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Abstract: Central nervous system disorders, especially neurodegenerative diseases, are a public
health priority and demand a strong scientific response. Various therapy procedures have been used
in the past, but their therapeutic value has been insufficient. The blood–brain barrier (BBB) and the
blood–cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS),
but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as
brain tumors, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. Nanotechnology-
based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with
greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide
range of brain ailments connected to short- and long-term disability. They affect millions of people
worldwide and are anticipated to become more common in the coming years. Nanotechnology-based
brain therapy could solve the BBB problem. This review analyzes nanomedicine’s role in medication
delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat
CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration,
with the intention of stimulating the immune system by delivering medications across the BBB.

Keywords: central nervous system disorders; blood–brain barrier; nanomedicine; immunotherapy;
nanotechnology

1. Introduction

Nanomedicine is a new field that utilizes nano-scale resources for applications in
the diagnosis and treatment of diseases [1]. Several nano-scale materials are used in
nanomedicine: organic, inorganic, carbon-based, polymeric, liposomes, extracellular vesi-
cles, and metals [2–4]. Boron-containing compounds (BCCs) have a wide range of medicinal
effects [5–7]. Currently, only a few BCCs, such as vaborbactam, tavaborole, crisaborole, and
bortezomib, are permitted for use in people. However, many other BCCs are demonstrating
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promising results as prospective therapies for human disorders, particularly neurolog-
ical conditions. Consequently, the interest in BCCs on models of neuronal disorders is
rising. These include studies that reveal beneficial activity on multiple targets, those that
demonstrate a pro-survival impact on human-derived SH-SY5Y cells, such as an A-toxicity
model, and those that demonstrate ameliorative abilities in both in vitro and in vivo mod-
els of AD [8–11]. The relationship between nanoscience and pharmaceutical science is
broad and there are emerging applications in various fields of disease diagnosis and thera-
peutics [12–14]. Tumor cells are passively targeted by nanomedicines through enhanced
retention and permeability (EPR) [15]. The improved permeability and retention are used
to target the lymphatic and microvascular systems in the tumor’s interior [16–18]. Alterna-
tively, nanomedicine approaches in active and functional targeting are widely examined to
overcome particular challenges in tumor theragnostic [19].

The term “central nervous system (CNS) disorders” refers to a broad range of sig-
nificant neurological conditions, the majority of which have no effective treatments [20].
Gliomas and glioblastomas, two types of brain cancer, are inherited diseases that originate
from cells known as neuroglial ancestor cells [21]. Glioblastoma, which makes up 15% of
primary brain tumors and 50% of all gliomas, is the most typical primary CNS tumor in
adults. Only temozolomide (TMZ) and the antiangiogenic medicine bevacizumab have
been approved by the US Food and Drug Administration (FDA) in recent years for the
treatment of gliomas [22]. The median survival rate for people with glioblastoma is less
than 2 years despite recent treatment advancements [23]. The more common neurodegen-
erative disorders Parkinson’s disease (PD) and Alzheimer’s disease (AD) affect millions
of people worldwide [24]. There are several drugs for AD that have been licensed by the
FDA, such as cholinesterase inhibitors (e.g., rivastigmine and donepezil) as well as NMDA
receptor antagonists (e.g., memantine), However, they have limited benefits on severe
cognitive impairment and cannot reverse the course of the condition [25–27]. The only drug
approved to treat Parkinson’s disease is Xadago (safinamide) that reduces motor symptoms
without addressing the underlying pathophysiology of the disease [28,29]. Preventing
disease development and treating the symptoms and pathology after a late-stage diagno-
sis are the major challenges in this profession. A new wave of treatment strategies has
emerged as a result of these challenges. Currently, radiation, chemotherapy, gene therapy,
immunotherapy, and surgery are used to treat CNS illnesses; however, every therapeutic
approach has advantages and disadvantages [30,31]. Immunotherapy uses the immune
system of the host to target disease cells by enhancing or suppressing innate immune
responses [32]. Active immunotherapy and passive immunotherapy are the two categories
of immunotherapeutic techniques [33]. Nanomedicines, tumor vaccines, and non-specific
immune stimulants are all examples of active immunotherapeutic techniques that aim to
elicit an immune response [34–36]. Through administering lymphocytes or antibodies to
patients, passive immunotherapy promotes anticancer effects [37]. Therefore, while imple-
menting immunotherapeutic techniques, it is important to take into account the distinct
immunological milieu of the CNS [38,39]. The presence of complement components, the
expression of Toll-like receptors, and the existence of microglia, astrocytes, and pericytes as
antigen-presenting cells (APCs) demonstrate that the CNS immune system exists [40]. Even
with a disrupted blood-brain barrier (BBB), certain invading cancers contain no enhancing
areas, which restricts therapeutic medication interaction despite the immune system’s
dynamic and adaptive characteristics [41]. Additionally, the delivery of medicines across
the BBB is a substantial problem due to the tremendous adaptive characteristics of glioblas-
toma, in addition to its comparatively low immunogenicity, development of an inhibiting
tumor microenvironment (TME), and intertumoral heterogeneity. In fact, many scientists
have proposed that the CNS may indeed be regarded as an “immunologically inactive”
location, providing a distinct and balanced environment that favors the predominance of
immunosuppressive mediator production [42].

The fundamental challenge that restricts the efficacy of immunotherapies is the en-
gagement of surrogate immunosuppression by brain tumors via several pathways. Over-
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expressed markers (CD4+, CD25+, and FOXP3+) on regulatory T cells (Tregs) in the sick
state influence the immunologically cold TME [43]. Glioblastomas are a particular kind of
immunoprivileged tumor since they are sometimes referred to as “cold TMEs” and are only
peripherally penetrated by immune cells. A cold TME may also be influenced by immune-
suppressive cytokines like interleukins IL-6 and IL-10, as well as immune-suppressive
cytokines like transforming growth factor-beta (TGF-β) [44]. PD-1 (programmed cell death
protein 1) is overexpressed by inactive Tregs, which aids tumors in evading CNS immune
responses and results in a cold TME [45,46]. As a result, a number of tightly controlled
checkpoints maintain brain immunity. Immunotherapy has undergone several changes
as a result of training the immune system to detect disease locations [47]. One is immune
checkpoint inhibition, in which medications (typically antibodies) block immunological
checkpoints that tumors have overexpressed in order to reveal cancer cells and ultimately
activate immune responses against the tumors (e.g., melanoma) [48]. Alternatively, im-
mune responses can be triggered by genomically altered targeted therapeutics (such as
chimeric antigen receptor T cells (CAR T cells)), which have been altered to detect and
cure the patient’s malignancy [49]. Immunotherapy for the treatment of CNS illnesses
continues to be a significant therapeutic issue despite decades of scientific study. For
instance, immunological checkpoints and CAR T-cell therapy are less effective in treating
nonresponsive cancers that have fewer mutations and neoantigens [50]. Immunotherapy
can be particularly difficult due to the location and morphologic similarity of nonmalignant
cells with neuroglial cells [51]. A significant barrier to obtaining a better therapeutic effect
for CNS illnesses is the difficulty in deliver therapeutically appropriate dosages to the
disease region.

Drug clearance via the kidneys, drug circulation time in the blood, medication pene-
tration through the blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB) are
further obstacles to drug delivery into the central nervous system (CNS) [52]. The payload’s
ability to enter the CNS is frequently constrained by a natural defense mechanism of efflux
pumps, such as multidrug-resistant protein [53] and convection-enhanced diffusion [54].
In order to overcome these difficulties, CNS treatments are being developed using an
active and functionally focused nanomedicine-based strategy [55]. The emerging field of
nanomedicine uses nanoscale materials for a wide range of purposes in diseases diagno-
sis and treatment [1]. The BBB needs to be crossed by effective nanomedicines for CNS
illnesses, and different parameters need to be tuned (e.g., shape, size, functional surface
chemistry, circulating half-life, structural stability, permeability, and extravasation) [56].
Additionally, many receptor-facilitated contacts are required to maintain a high degree of
surface conjugation chemistry and the related targeting capabilities. One of the primary
mechanisms for BBB penetration is receptor-mediated transcytosis (RMT) [57], Transcytosis
mediated by adsorption [58] and cell-mediated transport by immune cells, macrophages,
and monocytes [59,60] are further examples. Extracellular vesicles, liposomes, and red
blood cell membranes are just a few examples of the various nanoscale materials that have
been used as nanomedicines thus far [61,62], in addition to metal nanostructures [3]. Drug-
carrying nanostructures significantly enhance the pharmacokinetics and biodistribution of
pharmaceuticals in the CNS when compared to free drugs [18,63].

Neurodegenerative diseases adversely affect the structure and function of neurons,
which are a building block of the nervous system, and are frequently involved in neuronal
death [64]. Mechanistically, the factors underlying the pathogenesis and propagation of neu-
rodegenerative disorders include genetic mutations [65], mitochondrial dysfunction [66],
damage to DNA or organelle membranes, protein misfolding and aggregation, autophagic
as well as apoptotic cell death, and transglutaminase binding [67]. With a million people
affected by Alzheimer’s disease [68], it is irreparable, though the available treatments
consist of pharmaceutical, behavioral, social, and caregiving treatments. Pharmaceuti-
cal treatments include donepezil, rivastigmine, galantamine, tacrine (acetylcholinesterase
(Ache) inhibitors), and memantine (N-methyl-aspartate (NMDA) receptor antagonist) [69].
The treatment of Parkinson’s disease (PD) is similarly critical, with 10 million people
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suffering worldwide. Treatments such as medicines, surgery, and physical therapy have
been confirmed to increase quality of life. The primary treatment for extenuating motor
symptoms is levodopa, used in combination with a dopa-decarboxylase inhibitor and other
inhibitors such as dopamine agonists, catechol-o-methyltransferase (COMT) inhibitors,
and monoamine oxidase-B (MOA-B) inhibitors [70]. Nanomedicine is unarguably moving
with the anticipated pace to conquer neurodegenerative disorders and their associated
consequences. Incidentally, nanomaterials have been manipulated to attain appropriate
physicochemical properties, for instance the type of matrix, size, charge, surface chemistry,
polarity, etc., to enable the crossing of the BBB and targeting the CNS to release their
cargo [71]. Current intriguing advances in various kinds of polymeric nanoparticles, metal
nanoparticles, nanoparticles (NPs), namely liposomes, etc., for the cure and identification
of numerous neurodegenerative diseases are reviewed here.

