i+1 and go back

to step 2-a). Otherwise, stop the iteration and S(i−1)

is the final result of the transmission matrix.
The overall computational complexity of this clustering

scheme is O( 1
2N

2
uN

2
f ), which is less than the one designed

for the hybrid CoMP, which is O(N2
uN

2
f ).

V. NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
semi-dynamic user-specific clustering schemes via simula-
tions. A cellular network with one tier of Nb = 7 cells is
considered as shown in Fig. ??, where each BS is located in
the center of a hexagon cell and one UE is uniformly placed in
each cell.4 In order to remove the network boundary effect, we
employ the wraparound method in the simulations, with which
every cell can be regarded as being surrounded by one tier
of cells. Unless otherwise specified, the following parameters
from [?] are used in all the simulations. The radius of the cell
is 250 m. The pathloss is modeled as 35.3 + 37.6 log10(dub)
in dB, where dub is the distance from BSb to UEu in meters.
The average downlink SNR for UEs located at the cell edge is
set as 20 dB, whose value depends on the downlink transmit
power as well as the cell radius. Considering that the downlink
transmit power is usually larger than the uplink transmit power,
the equivalent average uplink SNR for UEs located at the
cell edge is set as 15 dB, where the uplink training overhead
v = 1% is considered according to LTE specification with a 10
ms training period [?]. We also evaluate the performance under
different downlink cell-edge SNRs and equivalent uplink cell-
edge SNRs later to reflect various configurations of cell radius
and transmit power corresponding to different types of BSs.5

The number of antennas at each BS is four. The measurement
set size of each UE is fixed as three, i.e., Nf = 3. The average
net throughput is obtained by averaging over 500 drops, each
of which contains 1000 realizations of i.i.d. Rayleigh small-
scale channels.

A. Evaluating the Approximations in Deriving the Signal Term

We first evaluate the accuracy of the Gamma approximation
Ŝu ∼ G(k̂u, θ̂u) of the received signal term Su (taking UE1 as
an example) as well as the round-off Gamma approximation
S̃u ∼ G(k̃u, θ̃u) introduced in Section ??. Since the distribu-
tions of Su, Ŝu and S̃u depend on the number of master BSs
of UEu, the distances between UEu and its master BSs, and
the number of served and coordinated UEs by the master BSs
of UEu, we consider four typical scenarios for comparison,
where the number of the master BSs of UE1 ranges from 1
to 3 with different distances6 and different numbers of served
and coordinated UEs as shown in Table ??.

4The case with multiple users distributed in each cell is also simulated but
not shown in the paper since the relationship of the compared schemes is
similar to the single-user case.

5For example, the transmit power and cell radius of macro BSs and pico
BSs are 46 dBm and 250 m, 21 dBm and 60 m, respectively [?]. The
corresponding downlink cell-edge SNR are 15 dB and 20 dB, respectively.

6Since the distributions of Su, Ŝu and S̃u depend on the distances between
UEu and its master BSs, UE1 is first dropped close to one BS and far away
from the other two BSs with (100m, 420m, 420m), and then dropped with
similar distances among the three BSs with (250m, 300m, 300m) as shown
in Table ??.
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TABLE I
SIMULATION SCENARIOS FOR THE JUSTIFICATION OF GAMMA

APPROXIMATIONS

Scenario Master BSs Distance between n(Sb)+n(Ib)
UE1 and

BS1∼BS3

BS1 BS2 BS3

S1 BS1 (100m, 420m, 420m)
or

(250m, 300m, 300m)

3 0 0
S2 BS1, BS2 2 1 0
S3 BS1, BS2,

BS3

1 2 3

S4 BS1, BS2,
BS3

1 1 1

Fig. 3. Comparison among the simulation result Su, the Gamma approxi-
mation Ŝu and the round-off Gamma approximation S̃u.