This review presents collected information about different therapies, such as gene
therapy, chemotherapy, and especially immunotherapy, based on nanomedicine for the
treatment of CNS diseases. The diseases under study include brain cancer and the neu-
rodegenerative Alzheimer’s and Parkinson’s diseases. The data are hypothesized from
the experimental models of the oriented propagation hypothesis for glioma, tauopathies,
amyloid-β, and α-synucleinopathy Lewy bodies. This study evaluates a role in disease
progression, the latest information about different therapies, especially immunology, that
have a role in disease progression, outlining the current advances and shedding light on
some problems. Finally, the information may surprise researchers as to whether these
selective targeting strategies and the elimination of symptoms engage the immunotherapy
approaches among various pathological hypotheses associated with CNS diseases.

2. The Immune System in the Brain

Since the CNS lacks a lymphatic system and early destructive T-cell responses are
driven by the parenchyma, it is usually viewed as an immune-privileged system [35].
According to the results of a recent study, despite the presence of a functional meningeal
system, particles were able to move into subterranean cervical lymphatic nodes due to
the functioning meninges [72]. Lymphatic endothelial cells were intensely studied for
their configuration that expresses all their molecular markers [73,74], and, nowadays, they
are generally recognized as the glymphatic system. The particular range of the system
(Figure 1) is still unknown [75]. According to another study, the cerebrospinal fluid and
interstitial fluid periarterial space containing macromolecules and solutes are continuously
exchanged within the system of perivascular tunnels, basement membrane, and astroglia
cells [76,77]. Additional research studies revealed a specific perivascular section for small
lipid transport and glial communication signaling [78].

CNS immune treatment was partially credited to the absence of a standard lymphatic
system. The parenchyma of the brain was able to maintain and potentiate the immune
response induced by allografts that were recognized by an immune response in peripheral
organs [79]. As previously mentioned, the brain parenchyma and meningeal part of the
brain shows a wide variety of properties when compared to the BBB, starting from the
fact that the meningeal blood barrier is more permissive than the BBB, so immune cells
are allowed to flow separately through the meningeal spaces even under physiological
conditions [73]. Even though studies suggested that a model in which a selective barrier, for
example, the BBB, does not characterize the individual static structure capable of separating
immune cells outside the organs, nonetheless they are slightly permissive entrances that
control the passage of cells in particular circumstances, such as in some specific phenotypes.
In this circumstance, the limit of the CNS is not the authority for elimination. As a result,
the capacity to communicate with the active immune system is limited [80].
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Figure 1.  The cervical lymph nodes through the CNS's lymphatic and lymphatic drainage path-
ways. (A) The meningeal lymphatic vascular system is depicted schematically in the mouse brain. 
Along with the venous sinuses, arteries, and cranial nerves, the dural lymphatic vessels leave the 
cranium through the foramina in alignment with the dural blood vessels and cranial nerves. Along 
with the olfactory nerves, certain lymphatic veins may be seen crisscrossing the cribriform plate. 
Tracers injected into the SAS or brain parenchyma drain into the dcLNs adjacent to the jugular vein 
through the dural lymphatic arteries. (B) ISF and CSF circulation up close. CSF and solutes are 
transported into the brain via the perivascular glymphatic drainage system through the periarterial 
pathway, whereas ISF and solutes are transported out of the brain by the perivenous glymphatic 
pathway. CSF macromolecules and immune cells are mostly carried by the dural lymphatic chan-
nels into the lymph nodes and extracranial systemic circulation, and CSF can reach the venous 
system via arachnoid granulations. (C) Routes for antigens and antigen-presenting cells to exit the 
central nervous system (APCs). Dendritic cells, in particular, may migrate along the rostral mi-
gratory stream (RMS) to enter the lymphatics via the olfactory bulb's SAS. Alternatively, antigens 
and APCs are proposed to leave the CNS via the glymphatic pathway (as demonstrated for anti-
gens), reaching the SAS and entering the meningeal lymphatic vasculature via SAS and trafficking 
to the dcLNs. APCs in the meningeal spaces may also go to the dcLNs through meningeal lym-
phatic channels. It is still unknown how much each mechanism contributes to cell and antigen 
outflow. Reproduced with permission from [47]. 
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Figure 1. The cervical lymph nodes through the CNS’s lymphatic and lymphatic drainage pathways.
(A) The meningeal lymphatic vascular system is depicted schematically in the mouse brain. Along
with the venous sinuses, arteries, and cranial nerves, the dural lymphatic vessels leave the cranium
through the foramina in alignment with the dural blood vessels and cranial nerves. Along with
the olfactory nerves, certain lymphatic veins may be seen crisscrossing the cribriform plate. Tracers
injected into the SAS or brain parenchyma drain into the dcLNs adjacent to the jugular vein through
the dural lymphatic arteries. (B) ISF and CSF circulation up close. CSF and solutes are transported
into the brain via the perivascular glymphatic drainage system through the periarterial pathway,
whereas ISF and solutes are transported out of the brain by the perivenous glymphatic pathway. CSF
macromolecules and immune cells are mostly carried by the dural lymphatic channels into the lymph
nodes and extracranial systemic circulation, and CSF can reach the venous system via arachnoid
granulations. (C) Routes for antigens and antigen-presenting cells to exit the central nervous system
(APCs). Dendritic cells, in particular, may migrate along the rostral migratory stream (RMS) to
enter the lymphatics via the olfactory bulb’s SAS. Alternatively, antigens and APCs are proposed
to leave the CNS via the glymphatic pathway (as demonstrated for antigens), reaching the SAS
and entering the meningeal lymphatic vasculature via SAS and trafficking to the dcLNs. APCs in
the meningeal spaces may also go to the dcLNs through meningeal lymphatic channels. It is still
unknown how much each mechanism contributes to cell and antigen outflow. Reproduced with
permission from [47].
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Through an internal recirculation mechanism connecting the cerebrospinal fluid
with intestinal fluid, antigens pass from the brain to deep cervical lymph nodes through
meningeal lymphatic vessels [75]. Nevertheless, the response is low; therefore, it is required
for a considerable number of antigens or secondary signaling to generate this response.
Alternatively, the cervical lymph nodes may possess the ability to moderate immune
responses to CNS antigens and tolerance or reactivity in response to these antigens [73].

3. Challenges in Nanomedicine-Based Immunotherapy in the Brain

Human brains are among the best-protected organs in the body. The skull, meninges,
and cerebrospinal fluid provide shields of protection: the BBB and BBTB [81]. All these
layers protect the brain from injuries and prevent diseases. However, the protective layers
lessen the entrance of therapeutic agents to the brain in a diseased state.

Despite research on many drugs or medicines, only a few drugs, such as rivastigmine,
memantine, galantamine, tacrine, and donepezil [82], are currently used to support the
clinical treatment of neurodegenerative disorders [1]. The CNS is the most complex and sen-
sitive structure in the human body, securely packed and sealed by the BBB and BCFB [83,84].
Numerous transporter systems are the critical factors for regulating the CNS’s internal
environment; they are located at the BBB and are capable of shipping elements through the
BBB. For instance, the multidrug resistance protein named P-glycoprotein (Pgp) is a vital
transporter belonging to the ATP-binding cassette transporter family [85].

Due to its multifaceted nature, there are numerous limitations in delivering targeted
medicine from the blood to the CNS. There is a lack of data about the role of medicines,
the half-life of medicines, or bio-presences for brain cells, their effects on the CNS, or the
irregular and uncertain relationships between off-target medicines and receptors and en-
zymes. The complicated pharmacology of some medicines, neurodegenerative symptoms,
the lengthy latency period, and incompetence of medicines, the subsequent development of
infections, an incorrect number of medicines, the patient’s genotype, and diverse reactions
to medicines constitute the instability index of assessed medications. In addition, with
concerns related to the brain, the difficulties become even more difficult [86–88]. Here, the
three main obstacles inhibiting drug transport into the brain are discussed.

3.1. The BBB

The CNS is a good site in regards to immunity due to being protected by the BBB,
which plays a critical defensive role in the transportation of molecules, adjuvants, and
immune modulators from the bloodstream to the brain [89]. Nevertheless, the CNS has
immature T cells in blurred form, while T lymphocytes in active form circulate and can do
so during their movement [38]. Moreover, animals that bear tumors and glioma patients’
normal infiltration process of cytotoxic T cells should be considered [90]. During neu-
roinflammation of the CNS, the brain uses microglia and pericytes as antigen-presenting
cells (APCs), which often triggers neurological disorders [40]. Despite BBB disturbance,
some non-enhancing regions of the infiltrating tumor where the BBB is unbroken limit
therapeutic drug contact [41].

The presence of the BBB and BBTB protective shells around brain tumors is a significant
obstacle to delivering therapeutic agents (Figure 2). The BBB, acting as a barrier, forms from
a tight restriction of cerebral capillary endothelium, astrocytes, pericytes, basal membranes
with infrequent transcytosis, and endocytosis [52]. Due to the overexpression of existing
P glycoproteins on cerebral endothelial cells, utmost active efflux process penetration
occurs [41]. Moreover, macromolecules of all kinds and large parts of smaller molecules,
including anticancer drugs, cannot pass through the tiny and tight holes present in the
connective cells of the CNS [41]. Thus, modern chemotherapies fail to reach their target
owing to the BBB.
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Figure 2. BBB’s structure and composition. The brain endothelium, astrocytes, extracellular matrix,
and endothelial cells form tight junctions, which make up the majority of the BBB. Image reproduced
with permission from [91].

3.2. Blood–Cerebrospinal Fluid Barrier

After overcoming the BBB, the next obstacle is the blood–cerebrospinal fluid barrier
(BCFB) that is assembled by the epithelial cells of the choroid plexus (CP), which systemi-
cally deals with drug molecules [88]. The choroid plexus epithelium (CPE) is a secretary
epithelium that is one of the most effective tissue types based on secretory mechanisms
involved in balancing cellular transport mechanisms [92]. Similar to the BBB, this epithelial
barrier system separates the blood and CSF. The CPE is tightly preserved throughout form-
adjacent cells found next to the CSF-facing surface. The CPE comprises multi-specific efflux
transport proteins and detoxifying enzymes, both preventing entry of potentially lethal
compounds into the CNS [93]. Several plans for drug delivery have been developed, most
of which target the microvascular endothelium and are suitable for the BBB. In addition to
the BBB, targeting the BCFB shaped by the choroid epithelium is important for the curing
of CNS diseases [93].

3.3. Multidrug Resistance Proteins

In recent times, the BBB was considered a static lipid membrane barrier. Physical
feature selectivity to a wide variety of circulating compounds by the BBB membrane was
due to factors such as cerebral endothelial cells containing tight junctions, deficiency of
vesicles or caveolae, and high electrical resistance. However, immunocytochemistry, molec-
ular biology, and biochemistry experiments on BBB transport pathways, have established
that cerebral endothelial cells acquire a wide range of metabolic enzymes (e.g., glutathione
transferases, alkaline phosphatase, and cytochrome P450 enzyme) and efflux transport
proteins (energy-dependent), including P-glycoprotein and multidrug resistance proteins
arranged irregularly and serving as a barrier. P-glycoprotein (P-gp) (170–180 kDa) is a
plasma membrane-associated protein and is one of the essential ATP-dependent efflux
transporters in the BBB. P-glycoprotein is a multidrug resistance protein encoded by the
MDR1 gene [94], that limits the access of various drugs and preventing them from achieving
their precise therapeutic objectives. In comparison, when P-gp expression is suppressed,
the drug quantity arriving in the CNS was increased. Another experiment suggested that
inhibitors and inducers of P-gp have an apparent effect on brucine pharmacokinetics and
pharmacodynamics [94].

The challenge in pharmaceutical research is discovering devices and methods for
allowing efficient and effective drug distribution into the CNS [95]. Immunotherapy is an
approach of clinical oncology with significant development for effective therapies against
numerous cancers [96]. However, the microscopic immunological environment in the CNS
requires appropriate precautions to engage in immunotherapeutic strategies for gliomas.
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Immunotherapy has the potential for the treatment of glioblastoma (GBM), although
researchers agree that combination regimens are required to attain a robust response. Owing
to its powerful adaptive capabilities, relative lack of immunogenicity, immunosuppressive
tumor microenvironment, and intra-tumoral heterogeneity, the amelioration of GBM across
the BBB is still challenging. It is believed that the CNS has a unique, activated, distinctive,
and adaptive immune system, with microglia cells specified for antigen presentation,
expression of Toll-like receptors (TLRs), and complement components [97,98]. The CNS
is also considered an “immunologically inactive” site with an environment employed to
express immunosuppressive mediators [42]. Based on these facts, CNS disorders are a
significant cause of delayed or hampered immune responses.

The engagement of multiple mechanisms to induce immunosuppression provides
an obstacle limiting the value of immune therapies for glioma. The gloom remains as
immunologically cold tumors with a suppressed TME are insufficiently infiltrated by
functional immune effector cells. The key factors that modulate the immunologically
cold microenvironment for T cell regulation, also called “Tregs”, in gliomas, are due
to highly expressed markers such as CD25+, CD4+, and FOXP3+. Moreover, tumor cell-
derived cytokines act as immune inhibitors, for example IL-6, IL-10, and transforming
growth factor-beta (TGF-β) [44]. Glioma immune responses are due to the Tregs in both
tumor-resistant or glioma-grade increased programmed cell death protein-1 (PD-1) expres-
sion [43,46]. Although there are existing tumor-infiltrating lymphocytes in the TME, it still
has a very low response rates because of immunosuppressive signals from accumulation
of exhaustion [45].

4. Nanomedicines for Targeting CNS Diseases

Neurodegenerative disorders such as Alzheimer’s (AD), Parkinson’s (PD), and amy-
otrophic lateral sclerosis (ALS) are characterized by a protracted pathological degradation
process that causes incalculable suffering to patients and their relatives. With the matura-
tion of nanotechnology since the 1990s, the technical barriers to nanomaterial research have
disappeared. Nanomaterials have steadily entered the area of view of neurodegenerative
disease experts. For research purposes, numerous nanomaterials, including lipid-based
nanomaterials (e.g., liposomes and solid lipid nanoparticle (SLN)), polymeric nanomaterials
(e.g., micelles, dendrimers, nanocapsules, and nanospheres), and inorganic nanoparticles,
have been utilized. Nanoparticle-based therapeutic strategies in CNS-associated diseases
are mainly focused on and sustain local release and targeted delivery of curative agents
at the brain’s affected zone after bypassing the BBB [99]. The hallmark feature of AD
is amyloid-β peptides combining to form amyloid plaques. Existing AD treatments in-
clude cholinesterase inhibitors like donepezil, rivastigmine, galantamine, and N-methyl-d-
aspartate receptor antagonists (memantine) [100]. With the help of polymeric nanoparticles,
lipid-based nanoparticles, and non-polymeric quantum dots, passage through the BBB is
permitted and side effects of free drug usage are decreased by reformulating clinically used
drugs [101]. Concerning the nano delivery method, numerous neuroprotective compounds
such as metal chelators and several NMDA antagonists of anti-amyloids improved the
passage through the BBB and reduced Aβ aggregate formation [102,103].

PD’s treatment based on dopamine replacement is the most used approach; later on,
treatments for the effects on motor neurons and attenuating disease development were
developed, although these drugs’ effects on behavior and perception are still under investi-
gation [104]. Recent studies focused on curative nanoparticles in various approaches, for
example, targeting dopamine delivery by using polymeric nanoparticles or liposomes [105].
Many studies use different drugs such as bromocriptine, apomorphine, mitoapoacynin,
and ropinirole encapsulated with liposomes or polymeric nanoparticles to advance the
sustained discharge of drugs and to decrease unwanted outcomes of predictable PD ther-
apy [106–108]. Anti-inflammatory therapeutics have been established via PEGylated lipo-
somes or polymeric nanoparticles to inhibit neuronal cell death in PD [82–84] and increased
dopamine levels [109,110]. Alternatively, numerous groups proposed nano-systems for the
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transfer of hereditary material such as nucleic acid (DNA and RNA) and oligo-nucleotides
to prevent abnormal gene expression or production of beneficial proteins in targeted
cells [111]. Significant progress in clinical signs was noted in progressive PD patients
using gene therapy, which is still a contradictive matter considering PD’s heterogenic
pathology [112].

Recently, nanomedicines based on GBM therapeutics have received important consid-
erations [101,113]. In the case of generally directed free drugs, a minute proportion passes
through the BBB in a nonspecific manner in off-target tissues, resulting in severe unde-
sirable outcomes. Therefore, nanoparticle use for drug delivery to the brain can increase
the percentage of drugs crossing the BBB and decrease nonspecific drug accumulation in
other tissues [15]. For instance, gadolinium-loaded nanocarrier systems improved drug
penetration and targeting ability to 100-fold higher levels than free gadolinium. NPs with
a ligand-modified surface have facilitated imaging of brain tumors [114,115]. In another
study, the PEGylation of nanoparticles was used in drug delivery to protect nanoparticles
from blood protein interactions on the reticuloendothelial system (RES) [102,103]. Similarly,
the PEGylated NPs thoroughly avoided interfacing with protein in the plasma. Studies have
found, however, that PEGylating proteins does not completely prevent their interaction
with nanoparticles in the blood [116].

Nanomedicine-based approaches have the promising potential to overcome these
restrictions and advance the treatment of CNS disorders. The uses of nanoparticles as
drugs and drug-delivery carriers have been extensively examined in preclinical studies and
are currently being applied in the clinical setting for certain CNS diseases (Table 1) [117–121].
A variety of nanoformulations have demonstrated that they significantly improve CNS
pharmacokinetics and distribution in brain areas when compared to free drugs [122,123].
In addition to overcoming the BBB, surface decoration with specific ligands allows ‘active
targeting’ to different brain cell types [101]. Targeting neuronal cells in CNS pathology
markers is a crucial task in nanomedicine and neuroscience. Presently, there is only a limited
number of nanomedicines in clinical use or in the pipeline to cure CNS disorders, such as
glatiramer acetate [124], peginterferon-1a for sclerosis [125], gold nanocrystals (CNM-Au8)
for lateral sclerosis and PD [126], APH-1105 for AD [119,127], and nanocurcumin for lateral
sclerosis [128,129]. These nanomedicines are mainly based on polymeric-based therapeutics,
gold nanocrystals, and curcumin encapsulated in nanomedicine in nano micelles, or NPs
containing an inhibitor of α-secretase to treat Alzheimer’s disease. Although these nano-
formulations were not precisely made to target neurons, their systematic features and
the changes required to enhance their clinical results, are still poorly known. The low
number of nanomedicines used to target the CNS in clinical trials is the main difficulty
facing the strategy and advancement of these methodologies. Thus, a comprehensive
preclinical confirmation is mandatory. Therefore, in recent years, numerous struggles have
concentrated on the advancement and testing of nanomedicines in models of CNS disorders
that can advance the clinical usage of these NPs in the CNS.

Table 1. List of nanomedicines targeting CNS diseases.

Name of
Nanomedicine Disease Name Purpose Targeting Plan Outcomes Reference(s)

LBNP
GBM Anticancer, in vivo image 17 peptides Enhanced bioavailability [130–132]

PD PD treatment Lamp-2b
Chlorotoxin Targeted delivery [133,134]

AD AD treatment Lamp-2b Enhances drug delivery, efficiency,
and accessibility [135]

Au-NP
GBM PDT, PTT Transferrin peptide

RVG29 Peptide

Improves the cellular
intake/enhances the efficiency of

photodynamic therapy
[136–138]

PD PD Treatment chitosan Enhances the efficiency of the [139]
AD AD treatment RVG29 Peptide amyloid-β inhibitor [140]
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Table 1. Cont.