Figure ?? compares the numerical results of the Gamma
approximation Ŝu and the round-off Gamma approximation S̃u
with the simulation result of Su under the scenarios given in
Table ??. We can see that the PDF of Su under all considered
scenarios with different distances between UE and BSs can
be well fitted by the Gamma approximation Ŝu (dashed lines)
and the impact of the round-off approximation S̃u (dot dashed
lines) is negligible.

B. Evaluating the Approximations in Deriving the Average Net
Throughput

Fig. 4. The accuracy of the analytical result and the impact of weak
interference estimation mechanism.

In Fig. ??, we compare the simulation results of the net
throughput with the analytical result given in (??), which
assumes high SNR and the knowledge of all large-scale fading
gains at the CU. Herein, the locations and the clusters for
all UEs are fixed as shown in Fig. ??. We can see that
the analytical results approach the simulation results with a
less than 10% gap when the downlink cell-edge SNR ≥ 10
dB and the equivalent uplink cell-edge SNR ≥ 0 dB. The
analytical results become more accurate when the equivalent
uplink cell-edge SNR and downlink cell-edge SNR are higher.
We also show the accuracy of the analytical results when
only the large-scale fading gains in the measurement set are
available at the CU, where we introduced a weak interference
estimation mechanism. We can see that without the weak
interference estimation mechanism (i.e., simply set the weak
interference as zeros) the analytical results become higher
than the simulation results because of the underestimated
interference power. When the mechanism is employed, the
analytical results are very close to the simulation results for all
SNRs. This is because the weak interference is well estimated
now and the noise power is taken into account.

C. Performance Evaluation

We evaluate the performance of the proposed user-specific
clustering schemes by simulating the following schemes. Note
that the estimated channels are used for precoding in all

the following simulations and also used for clustering in the
dynamic schemes.

1) Non-CoMP system (with legend “Non-CoMP”): Each UE
is only served by the BS with the strongest large-scale
channel gain and suffers from ICI from all the other BSs.

2) Semi-Dynamic Clustering in Pure CB Mode (with legend
“Pure-CB”): Each UE is served by a cluster formed by
the proposed scheme given in Section ?? for pure CB.

3) Semi-Dynamic Clustering in Pure JT Mode (with legend
“Pure-JT”): Each UE is served by a cluster formed by
the proposed scheme given in Section ?? for pure JT.

4) Semi-Dynamic Clustering in Hybrid CoMP Mode (with
legend “Hybrid”): Each UE is served by a cluster formed
by the proposed scheme given in Section ?? for hybrid
CoMP.

5) Optimal Semi-Dynamic Clustering in Hybrid CoMP
Mode (with legend “Semi-Dynamic Optimal”): This ap-
proach gives the optimal semi-dynamic clustering result
for hybrid CoMP by solving problem (??) with exhaustive
searching.

6) Dynamic Non-overlapped Clustering with Pure JT Mode
(with legend “Dynamic Non-overlapped”): This approach
is proposed in [?], where every two BSs form a non-
overlapped cluster dynamically in each time slot to jointly
serve the users within the cluster using JT. In this
approach, the instantaneous CSI from all UEs to all BSs
is required, which induces large training overhead.

7) Dynamic Overlapped Clustering with Pure JT Mode (with
legend “Dynamic Overlapped”): This approach is based
on the method proposed in [?], where each UE chooses a
given number of BSs (set as two in simulations to maxi-
mize its net throughput) with the strongest channel gains
as its cluster. We apply this method with ZF precoder by
limiting the number of users served by each BS not larger
than Nt. This approach requires instantaneous CSI from
each UE to the BSs in its cluster.

8) Optimal Dynamic Clustering in Hybrid CoMP Mode
(with legend “Dynamic Optimal”): This approach finds
the optimal dynamic clustering result that maximizes
the instantaneous throughput of the network using ZF
precoder and the power allocation given in Section ?? by
exhaustive searching, whose performance can be regarded
as an upper bound of the clustering method proposed
in [?]. In this approach, the instantaneous CSI is obtained
before the clusters are formed by letting UEu send
training signals to the BSs in the measurement set Fu,
which induces more training overhead than those semi-
dynamic clustering schemes.