Name of
Nanomedicine Disease Name Purpose Targeting Plan Outcomes Reference(s)

PNP
GBM Anticancer

AS14111 aptamer
Transferrin

Pep-1
Angiopep

Enhance efficiency
and anti-glioma [141–145]

PD PD treatment ApoE Enhance the
neuroprotective efficiency [146–149]

AD AD treatment
PET

ApoE
125I-clioquinol

Beta amyloid-induced cytotoxicity
is enhanced by curcumin [150,151]

IO-NP
GBM MRI/TEM Chlorotoxin, chitosan,

Anti-EGFRvIII
Targeted therapy and

enhanced delivery [152,153]

PD MRI Anti-ferritin Detection [154]

AD MRI Anti-AβPP,
Anti-ferritin Improved amyloid-β revealing [86,155]

5. Surface Modification of Nanoparticles

The nanomedicine system used for CNS diseases must be compatible and able to
cross the BBB efficiently. While designing nanocarriers, the following parameters require
optimization: size, shape, structural stability, functional surface chemistry, permeability,
circulating half-life of the tumor, extravasations, and targeting capability to enter the tumor
using receptor- or transporter-facilitated interactions. In this aspect, surface-conjugated
chemistry may play a pivotal role in overcoming the significant challenges traversing
the BBB. The BBB is a group of highly specialized, closely connected cells arranged in a
group. The BBB can protect the brain from many potential threats and it has a pivotal
role in the brain’s homeostasis and physiology. The BBB’s structural features primarily
consist of highly impenetrable brain capillary endothelial cells (BCECs) enclosed with the
wrapping of perivascular end feet of astrocytes and basal lamina pericytes (as shown in
Figure 1A) [56]. The epithelial cells possess tight junctions (TJs) that strictly restrict the
permeability of water-insoluble molecules via diffusion. Thus, the BBB acts as a barrier
resisting nearly all (98%) small-sized adjuvants and drugs, whereas the large-molecule
neuro-therapeutics are completely blocked [156].

Luminal and abluminal epithelial cells act as transport sites for substrates into the
brain [56,156]. Lipophilic molecules (≤400 Da), alcohol, nicotine, steroid hormones, CO2,
and O2, can take a transcellular lipophilic pathway to cross the BBB via diffusion. Detailed
routes are shown in the schematic in Figure 1B. Moreover, carrier-mediated transcytosis
(CMT) is the primary method to cross the BBB that is used by the many essential nu-
trients and ions, such as amino acids, glucose, nucleosides, vitamins, and electrolytes.
Glucose transporter-1 (GLUT1) is another essential receptor that favors bi-directional glu-
cose diffusion via a concentration gradient [57]. Furthermore, another pathway includes
receptor-mediated transcytosis (RMT), which includes some specific receptors, such as
the receptors for low-density lipoprotein [157], insulin, and transferrin, as natural targets
for nanomedicines [158]. Meanwhile, adsorptive-mediated transcytosis (AMT) used to
transport molecules including cationic proteins or cell-penetrating peptides (CPPs) [58],
can interact with anionic sites on the surface of the epithelial cell membrane through elec-
trostatic interactions to transport the payload. Moreover, transport across the intact BBB
can be achieved in a cell-mediated manner, including stem cells and immune cells, such as
monocytes and macrophages [59,60]. In some cases, the payload gets into the CNS. The
nanomedicine-based delivery system may enter the endothelium by efflux pumps but the
drugs may be squeezed back into the circulatory system. This type of system is one of the
protective mechanisms that occur naturally in the brain and are responsible for avoiding
exposure to foreign molecules or materials. There are two major transport carriers, includ-
ing multidrug resistance proteins (MRPs), such as adenosine triphosphate (ATP)-binding
cassette and P-glycoprotein (P-gp) [53], and convection-enhanced diffusion (CED), which
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have been the most extensively exploited for clinical studies based on convection for drug
delivery with the aid of constant hydrostatic pressure gradients [54].

6. Applications of Nanotechnology in CNS Disorders

The development of treatments for neurological disorders also includes experts in nan-
otechnology. The field gives new techniques to treat PD, HD, AD, stroke, brain tumors, and
epilepsy. Molecules are designed in such a way that they are able to cross the BBB; specific
cells are targeted or used as a pathway for the signaling process. The designed molecules
are used as carriers to deliver genes. In addition, experts in nanotechnology have started
work on delivering radio-contrast objects to aid in diagnosing diseases through imaging.

6.1. Glioblastoma

Glioblastoma and gliomas are inborn brain tumors that arise from the ancestor cells of
neuroglial [21]. Due to their localization, morphologic resemblances with non-malignant
neuroglial cells, and propagation, immunotherapy is extremely challenging for individual
brain cells [159]. Due to these facts, this type of disease might be included in a diverse range of
CNS cancers, including astrocytomas, oligodendrogliomas, ependymomas, neuroblastomas,
and glioblastomas [159–161]. GBM is the most common CNS tumor in adults, comprising 50%
of all gliomas and 15% of primary brain tumors [23]. The overall median survival rate is less
than two years, even with antagonistic therapy [21]. The U.S. Food and Drug Administration
(FDA) has approved a wide range of oncology drugs for treating different types of cancers in
recent decades; nevertheless, only two drugs have successfully passed the clinical trials for
glioma therapy, temozolomide and the anti-angiogenic drug, bevacizumab [22].

Many researchers have tried to develop new nanotherapeutic approaches for treat-
ing gliomas. Nano-formulations were developed that deliver drugs across the BBB [162].
One nano-formulation that involves PBCA mixed with methotrexate [163], and another
using temozolomide [152], produced significantly improved results for delivering drugs
into the brain compared free drugs. Similarly, in vitro results using SLNs containing
paclitaxel [153] showed an increase in inhibitory effects on the proliferation of glioma
cells [164]. It was also demonstrated that transferrin receptor-targeted nanoparticles can
enhance cellular internalization and cytotoxicity of docetaxel with enhanced pharmacoki-
netics [165,166]. Dendrimers are used to transfer antineoplastic treatments into the brain. A
conjugated molecule made of polyether-copolyester (PEPE) dendrimers and methotrexate
confirmed improvements in cytotoxicity in cultured U343 and U87 cancer cell lines. The
nano-formulation was able to overcome resistance from drugs [167]. The conformation
from PEGylated PAMAM dendrimers with doxorubicin (DOX) opens a new therapeutic
window by hindering C6 glioma spheroid proliferation. There was little cytotoxicity in
opposition to brain micro-vascular endothelial cells in vitro [168].

A contrast agent NP that offers detailed cellular and molecular imaging can aid in the
surgical removal of gliomas. In a study conducted by Hernandez-Pedro et al., gadolinium
oxide crystals of a size less than 5 nm in diameter were used to label glioma cells [169].
In another study, researchers used an antineoplastic drug encapsulated in PEG-coated
hexadecyl cyanoacrylate NPs in a mouse model of gliosarcoma to study the precise drug-
release kinetics and found higher diffusion of the drug through the BBB, with regard to
bulk drugs [170].

Over the last several decades of research on understanding malignant brain tumors’
etiology, there has only been limited successes in the development of treatments. Typically,
glioma patients are treated with surgical re-section of the tumor site, chemotherapy, and
radiation, which can result in severe side effects [171]. Due to the CNS’ structure, the
tumor’s location reduces the efficiency and preciseness of therapeutic interventions to cure
the disease entirely; therefore, recurrence is inevitable. In 2005, temozolomide was widely
implemented for chemotherapy of newly diagnosed glioblastoma, yet uncertainty has been
found in the survival of glioblastoma patients [172,173]. Newly diagnosed GBM with full
resection of the tumor is treated with temozolomide and radiotherapy [23]. In most patients,
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GBM resulted in a worsening effect and did not ensure a healthy life after relapse [174].
Therefore, the light treatment of patients with GBM are considered and significant interest
is being directed to develop new therapy techniques for this disease.

6.1.1. Cellular Immunology for Malignant Gliomas

To date, even with decades of extensive experimental work, only a modest increase in
patient life expectancy has resulted, even in the most promising clinical trials. The mech-
anisms underlying these small developments are still poorly understood. Interestingly,
GBM possesses unique immunosuppression mechanisms; for instance, GBM infrequently
shows metastasis to extracranial sites, even though circulating tumor cells (CTCs) have
been detected in GBM patients [175–177]. Glioma grows surrounded by the BBB and BBTB
that provides a reliable shielding mechanism from the immune system. Hence, it is also
challenging for the transmigration of immune cells [178]. However, when T cells are in an
inactivated state, they can cross an intact BBB and BBTB [179]. Furthermore, the BBB is
compromised in GBM because of amplified fenestrations, disruptions in tight junctions,
and low BBB-connected pericytes [180,181]. Therefore, the success rate of immunotherapy
of glioma was limited until now. Gliomas with reduced anti-glioma immune responses
expressed interleukin-10 (IL-10) and TGF-β [182]. For instance, TGF-β constrains the
proliferation pathways and T cell activation, suppresses lytic enzymes production, and
initiates the expansion of naive T cells into regulatory T cells [183,184]. Under physio-
logical conditions, regulatory T cells are needed to shield against autoimmune diseases.
Nonetheless, Tregs have been suggested to be the foremost contributor to depressed cel-
lular immunity in glioma patients [185]. Furthermore, vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF) are considered indispensable media-
tors in glioma angiogenesis and can induce expression of the inhibitors for cell adhesion
molecules [22] in non-glioma cells in both animal models and endothelial cells extracted
from normal tissues [186–189]. Dendritic cells (DCs), which originate from myeloid cells,
are the most potent APCs and usually represent tumor-derived epitope peptides. Further-
more, these cells play an essential role in producing histocompatibility-complex (MHC)
peptides. When MCH peptides can activate T cells, which then expand clonally and travel
to the tumor-containing organs where they recognize antigen epitopes on tumor cells in an
MHC/peptide complex similar to the TCR [98]. Thus, tumor cells are guided to activated T
cells, which can release preformed cytotoxic molecules such as granzyme and perforin [190].
A more detailed schematic illustration is shown in Figure 3.
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that, following antigen binding, induces intracellular T cell activation and degranulation. (b) Immuno-
logical checkpoint protein inhibitors limit the dampening of immune responses during activation
and exhaustion. (c) Vaccines expose antigen-presenting cells to tumor antigens, inducing an immune
response specific to the target antigens. Therapeutic targets or mediators being pursued for each
modality are denoted in the boxes. CAR: chimeric antigen receptor; CTL: cytotoxic T cell. Reproduced
with permission from [191].

6.1.2. Vaccine-Based Immunotherapy of Glioblastomas

Numerous vaccine-based immunotherapy techniques, such as altering glioma cells,
dendritic cell application, peptide-based vaccinations, and combination approaches with
various therapeutic modalities, have been explored extensively in rodent models [192]. The
most prevalent targets in glioblastomas are mutant IDH, EGFRvIII, a panel of antigens,
or personally selected antigens. In forty percent of glioblastoma cases, the EGFR gene is
amplified, and in more than fifty percent of cases, exon 2–7 is deleted or mutated [192,193].
The mutated form of the protein lacks a ligand-binding domain, resulting in constitutive
activation, which in turn promotes cancer. Likewise, the mutant receptor can be activated
by a variety of kinases, including Src family kinase [193]. The altered amino acid sequence
has been revealed to be immunogenic. A vaccine called rindopepimut, generated using
the mutated peptide sequence, was developed to prompt the immune system [192]. The
early clinical trials indicated benefits from the vaccine. However, the subsequent phase III
clinical trials failed to indicate benefits in a general population [157]. In another clinical trial,
named ReACT, patients with recurring glioblastoma received a control or rindopepimut.
The vaccine presented benefits over the control, as the medium survival rate was 12 months
versus 8.8 months, respectively [194]. Utilizing NPs can increase the efficiency of the
vaccine. They can protect the vaccine against degradation and boost the absorption by
APCs. Kuai et al. created nanodiscs using lipids and peptides derived from high-density
lipoprotein. Antigen peptides and cholesterol were attached to the surface at that time.
In mice with melanoma tumors, the nanodiscs were more effective in priming T cells
and the tumors took longer to manifest. In tumor-bearing mouse models, nanodiscs
plus anti-PD-1 treatment inhibited the progression of cancer in 88% of animals, which is
much greater than for either treatment alone [195]. Vaccines can also be administered as
mRNA. Liu et al. created lipid/calcium/phosphate nanoparticles with MUC1 mRNA. The
immunizations were subsequently administered alongside the anti-CLTA-4 antibody to
mice with triple-negative breast cancer. The dual treatment provided a superior response
than either treatment separately [196].

6.1.3. Cargo-Loaded NP-Based Immunotherapy of Glioma

The delivery of therapeutic agents based on cargoes that induce immune responses
for glioma treatment is fascinating. An extended narration highlighting this topic is
given in the recent online article “Glioblastoma is ‘hot’ for personalized vaccines” [197].
In these aspects, nanotechnology may perhaps play a vital role in engaging immune
cells. The current barrier in glioma therapy can be tackled with nanomedicines based on
immune-therapy using nanoparticles [198]. This study has critical shortcomings, lacking the
induction of cytotoxic anti-tumor responses from T cells, rather than merely drug delivery
in tumor diseases. Therefore, a practical, precise cancer vaccine could be developed via
administrating immune-modulatory antigens and agents. Moreover, the cancer vaccines
capable of targeting and activating T cells directly are biological compounds and molecular
cargoes such as immune checkpoint inhibitors, suppressors of TME modulation, RNAi,
nucleic acids, and adjuvants [199–201]. So far, different nanostructure materials have been
used as cargo-loaded adjuvants and drugs (presented in Figure 3). Herein, various targeting
steps of nanomedicines are described using different strategies for activating the immune
process in the cell-mediated immunity targeting glioblastomas and other CNS tumors.

Babak et al. [202] developed nano-tubes with multiple layers of carbon. The tube
delivers siRNA and DNA cargoes into GL261 glioma and BV2 microglia. With an inert
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nature, the nanoplatform is also biodegradable and non-toxic and has advantages for brain
tumor immunogenetic therapy. Moreover, APCs can efficiently internalized nanoparticles
to develop an immune-stimulatory cascade in the brain’s cancerous cells [203].

Recently, many therapeutic approaches have been designed to synergistically treat
gliomas. For instance, Qiao et al. [204] have replicated the nano-theragnostic response
of reactive oxygen species (ROS) polymers of nanoparticles. The compounds loaded
with Angio pep LipoPCB (TMZ+BAP/siTGF-β) (ALBTA), which is composed of iron
oxide NPs (IONPs), TMZ drug, and siRNA targeting TGF-β, an immunosuppressive
cytokine. For crossing the BBB, Angiopep-2 was changed on the surface of the NPs. The
overall endurance of mice was increased by improving the immunosuppressive micro-
environment. The frequent correlation of expression of vascular laminin-411 (α4β1γ1) with
a tumor with a higher expression of cancer stem cell markers (e.g., Notch, CD133, nestin,
c-Myc) shortens the lifespan of GBM patients. A nano-bioconjugate that inhibited laminin-
411 crossing the BBB, inhibited markers of stem cells, and targeted the TME resulted in the
increased survival of mice with cephalic cancer [205]. On the other hand, in immunotherapy,
the low accruement of glioma antigens by APCs acts as a barrier. Recently, to address
this issue, a “cluster bomb” nano-vaccine was developed with a high-loading-capacity
antigen carrier with zinc oxide and triblock-copolymer nanoparticles on the surface [206].
The main chain reduction-sensitive polymer MPSDP can react with dithiopyridine in
the Polydopamine (PDA) that is blocked by the sulfhydryl group; the self-assembled
MPSDP polymers resemble “cluster bomb” nano vaccines, which are then spoiled by the
hydrophilic–hydrophobic interaction. Due to the existence of multiple interactions in the
nano-vaccines, the adjuvant to cellular and humoral immunity is promoted. The nano-
vaccine with a three-fold reduction response can trigger the vaccine to bomb in antigen-
presenting cells. Cytotoxic T lymphocytes and antibody responses to cytokine secretion
is promoted by CD8+ vigorously. A multi-dimensional platform used for nanoparticles
improves the accumulation of drugs targeting the immune system at the cellular and
humoral levels, which improved the survival of mice with tumors [206]. The combination
of T-cell activators that have anti-tumor activity, such as α-galactosyl ceramide, with C6
glioma-derived exosomes to treat rat models with GBM was investigated by Liu et al. [207].
The induction of an amenable immune response, including expression of IFN-γ and TNF-α,
was increased after vaccine-based immunotherapy.

The nanotechnology approach is combined with therapy using chimeric antigen
receptor (CAR)-T cells. This approach is the cutting edge of treatments of solid tumors.
For instance, Zhang et al. [208] proposed that the TME assists iRGD-lipid nanoparticles in
upgrading the perseverance and function of transferred CAR-T cells in glioma patients.
An objective of lipid nanocarriers is to induce therapeutics in glioma tumors. On one
hand, it can remove the protumor cell populations (“releasing the brakes”), while on
another, it can stimulate the essential antitumor effector cells (“stepping on the gas”).
Recently, Shi et al. [209] developed polymersomes coated with Angiopep-2 and anti-PLK1
siRNA payloads. In mouse studies, it has not only improved BBB permeability, but also
greatly stimulated anti-GBM activity. In addition, another study demonstrated that folate-
targeted polymeric micelles can deliver TMZ and anti-BCL2 siRNA in rat models with
orthotopic glioma. Intracerebral administration of this nanocarrier-based combination
therapy inhibited tumor development and prolonged survival [210].

Recently, Galstyan et al. [211] demonstrated the utilization of a poly (-L-malic acid)
natural biopolymer scaffold to which a-CTLA-4 or a-PD-1 nanoscale immunoconjugate
targeting moiety was covalently bonded (NICs). NICs are utilized to systemically transfer
payloads across the BBB and to stimulate local anti-tumor immune responses in the brain.
NICs were used to treat intracranial GL261 glioblastoma (GBM) with an increase in CD8+
T cells, NK cells, and macrophages, and a decrease in regulatory T cells (Tregs) in the
microenvironment of the brain tumor. On the one hand, the tumor-targeted polymer-
conjugated NICs function as checkpoint inhibitors as a prospective GBM treatment by
stimulating the systemic and local brain tumor immune responses, which are associated
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with increased survival in mouse models. Therefore, the proliferation of tumor cells is
attenuated, resulting in enhanced survival rates.

6.1.4. Nanomedicine-Based Combination Therapy

The complex immunosuppressive tumor microenvironment (TME) in glioblastoma
overwhelms endogenous antitumor immune activity, resulting in increased immunological
tolerance [212]. Recently, immune-stimulating non-methylated oligonucleotides (such
as CpG) have been created to tackle this issue, boosting long-term immunity against
resistant tumors [213]. By preventing long-term relapses, Lollo et al. have achieved
the highest therapeutic index against GBM by combining chemotherapy with immune-
stimulating CpG-mediated immunotherapy [214]. PTX/CpG co-loaded lipid nanocapsules
dramatically increased the survival rate of orthotopic GL261 glioma-bearing mice compared
to single-loaded PXT in the same system without CpG. Consequently, they noticed a greater
anti-glioma efficacy with the combined chemotherapy and immunotherapy than with
chemotherapy alone.

Recent studies have also shown that specific tumor cells escape the immune system’s
elimination through modulation of immune checkpoint pathways [215]. indoleamine 2,3-
dioxygenase (IDO) is abundantly expressed in brain tumors and is recognized as one of
the most important immune checkpoint receptors. It is a key immunotherapeutic target
for numerous brain cancers [216,217]. Recently, 1-methyltryptophan (1MT), which is a
specific competitive inhibitor of IDO, has been shown to inhibit IDO expression and slow
down tumor cell growth [218]. However, to date, 1MT has not been proven as an efficient
targeting agent. Therefore, few research groups have combined 1MT with other drugs
for effective targeting [219]. For instance, Kuang et al. [220] developed a nano-strategy of
co-delivery of 1MT with DOX on mesoporous silica NPs (MSNPs) modified with tumor-
targeting/penetrating peptide CRGDK/RGPD/EC (iRGD) for therapeutic application to
orthotopic gliomas.