Fig. 5. Average net throughput vs. backhaul capacity, where the uplink
training overhead per UE is v = 1%.

In Fig. ??, we show the simulation results of the average net
throughput versus the backhaul capacity.7 We can see that the
CoMP systems with both Pure-JT and Pure-CB outperform

7The capacity of backhaul links in existing practical systems is in a range
of 100 Mbps ∼ 2 Gbps, which corresponds to C ∼ [1 bit/s/Hz, 20 bits/s/Hz]
for the bandwidth of 100 MHz [?].
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the Non-CoMP system when the backhaul capacity is high.
When the backhaul capacity is higher than 15 bits/s/Hz, Pure-
JT outperforms Pure-CB because there is enough backhaul
capacity for data sharing. When the backhaul capacity is
lower than 15 bits/s/Hz, Pure-JT is inferior to Pure-CB. When
the backhaul capacity continues to reduce, Pure-JT becomes
inferior to Non-CoMP while Pure-CB still outperforms Non-
CoMP, because Pure-CB can avoid ICI within each cluster
without any data sharing. The clustering scheme in hybrid
CoMP mode outperforms both Pure-JT and Pure-CB, and
performs close to the optimal semi-dynamic and optimal
dynamic solution. Due to the high training overhead and large
inter-cluster interference, dynamic non-overlapped clustering
performs even worse than the Non-CoMP system. Although
dynamic overlapped clustering can reduce the inter-cluster
interference, it still has a large performance loss compared to
the proposed semi-dynamic clustering since training overhead
is not considered when forming the clusters. We also compare
the average iteration times of the proposed methods with
the optimal semi-dynamic and optimal dynamic clustering
methods under different backhaul capacities as shown in Table
??. We can see that the complexity of the proposed clustering
scheme in hybrid CoMP mode is much lower than those
of the optimal semi-dynamic and optimal dynamic clustering
schemes with exhaustive searching. When the proposed clus-
tering scheme is applied with Pure-JT or Pure-CB mode, the
complexity is further reduced.

TABLE II
AVERAGE ITERATION TIMES UNDER DIFFERENT BACKHAUL CAPACITY

Algorithms Backhaul Capacity (bits/s/Hz)
5 12 20

Semi-Dyn./Dyn. Optimal 1.05×1010 1.05×1010 1.05×1010
Hybrid 168.3 168.6 172.7
Pure JT 89.3 89.3 89.3
Pure CB 85.8 85.8 85.8

Fig. 6. Average net throughput vs. training overhead per UE v, where the
backhaul capacity is C = 15 bits/s/Hz.

In Fig. ??, we show the simulation results of the average
net throughput versus the training overhead per UE. We can
see that the semi-dynamic clustering scheme in hybrid CoMP
mode outperforms Pure-JT and Pure-CB, and the optimal
dynamic clustering performs no better than the semi-dynamic
clustering scheme in hybrid CoMP mode. When the training
overhead is low, the performance of all the approaches in-
creases with the training overhead since more training over-
head leads to higher equivalent uplink SNR and thus more
accurate CSI, which improves the performance especially for
CoMP schemes. When the training overhead becomes higher,
the performance decreases since the uplink training wastes too
much resources, which counteracts the gain of accurate CSI.
Moreover, the performance of the three dynamic clustering
schemes, including dynamic non-overlapped, dynamic over-
lapped and optimal dynamic clustering, degrades sharply and
becomes inferior to semi-dynamic clustering and even Non-
CoMP. This is because the cluster size of dynamic clustering

does not depend on the training overhead, while the proposed
semi-dynamic clustering schemes can decrease the cluster size
of each UE so as to reduce the overall training overhead. Since
the cluster size of each UE is small when the training overhead
is high, the backhaul load is not heavy, and thus Pure-JT
outperforms Pure-CB and performs close to the hybrid CoMP
mode.