Recently, Kadiyala et al. [221] created nanodiscs modified with a high-density lipoprotein-
mimicking nano-formulation (called sHDL nanodiscs) that could not only carry glioma
tumor-specific antigens, but also operate as a vehicle for the administration of adjuvants
and bioactive compounds. To target glioma both in vitro and in vivo, sHDL nanodiscs were
loaded with CpG deoxynucleotides, a Toll-like receptor 9 (TLR9) agonist, and a chemother-
apeutic, namely docetaxel (DTX). The combined chemo-immunotherapy delivery system
utilizing DTXsHDL–CpG nanodiscs not only targeted the drugs to the tumor site, but also
activated antitumor immune responses and prevented the recurrence of the tumor due to
the increased delivery of bioactive compounds to immune cells surrounding the glioma.
The delivery of payloads in DTXsHDL–CpG nandiscs into the tumor mass induced tumor
relapse and improved antitumor CD8+ T cell responses in the immunosuppressive TME
of the brain. The standard of care for glioblastoma multiforme (GBM) combined with the
DTX-sHDL-CpG treatment led to tumor degradation and considerable improvement in the
median survival of glioma-bearing mice up to 80%. In addition, galectin-1-targeting siRNA
encapsulated in an intranasal chitosan nanoparticle is a promising option for enhancing the
efficacy and dependability of chemotherapy and immune checkpoint suppression in order
to increase the life expectancy of mice with tumors [222]. This intranasal siGal-1 delivery
induced a dramatic alteration in the composition of the tumor microenvironment (TME),
including a decrease in myeloid suppressor cells and regulatory T cells, and an increase in
CD4+ and CD8+ T cells, during the progression of GBM. A therapy combining siGal-1 with
TMZ or an immunotherapeutic strategy (such as dendritic cell immunization and PD-1
blockade) exhibits synergistic effects.

6.1.5. Gene Therapy for Glioma

Gene therapy appeared as a new treatment for many human cancers. It could be
specially used to control the oncogenes in anti-tumor treatments [223,224]. The adenovirus-
facilitated gene therapy with sitimagene, ceradenovec, and ganciclovir, and later resec-
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tion, improved the survival time of patients with recently identified glioblastoma mul-
tiforme [225]. Therefore, gene therapy was commonly offered as a valuable support for
recent glioblastoma treatments [226]. The combination of gene therapy with immunother-
apy must overcome the full consequences of glioblastoma cure [227,228]. For example,
Maria-Carmela Speranza et al. used a non-replicating adenovirus with the HSV TK gene
to potentiate the anti-PD-1 effect in a syngeneic glioblastoma mouse model. The HSV TK,
also known as AdV-tk, increased PD-L1 levels and cytotoxic CD8+ T cells were induced
to localize in the tumors. This combination therapy increases the survival of animals
from 30–50% to 88% [229]. Although a possible gene therapy, the basic features of this
gene restricted the effective transfer to cancer locations and delayed their development for
clinical uses [230,231].

Transport across the BBB presents an additional obstacle for anti-glioma therapies.
Nanoparticles can compensate for gene deficits and carry gene and immunotherapeutic
drugs to brain tumors safely. Gulsah et al. developed a cyclic peptide iRGD ornate solid–
lipid nanoparticle to transport siRNA against EGFR and PD-L1 for combination therapy.
The siRNA-targeting nanoparticles decreased EGFR levels by 54.7% and PD-L1 by 58.6%.
Additionally, the average lifespan of mice treated with f(SLN)-iRGD: siRNA by radiation
increased to 38 days. These three combinations significantly increased the survival rate
of mice.

Gene therapy was frequently used to modulate immunosuppressive signals and
enhance systemic therapy in glioma treatments, according to the available evidence. These
could increase the immune response to immunotherapy in a synergistic manner. However,
there are few published studies on this strategy. Current anti-glioma treatments typically
include gene therapy and immunotherapy as supportive therapies. Moreover, the paucity
of genes and antigens remains the most significant hurdles to an effective therapy.

6.1.6. Chemotherapy

Historically, Egyptians were the first to use chemotherapy, and proper exploration
of chemotherapy started when some soldiers in World War II who were exposed to some
chemicals started showing unusual reactions. Currently, chemotherapy is one of the most
established clinical therapies, which is due to its convenience and several chemotherapeutic
drugs are FDA-approved [232]. Chemotherapeutic drugs disrupt cellular function at
one or all phases of the cell cycle. Some of the key chemotherapy agent categories are:
antimetabolites, plant alkaloids, alkylating agents, and anti-tumor antibiotics. As cancer
is a complex disease, multiple complicated mechanisms are involved, such as the growth,
progression, and invasion processes [233].

CNS tumors are neoplasms arising from numerous kinds of cells within the CNS,
which account for 2% of all cancers. Every year, out of a hundred thousand, about nineteen
individuals are diagnosed with primary brain tumors and CNS tumors, worldwide. For
example, GBM is one of the utmost violent and common cancers occurring in the central
nervous system. In 2005, a study reported a 27.2% survival rate with oral temozolomide
(TMZ; an alkylating cytotoxic agent) and concurrent radiotherapy, while the survival rate
was only 10.9% with radiotherapy alone [234].

However, accumulating data suggest that, in the case of single curative strategy, it
results in drug resistance and gives rise to tumor cell tolerance, leading to tumor recurrence
and metastasis. Considering the associated complications, combination chemotherapy is
being used in several cancers. Therefore, therapeutic strategies combined with various
agents should be able to overcome these problems. Still, these therapeutic agents have some
shortcomings, such as insufficient accumulation, controlled transportation, and release at
the tumor site and short half-life in circulation [235].

In GBM treatment, to overcome physiological barriers and potentiate the therapeutic
effects, nanotechnology has been investigated as a new approach. For instance, delivery
systems that have been investigated include: liposomes, lipopolymer nanoparticles, den-
drimer nanoparticles, polymer nanoparticles, and hybrid nanoparticles [236]. In the case
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of GBM, nano-delivery system transport of multiple therapeutic agents across the BBB
mediated by adsorptive- or receptor-mediated endocytosis or carrier-mediated transport,
can improve tumor targeting in the brain and reduce side effects [237]. In addition, the
introduction of stimuli-sensitive responses into delivery systems can ensure the maximal
drug retention at the desired sites [238]. In the last few decades, intensive progress has
revealed effective and promising results in cancer therapy, but only a small amount of them
have been applied in clinical trials.

6.2. Alzheimer’s Disease (AD)

The most common neurodegenerative diseases are AD and PD, from which millions
of people are suffering worldwide [239]. Regardless of all the scientific advancements, the
currently available therapeutics have low efficiency in the amelioration of these diseases.
The significant hurdles come with halting disease progression and late-stage diagnosis. In
contrast, the only symptomatic treatment without modifying these diseases’ progress is the
current state-of-the-art therapeutics. The causes of AD are known to be either extracellular
amyloid-beta (Aβ) peptides deposition in senile plaques or the formation of neurofibril-
lary tangles with phosphorylated tau proteins [158,240]. Another pathological hallmark
includes the tauopathies caused by hyperphosphorylation of tau protein deposits and its
insoluble aggregates inside neurons in CNS disorders [241]. As a result, the AD-suffering
patient may progressively lose memory, develop problems with proper functioning in a
physical environment, fail to make decisions, and develop language difficulties as the most
domineering clinical hallmarks of this disease [242].

Many nano-formulations have produced positive results in their impact on AD pa-
tients. The conformation using PEG stabilization of nano-micelles comprised of lipids
with phosphate lessens the aggregation of Aβ, devalues neurotoxicity induced by Aβ in
human SHSY-5Y cells, and an in vitro neuroblastoma cell line [243]. An experiment in
mice showed meagre bioavailability, even though the phytochemical curcumin was able to
lessen cytotoxicity and oligomerization [244]. The bioavailability enhanced, but did not
harm, Aβ’s aggregation ability by non-liposomal deviation of curcumin [245]. Excess metal
ion-like copper usage plays a role in the pathology of AD; thus, chelating agent usage is
another technique for managing AD [246]. Microemulsion of nanoparticles with copper
d-penicillamine as a chelating agent showed a profound ability to cross the BBB and soften
Aβ aggregates in vitro [247]. Furthermore, in the pathology of AD, oxidative damage is
another key factor that suggests the application of antioxidants in the management of
AD. It has a neuroprotective effect against glutamate receptors that induce excitotoxicity.
This can be achieved using derivatives of fullerene with the ability to act as scavengers
of free radicals. In addition, neuroprotection by fullerene against Aβ toxicity has not yet
been proved. However, an ability to inhibit Aβ peptide fibrillization and prevent Aβ from
inducing cognitive injury after intraventricular administration suggests a beneficial role for
fullerene for AD treatment [248].

Another feature of the pathology of AD is the obvious scarcity of the neurotransmitter,
acetylcholine (ACh). ACh breaks down promptly in the blood if it is directly administration
to the body. An approach using nanotechnology is to deliver ACh directly to the brain to
balance the ACh levels. Nanotubes filled with ACh significantly restored cognitive function
to pre-AD levels in a kainic acid mouse model compared to free Ach [249].

Generally, Aβ peptide is produced by several CNS cells, including neurons, as the
result of the proteolysis of amyloid precursor protein (APP) [250]. The β- and γ-secretases
are responsible for cleaving APP to form Aβ fragments with differing numbers of amino
acids, ranging from 36 to 42 [251]. Still, the exact origin of the formation of Aβ peptides,
which can accumulate in the brain, is not understood [252]. However, some transport
molecules can be transported across the BBB with the help of the apolipoprotein family
(Apo-E2/3 and Apo-E4) and two efflux pumps [253,254]. Moreover, the LRP and the
very-low-density lipoprotein receptor (VLDLR) [255] are the primary transport methods to
cross the BBB.
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The available approved drugs for AD treatment include donepezil, galantamine, and
rivastigmine, which can target metabolic shortfalls [256]. Nevertheless, these drugs are
also associated with brain function impairment. Typically, these drugs may be classified
as either targeting the acetyl-cholinesterase inhibitors (AChEI) or N-methylD-aspartate
(NMDA) receptor [257]. The deposition of Aβ triggers a hypothetically distinct pathological
immune response in AD [258]. Interestingly, the microglial cells have natural machinery
for removing protein aggregates and debris from the brain [259]. Several routes play a
role in the clearance of amyloid-β from the resident microglial cells. The activation of
microglial cells might clear the amyloid-β after immunization, as after a stroke or amyloid-
β injection [260]. The clearance of amyloid-β is associated with higher microglial cell
activity [261]. Recently, reports suggest that, the mice that overexpressed transforming
growth factor-β (TGFβ1) were crossed with APP-transgenic mice to produce offspring with
reduced amyloid loads and amplified microglial cell activation [262]. Moreover, blocking
of complement evasion or activation of pathways to decrease microglial cell activity has
also been observed in APP transgenic mice [263]. A detailed description of how immune
modulation may play an important role in degrading and clearing NFTs is well addressed
by Winner et al. [264].