(a)(b)

Fig. 7. Average net throughput vs. (a) the size of measurement set Nf per
UE and (b) the inverse of measurement set threshold 1/β in dB, where the
backhaul capacity is C = 15 bits/s/Hz.

In Fig. ??, we show the simulation results of the average net
throughput versus the size of measurement set, where both the
fixed-size measurement set and the threshold-based measure-
ment set selection methods in Section ??-D are considered.
We can see that all the CoMP systems with the proposed
semi-dynamic clustering schemes in Pure-JT, Pure-CB and
hybrid mode outperform the Non-CoMP system when the
measurement set is larger than one or when 1/β > 0 dB, and
reach the maximum throughput when Nf = 3 or 1/β = 15 dB.
This verifies that a UE will gain little from choosing faraway
BSs as its master BSs or coordinated BSs. Therefore, in
practical systems when implementing the proposed clustering
schemes, the measurement set should be small, which can
reduce the computational complexity that is proportional to
N2
f as we showed before.

Fig. 8. Average net throughput vs. downlink cell-edge SNR, where the
backhaul capacity is C = 15 bits/s/Hz.

In Fig. ??, we show the simulation results of the average
net throughput versus downlink cell-edge SNR. It is shown
that the semi-dynamic clustering scheme in hybrid CoMP
mode outperforms Pure-JT and Pure-CB for high downlink
cell-edge SNR, because in this case the network is backhaul
capacity limited. When the downlink cell-edge SNR is low,
the gap between Pure-JT and Pure-CB becomes larger and the
performance of Pure-JT is close to the hybrid mode, because
the backhaul capacity is not limited now and the hybrid mode
reduces to Pure-JT mode.

Fig. 9. Average net throughput vs. equivalent uplink cell-edge SNR, where
the backhaul capacity is C = 15 bits/s/Hz.

Finally, in Fig. ?? we show the simulation results of the
average net throughput versus equivalent uplink cell-edge
SNR, which affects the accuracy of channel estimation, and
we also give the performance with perfect CSI for comparison.
We can see that when the equivalent uplink SNR continues
to increase, the performance of all the methods approach to
the performance with perfect CSI. For high equivalent uplink
cell-edge SNR, all the CoMP systems with the proposed semi-
dynamic clustering schemes in Pure-JT, Pure-CB and hybrid
mode outperform the Non-CoMP system, since in this case
the CSI for CoMP is accurate. When the equivalent uplink
cell-edge SNR is larger than 20 dB, Pure-CB outperforms
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Pure-JT and the gap between the hybrid mode and Pure-JT
is large, because the downlink data rate is high now and
the performance of the network is backhaul capacity limited.
When the equivalent uplink cell-edge SNR is low, the CSI
is not accurate enough for both Pure-JT and Pure-CB. Then,
all the CoMP systems in Pure-JT, Pure-CB and hybrid mode
degrade to the Non-CoMP system, where no cooperative link
or extra transmission link is added to the Non-CoMP system
with the proposed semi-dynamic clustering schemes.

VI. CONCLUSIONS

In this paper, we studied semi-dynamic user-specific clus-
tering for downlink C-RAN with CoMP transmission under
limited-capacity backhaul. Considering that backhaul links
with different capacities may be employed in C-RAN, we
introduced a hybrid CoMP transmission mode. Under the
hybrid mode, we derived the closed-form expression of the
asymptotical average data rate of C-RAN system in high
SNR regime, and introduced a weak interference estimation
mechanism to improve the accuracy of the asymptotical results
in general SNRs. By taking into account the training overhead
for channel estimation in C-RAN, we designed the semi-
dynamic user-specific clustering scheme, aimed at maximizing
the average net throughput of the C-RAN system, subject
to the constraint on the backhaul capacity. The proposed
clustering scheme only depends on large-scale channel gains
and therefore can be operated in a semi-dynamic manner.
Moreover, the scheme is of low complexity and performs
close to the optimal solution found by exhaustive searching.
Then, we tailored the proposed clustering scheme to two
special cases respectively with very stringent and unlimited
backhaul capacity in order to further reduce complexity, where
the hybrid CoMP degenerates to the pure CB and pure JT.
Simulations validated the analytical results, and showed that
the proposed semi-dynamic user-specific clustering schemes
are superior to the Non-CoMP systems, and outperform the
dynamic clustering schemes when the training overhead is
large.