Recently, Liu et al. reported applying a zwitterionic poly(carboxybetaine) (PCB)-based
nanoparticle co-loaded with fingolimod, siSTAT3, and zinc oxide into the polymeric NPs
named as MCPZFS NPs [265]. The NPs inhibited microglia and Aβ recruitment for the
effective treatment of AD. The MCPZFS NPs significantly improved microglia priming by
reducing the level of proinflammatory mediators and promoting the secretion of BDNF
(as shown in Figure 4). Notably, PCB-based NPs can increase the recruitment of Aβ into
microglia, which can significantly improve Aβ phagocytosis, and when Aβ is degraded,
NPs can enter the proteasomal pathway. Numerous major pro-inflammatory cytokines,
including IL-1, interferon-γ (IFN-γ), IL-6, and interleukin 17A (IL-17A), were increased in
the brains of APP/PS1 mice following administration of the nanomedicine system. The
APPswe/PS1dE9 animals demonstrated a reduction in Aβ load, neuronal injury, cognitive
impairments, and neuro-inflammation in the brain. Thus, the MCPZFS NPs have excel-
lent potential to function as an “Aβ cleanser”, offering a fresh perspective on therapeutic
strategies for AD treatment. Zhang et al. developed a glycosylated “triple-interaction”
stabilized polymeric siRNA nanomedicine (Gal-NP@siRNA) that targets BACE1 in an
APP/PS1 transgenic AD mice model. Gal-NP@siRNA demonstrated superior blood stabil-
ity and efficiently crossed the blood–brain barrier (BBB) via a glycemia-controlled glucose
transporter-1 (Glut1)-mediated transport, suggesting that siRNAs reduce BACE1 expres-
sion and modify metabolic pathways. Remarkably, Gal-NP@siBACE1 reversed the loss
in cognitive ability in mice with Alzheimer’s disease without any significant adverse ef-
fects. This Trojan horse strategy validates the efficacy of RNA interference therapy for
neurodegenerative disorders [130]. See Figures 5 and 6.
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Figure 4. Immune-modulating effect of a PCB-based zwitterionic nanoparticle for AD therapy.
(A) MCPZFS NPs for AD therapy: structure, preparation, and mechanism. MCPZFS NPs can
penetrate the BBB and endocytose into microglia cells to normalized malfunctioning microglia.
Pro-inflammatory mediators were reduced. Microglia’s phagocytic capacity was restored when
BDNF production rose. The injured neuron is then healed in numerous ways. (1) NPs endocytosed
amyloid-β into microglia. (2) After perturbing the endosome/lysosome membrane, NPs leaked
into the cytoplasm. (4) Finally, ROS-mediated release of fingolimod, siSTAT3, ZnO, and amyloid-β.
(B) The effect of NPs on microglial phagocytosis and Aβ degradation after 2 h co-incubation with
FITC-A42 and NPs. Flow cytometry was utilized to detect the degradation of A42 of BV2 in BafA1 or
MG132 (top right) and the phagocytosis and degradation behavior mediated by MEPZFS NPs and
MCPZFS NPs. (C) Representing the effect of NPs on the inflammatory regulation of microglia via the
ELISA method was applied to determine the levels of TNF-α, IL-1β, and BDNF in the supernatants.
Samples: (I) PBS, II) Aβ42, (III) Aβ42 + fingolimod, (IV) Aβ42 + siSTAT3, (V) Aβ42 + CPFS, (VI)
Aβ42 + CPZS, (VII) Aβ42 + CPZF-siNC, (VIII) Aβ42 + CPZFS, (IX) Aβ42 + MCPZFS, and (X) Aβ42 +
MEPZFS. Copyright, 2019, Wiley and Sons IncReproduced with permission from [265]. * p < 0.05,
** p < 0.01.
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Figure 5. Illustration of glycosylated “triple-interaction” stabilized siRNA nanomedicine (Gal-
NP@siRNA) and strategy of treating AD pathology in APP/PS1 transgenic mice. (A) Schematic of
Gal NP@siRNA manufacturing. (B,C) How Gal-NP@siRNA enters the brain and accumulates. 24 h
fasting increases BBB luminal Glut1 expression. After treatment with Gal-NP@siRNA, glucose replen-
ishment in fasting mice leads to Glut1 recycling from the BBB luminal to the abluminal membrane.
(D) Gal-NP@siRNA-mediated BACE1 mRNA knockdown reduces amyloid plaques. Adapted with
permission from [266].
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Figure 6. Gal-NP@siBACE1 treatment modulates AD hallmarks in APP/PS1 mice. (A) A mechanism
for siBACE1′s actions. (B) BACE1 protein expression in the hippocampus and cortex of nanocarrier-
treated APP/PS1 mice, control APP/PS1 groups, and WT mice. BACE1 expression was quantified
relative to actin (n = 3, mean ± SEM, * p < 0.05, ** p < 0.01). CLSM imaging data to assess amyloid
plaque load. A plaque (green) in APP/PS1 transgenic and WT mice hippocampus and cortex. DAPI
staining nuclei (blue), 100 µm scale bars. (C) Representative confocal laser scanning microscopy (CLSM)
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imaging data are assessing the amyloid plaque burden. Immunofluorescence of Aβ plaques (green)
in the hippocampus and cortex from APP/PS1 transgenic and WT mice. Nuclei were stained by
DAPI (blue). Scale bars, 100 µm. (D) Amyloid plaques were measured in the hippocampus (left) and
cortex [181] (n = 4, ** p < 0.01; mean ± SEM). (E) p-tau and (F) MBP expression in the hippocampus
and cortex for nanocarrier-treated APP/PS1 mice, control APP/PS1 groups, and WT mice (top).
Quantification of Western blotting analysis was relative to β-actin (bottom) (n = 3, mean with SEM,
* p < 0.05, ** p < 0.01). All samples were collected after 10 administrations of nanomedicine. Adapted
with permission from [266].

There are two immunization strategies, named active and passive immunization-
based immunotherapy, for AD [267]. Active immunization is long-lasting, as it induces the
immunological memory of the patients [268]. Active vaccines are the most straightforward
way to administer vaccines (involving different routes), but their production is not cost-
efficient [269]. Immunization produced a polyclonal response; multiple epitopes on the
target protein surface with diverse affinity and avidity could be recognized and accessed
through antibodies [270]. Alternatively, the immune response also strongly depends on
the host immune system; therefore, various patients’ antibody responses may vary from
individual to individual [271].

6.3. Parkinson’s Disease (PD)

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder
characterized by motor and non-motor (psychiatric, cognitive, sleep, and autonomic)
features, affecting over 10 million people, worldwide [272]. The etiology of PD is mostly
attributed to the genetics of individual patients or environmental factors [273]. However,
the aggregates of α-synuclein protein (α-syn) form intracellular inclusions known as Lewy
bodies, which are considered the neuropathological hallmark of PD [274]. Based on these
facts, PD is also called an synucleinopathy and, similarly, includes multiple system atrophy
(MSA), pure autonomic failure [41], and Lewy body dementia (LBD) [275]. Nanomedicine-
based immunotherapies may offer a novel and alternative strategy for enhancing the
immune response against synucleinopathies and Lewy body dementia [276]. Cell-based
therapies are the recent research frontier, which has provided an enhanced understanding
of the disease, and, possibly, some induced pluripotent stem cell (iPSC) therapies could be
used for personalized therapy [277,278].

The technique for gene delivery is also used in regards to PD. The common meth-
ods for gene delivery involve vectors of a virus to induce toxicity and immunogenicity.
Conversely, an approach using nanotechnology is free from such problems [279]. The com-
plexes composed of polyethyleneimine nanogels and PEG with antisense oligonucleotide
efficiently crossed the BBB in vitro, when a functional gel with insulin or Tf molecules was
injected into a vein [280]. In another study in a rat model of PD, using 6-hydroxydopamine
(6-OHDA) tyrosine hydroxylase, and Tf receptor antibodies combined with PEGylated
liposomes reversed impairment after a single administration into the veins. A recent in-
vestigation clarified that growth factor for nerves binds with PBCA nanoparticles [281],
and L-Dopa-capsulated nanoparticles crossed the BBB to treat prominent basic signs and
symptoms of PD [282]. Nanoparticles such as mPEG PLGA with a size of 70 nm, e.g.,
Schisantherin A (SA), were used to combat Parkinson’s diseases (PD) in the larvae of
zebrafish. The SA encapsulated in nanoparticles increased in circulation and uptake by
the brain to provide an efficient treatment for PD. SA delivery is more effective than a
suspension of SA alone. In conclusion, SA NPs play a neuroprotective role in zebrafish and
cellular models of PD.

Recently, PD’s effects on the immune system and microglia have been characterized,
which showed that microglia are the major scavenger for extracellular α-syn aggregates,
resulting in an increased inflammatory response. These responses were mediated by proin-
flammatory cytokines including interleukin 1-β (IL 1-β), interleukin-6 (IL-6), interferon γ
(INF-γ), and tumor necrosis factor-alpha (TNF-α) [283]. Currently, the gold standard for PD
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treatment continues to be orally administered dopamine agonists, such as levodopa [284].
Numerous neuro-inflammatory effects, including microgliosis, astrocytosis, and infiltration
of T leukocytes, have been shown in the midbrain of PD patients and rat models [285]. A
considerably high amount of pro-inflammatory cytokines (TNF-α, IL-1β, and interferon-γ)
are released, and oxidative stress and proinflammatory markers such as reactive oxygen
species (ROS) and nitric oxide (NO) are produced; in PD, activated astrocytes and microglia
are usually linked with BBB impairment [286].