APPENDIX A
SUMMARY OF THE ALGORITHM FOR COMPUTING T

The algorithm proposed in [?] for computing T is based on
graph theory. We take the clustering result shown in Fig. ??
as an example, whose graph representation can be shown in
Fig. ??, where each vertex of the graph represents a UE and
each edge in the graph represents two UE sharing no less
than one BS in their clusters. For instance, BS1 is in the
clusters of both UE1 and UE4 as shown in Fig. ??, so there is
an edge between UE1 and UE4. The principle for allocating
orthogonal training resources among the UEs is to use the
minimal number of total training resources to ensure that
any two connected UEs have orthogonal training resources.
The procedure for computing T in Fig. ?? can be briefly
summarized as follows.

1) Compute the degree of each vertex, which is
4, 2, 2, 3, 1, 2, 2 for UE1 ∼ UE7.

2) Sort the vertices in a descending order by their degrees.

3) Allocate the orthogonal training resources for each vertex
sequentially to ensure that any two connected UEs em-
ploy orthogonal training resources and the total number
of used training resources is minimized.

The allocation results are shown in Fig. ??, where different
colors represent orthogonal training resources and the total
number of used orthogonal training resources is 3, i.e., T = 3.

Fig. 10. Graph representation of Fig. ?? and the training resources allocation
result.

APPENDIX B
PROOF OF PROPOSITION 1

The signal term can be approximated as

Su =
∣∣∣ ∑
b∈Tu

√
λu,bh

H
ubwub

∣∣∣2
=
∣∣∣ ∑
b∈Tu

√
λu,b(ρubĥub + eub)

Hwub

∣∣∣2
(a)
≈
∣∣∣ ∑
b∈Tu

√
λu,bρubĥ

H
ubwub

∣∣∣2
(b)
=
( ∑
b∈Tu

√
λu,bρubĥ

H
ubwub

)2

,
( ∑
b∈Tu

Su,b

)2

, (26)

where approximation (a) ignores the term eub, which is
accurate when the uplink SNR ηub is high as verified through
simulations, and step (b) turns | · | into (·) since ĥHubwub is
a positive real number with ZF precoding. Since |ĥHubwub|2
follows Gamma distribution G(Kb, 1) with Kb = Nt−Mb+1

[?] and λu,b = α2
ub

α2
ubP∑

k∈Sb
α2
kb

is independent from the small

scale channels, we can obtain that S2
u,b = λu,bρ

2
ub|ĥHubwub|2

follows Gamma distribution G(Kb, λu,bρ
2
ub) and its square

root Su,b follows Nakagami-m distribution with parameters
Ωub = Kbλu,bρ

2
ub and mb = Kb.

APPENDIX C
PROOF OF PROPOSITION 2

Denote Tu as the size of Tu, where Tu =
{bu1, bu2, · · · , buTu}. By recursive use of the binomial
theorem [?], the nth moment of Su can be found as

E{Snu}
(a)
≈ E

{( ∑
b∈Tu

Su,b

)2n}
=

2n∑
n1=0

n1∑
n2=0

· · ·
nTu−2∑
nTu−1

(
n

n1

)(
n1

n2

)
· · ·
(
nTu−2

nTu−1

)
E
{
S2n−n1

u,b1

}
× E

{
Sn1−n2

u,b2

}
· · ·E

{
S
nTu−2−nTu−1

u,bTu−1

}
E
{
S
nTu−1

u,bTu

}
, (27)

where step (a) comes from (??) and the nth moment of Su,b
is given by [?]