Currently, there is no therapeutic strategy available to treat PD. However, some
tentative treatment strategies have been proposed including reducingα-syn expression with
either small interfering RNAs (siRNA) or anti-sense RNA and reducing α-syn aggregation
using small molecules. In addition, increasing the clearance of α-syn with drugs that
promote autophagy prevents the seeding and prion-like spreading of α-syn [287,288].
On the other hand, some immunotherapy studies have shown that vaccination against
α-syn reduced α-syn accumulation through activation of autophagy [289] or microglial
pathways [290]. Furthermore, specific passive or active immunization strategies such as
those with monoclonal antibodies can recognize the epitopes of non-amyloid β component
(NAC) and C-terminus of α-syn ameliorated the behavioral deficits and α-syn accumulation
in neurons [291] and glial cells [292]. Toll-like receptors (TLRs) initiate innate immune
responses through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B
(NF-ҝB) signaling pathways. Microglial cells with strong TLR-induced α-syn stimulate
responses, such as TLR2/1- and TLR7-mediated responses, by supplementing the excretion
of IL-6 and chemokine immune checkpoint proteins [293].

Recently, several studies used fluorescent quantum dots to inhibit amyloidosis [68].
Graphene quantum dots (GQDs) have shown potential in inhibiting α-synuclein and
amyloid pathogenesis [294]; the GQDs efficiently penetrated the BBB due to their small size
and antibodies on their surfaces. After a treatment lasting only 7 days, the aggregation and
dissembling process has abolished. Moreover, the use of GQDs has a protective role against
dopamine neuron loss that is caused by α-synuclein fibril or aggregation formation. The
protection of dopaminergic neurons exposed to alpha-synuclein inhibited the formation
of fibrils. These GQDs can interact with alpha synuclein fibrils in vitro, to stop their
development and even promote their disaggregation. Therefore, if it is considered safe, this
kind of nanomedicine could be the magic bullet for PD and other neurogenerative diseases.

7. Huntington’s Disease

Progressive motor, cognitive, and psychiatric symptoms describe Huntington’s disease
(HD), which is characterized by neuronal loss in the striatum and other brain regions. A
mutation in exon 1 of the Huntington gene causes polyglutamine expansion (poly Q), as
well as misfolding and accumulation of the Huntington protein (HTT) in the brain [295].
Numerous simulations have characterized the function of astrocytes in HD. Mutant HTT
accumulates in striatal astrocytes in the brains of HD patients and HD mouse models,
leading to age-dependent HD-like illness and early mortality. There are indicated and
preventative treatment options for HD, but none of them are effective enough to entirely
cure the disease. Tetra-benazine is currently the only FDA-approved medication for HD
treatment [296].

A probable connection between oxidative stress and neurodegenerative disorders,
including HD, has been revealed in the literature [297]. Therefore, antioxidant treatment
can work in HD to avert oxidative stress. Fullerenes have the capability to clear ROS and
decrease oxidative load in cells. Jin et al. described their aggressive behavior on gluta-
mate receptors and, consequently, they can be used for neuroprotective purposes [298].
Nitrendipine is a calcium channel blocker that reduces the incidence of dementia in HD
patients by up to 50% over a two-year period. Due to its hydrophilic nature, this medication
has absorption issues and, therefore, cannot efficiently cross the BBB. SLNs of nitrendip-
ine were labeled, and a comparison was made between the uptake of bulk medication
and nano-formulations. The results reveal that the drug was absorbed more efficiently
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when encapsulated in SLNs. In addition, short-interfering RNA (siRNA)-encapsulated
cyclodextrin nanoparticles that inhibit HTT mRNA expression in vivo and in vitro were
investigated [299].

Solid–lipid NPs conjugated with curcumin were used to target mitochondrial im-
perfections (affecting complex II activity) as a treatment for HD. In the same experiment,
3-nitropropionic acid upregulation of Nrf2 mRNA levels was also established [300]. An-
other method conjugated rosmarinic acid (RA) with solid–lipid NPs targeting Huntington’s
disease, based on RA’s brain-targeting efficacy [301]. Recently, in a Caenorhabditis elegans
model of HD, Cong et al. used selenium (Se) as a targeted delivery system. Se and se-
lenoproteins were observed to act as neuro-protective compounds and neurodegenerative
pathway regulators. Selenium deficiency in the brain confirmed direct correlation with
mutant Huntington aggregation, an increase in oxidized glutathione levels, and brain
dysfunction [302]. Se is known to reduce oxidative stress in tissues and reduced levels or
deficiency of Se is associated with many neurodegenerative disorders, including HD; thus,
Se can be considered a therapeutic agent in the future, specifically in a particular formu-
lation. At the present time, many investigations are ongoing to identify new therapeutic
targets for the treatment of HD, which is an urgent requirement as Huntington’s disease
poses an enigmatic threat to patients.

8. Ongoing Clinical Trials and Approved Nanomedicines

The more than 250 US FDA-approved nanodrugs are available on the market is evi-
dence of the success of NPs in clinical trials. There are several interesting drugs for treating
multiple myeloma, schizophrenia, lymphomatous meningitis, and MS, including Doxil
(doxorubicin HCL liposome injection), Invega Sustenna (paliperidone palmitate), DepoCyt
(liposomal cytarabine), and Plegridy (PEGylated interferon B-1a) [303]. Over 33% of the
drugs available on the market are in the form of liposomal formulations, which have been
identified as the most commonly used nanodrugs [304]. Furthermore, NMs have been
studied in a number of clinical trials to establish their relevance in therapeutic settings. In
prior research, magnetic nanoparticles and decreased radiation were found to enhance over-
all survival in glioblastoma patients when compared to traditionally treated peers [305].
Furthermore, nanoparticles play an important role in reducing the toxicity caused by
conventional drugs. The delivery capability and distribution of chemotherapeutics (e.g.,
temozolomide) in intracranial tumor regions in dogs using magnetic NPs should also be
mentioned [306]. The most current research confirmed that treating migraine sufferers with
curcumin nanoparticles and omega-3 fatty acids considerably lowered inflammation by
inhibiting the production of TNF-a, ICAM-1, and COX-2/inducible nitric oxide synthase
(Table 2) [307–309]. The evidence presented above suggests that NPs are capable of facili-
tating drug delivery, generating synergistic effects, and reducing the toxicities of drugs in
brain diseases by enhancing drug delivery and inducing synergistic effects.

Table 2. Treatment trials using NPs for brain diseases and disorders.

NPs Disease Mechanisms Effects References

Silver NPs Acute occulsive
hydrocephalus

Ventricullitis caused by catheters
is prevented Enhanced the health of patients [310]

Magnetic iron oxide NPs +
reduced radiotherphy

Glioblastomia
multiformie

Increased Caspase-3, heat shock
protein, and programmed death ligand

1 levels suppress tumor growth

Enhanced the overall survival
rate of patients [305,311]

Ultrasmall magnetic
iron oxide Ischemic stroke Activates macrophages Targeted inflammatory cytokines

more effectively [312]

Nano-curcumin
+ω-3 fatty acid Migraine

Intercellular adhesion molecule 1,
TNF-a, and

cyclooxygenase-2/inducible nitric acid
gene expression is suppressed

Relieved headaches [307–309]
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9. Conclusions

Recent breakthroughs in medicine, biochemistry, protein engineering, and materials
science have led to nanoscale targeting techniques that can transform CNS-based therapeu-
tics. Despite developments in nanotherapeutics, treatments for CNS disorders are not used
in clinical practice. Conventional glioblastoma treatment encounters substantial tumor resis-
tance, resulting in poor clinical outcomes. Many researchers are developing new therapeutic
techniques to target tumor resistance and improve clinical outcomes. Nanobiotechnology
may improve the delivery of immunological therapeutics for CNS-related disorders, such
as antibodies, cytotoxic medicines, vaccination antigens, and siRNAs. Nanotechnology has
helped immunotherapy reduce tumor or disease progression and improve patient survival.
Some nanotechnologies convey synergistic medication combinations and improve innate
and adaptive immune responses to fight glioblastoma. These approaches are more effective
when using rationally designed nanoparticles with stimuli-sensitive nanoscale materials
(i.e., pH and temperature) or inside water-soluble hydrogels and matrices, which can
dynamically target immune cells to release the immunotherapeutic once it reaches a certain
concentration in the TME. Few studies have examined the role of nano-delivery systems in
stimulating innate and adaptive cellular immune responses in glioblastoma patients.

Cancer treatment requires stimulating the immune system without unmanageable
side effects. Nanomedicines for glioblastoma immunotherapy require careful design. First,
unique nano-immunomodulators are needed to activate macrophages and DCs. Nanocarri-
ers with selective targeting ligands (proteins, peptides, and aptamers) or cell membrane-
derived vesicles are designed to actively penetrate barriers and approach APCs. This
glioma-specific design differs from standard drug carriers, which are changed (e.g., PEGy-
lation) to avoid phagocytes. Glioblastoma is highly diverse, making it difficult to analyze
clinical trial therapy efficacy. Understanding GBM pathogenesis is important when building
nanomedicines.

Due to AD’s multiple physiological components and complexity, standard therapy
techniques are ineffective. AD has limited treatment techniques despite long-term treatment
and research efforts. Nanotechnology offers a helpful alternative to advance research by
modulating pathways in specified regions. Specific amyloid antibodies mitigate toxicity
and activate clearance pathways. Effective amyloid clearance relies on antibody-mediated
or antibody-independent methods that target T cells or microglial cells with amyloid
immunotherapy. Indirect activation of microglial innate immune receptors may elicit
amyloid clearance without T- or B-cell responses.

Reducing amyloid levels can also entail non-immune strategies, including proteases
that degrade toxic amyloid peptides. AD immunotherapy may be paired with nanomedicines
or vaccinations. Current nanomedicines or vaccines are hazardous. More biocompatible
nanoscale materials are needed to carry AD therapy from lab to bedside. To pass clinical
trials, nanotechnology’s pharmacokinetics and toxicology must be improved.

Therapeutic approaches that inhibit α-syn production, toxicity, and aggregation make
PD preclinical trials difficult. Synucleinopathies are hallmarks of PD disorders, but their
complexity and structural variation make nanomedicine-based immunotherapy problem-
atic. Syn may change conformation. Developing nanomedicine-based immunotherapy
is difficult. Due to syn’s structural diversity based on environmental factors or patient
variation, more careful designs for immunotherapy are needed. Small nanoparticle-based
nanomedicines are reported to decrease PD progression; however, biosafety problems have
prevented clinical studies.
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