E{Snu,b} =
Γ(mb + 1

2 )

Γ(mb)

(
Ωub
mb

)n
2

. (28)
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Then we can match the first two moments of Ŝu and Su as

E{Su} = E{Ŝu} = k̂uθ̂u, (29a)

E{S2
u} = E{Ŝ2

u} = k̂uθ̂
2
u + k̂2

uθ̂
2
u. (29b)

By solving (??), k̂u and θ̂u can be found as

θ̂u =
E{S2

u} − E2{Su}
E{Su}

, (30a)

k̂u =
E2{Su}

E{S2
u} − E2{Su}

. (30b)

APPENDIX D
PROOF OF PROPOSITION 3

Since S̃u is independent from Iu, with (??), we first take
the expectation over Iu for σ2

u → 0 and obtain [?, eq.(28)]

r̄u = ESu,Iu {log2(1 + γu)} ≈ ES̃u,Iu
{

log2

(
1 + S̃u

Iu

)}
=
∑
m6=u

δumλum
ln 2

ES̃u
{
ε+ln S̃u

λum
−e

S̃u
λum Ei

(
− S̃u
λum

)}
, (31)

where Ei(x) = −
∫∞
−x

e−t

t dt denotes the exponential integral
and ε is the Euler-Mascheroni constant. Then, by taking the
expectation over S̃u, we have

ES̃u
{
ε+ ln S̃u

λum
− e

S̃u
λum Ei

(
− S̃u
λum

)}
=ε+

∫ ∞
0

(
ln s

λum
− e

s
λum Ei

(
− s

λum

))
sku−1e

− s
θ̃u

θ̃kuu (ku−1)!
ds

=ε+

∫ ∞
0

(
xk̃u−1e−x

(k̃u−1)!
ln x

ζ̃um
−e

x
ζ̃um Ei

(
− x
ζ̃um

)
xk̃u−1e−x

(k̃u−1)!

)
dx,

(32)

where ζ̃um = λum
θ̃u

. The integral in (??) can be derived by [?,
p. 569, eq. (4.352.1)] and [?, p. 633, eq. (6.228.2)] as

Ψ(k̃u)− ln ζ̃um + 1
k̃u

2F1(1, k̃u; k̃u + 1; 1− 1
ζ̃um

), (33)

where Ψ(x) and 2F1(a, b; c;x) are the Digamma function and
the Gauss Hypergeometric function, respectively.

Noting that S̃u ∼ G(k̃u, θ̃u) is the round-off approximation
of Gamma distribution, where k̃u is an integer, Ψ(k̃u) can be
expressed in closed form as [?, p. 894, eq. (8.365.4)]

Ψ(k̃u) = −ε+

k̃u−1∑
k=1

1

k
, (34)

and
1
k̃u

2F1(1, k̃u; k̃u + 1; 1− 1
ζ̃um

)

(a)
= ζ̃um

k̃u
2F1(1, 1; k̃u + 1, 1− ζ̃um)

(b)
= ζ̃um

∫ 1

0

(1−t)k̃u−1

1−(1−ζ̃um)t
dt

= ζ̃um
(1−ζ̃um)k̃u−1

∫ 1

0

(1−(1−ζ̃um)t−ζ̃um)
k̃u−1

1−(1−ζ̃um)t
dt

= ζ̃um
(1−ζ̃um)k̃u−1

×

k̃u−1∑
k=0

(
k̃u−1
k

)
(−ζ̃um)k̃u−k−1

∫ 1

0

(
1− (1− ζ̃um)t

)k−1
dt

= (−ζ̃um)k̃u ln ζ̃um
(1−ζ̃um)k̃u

−
k̃u−1∑
k=1

(
k̃u−1
k

) (1−ζ̃kum)(−ζ̃um)k̃u−k

k(1−ζ̃um)k̃u
, (35)

where step (a) follows the transformation by [?, p. 998, eq.
(9.131.1)] and step (b) comes from the integral representation
of the Gauss Hypergeometric function in [?, p. 995, eq.
(9.111)].

Finally, by substituting (??) and (??) into (??), defining
ξum , λumδum

ln 2 , and further considering (??), Proposition 3 is
proved.


