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The study of metabolic responses to drugs, environmental
changes, and diseases is a new promising area of metabonomic
research. Metabolic fingerprints can be obtained by analytical
techniques such as nuclear magnetic resonance (NMR). In principle,
alterations of these fingerprints due to appearance/disappearance
or concentration changes of metabolites can provide early evi-
dences of, for example, onset of diseases. A major drawback in this
approach is the strong day-to-day variability of the individual
metabolic fingerprint, which should be rather called a metabolic
‘‘snapshot.’’ We show here that a thorough statistical analysis
performed on NMR spectra of human urine samples reveals an
invariant part characteristic of each person, which can be extracted
from the analysis of multiple samples of each single subject. This
finding (i) provides evidence that individual metabolic phenotypes
may exist and (ii) opens new perspectives to metabonomic studies,
based on the possibility of eliminating the daily ‘‘noise’’ by mul-
tiple sample collection.

biofluids � metabolomics � metabonomics � NMR � urine

The global analysis of the type and quantity of metabolites in
biological f luids, tissues, or related biological samples—i.e.,

the study of the metabolome, or metabolomics (1)—is a prom-
ising area of research, because of the potential relevance for
human health of the study of metabolic responses to pathophys-
iological stimuli or genetic modifications—termed metabonom-
ics (2). The relevance of metabonomics could be greatly en-
hanced if it were possible to identify an invariant part of the
individual metabolome of a ‘‘healthy’’ subject with respect to, for
example, pathological states, in such a way as to perform
prediction, early diagnosis and prognosis of pathologies. Indeed,
traditional biomedical/clinical approaches are limited by the
number of parameters as well as in their efficiency, and they
provide only a fragmented perspective on the health status of an
individual.

Differences in experimental metabolic profiles due to genetic
strain differences in animal models have been observed, leading
to the suggestion that each individual or group of individuals may
be characterized by a different metabotype, defined as a ‘‘mul-
tiparametric description of an organism in a given physiological
state,’’ based on metabolomic data (3). The availability of
metabotypes characteristic of an individual and stable over time
could be fundamental in nutrigenomics (4, 5), in evaluation of
drug efficacy, in pharmacometabonomics (6), and in studies of
personalized nutrition aimed at maintaining metabolic health
and avoiding loss of homeostasis or correcting homeostasis
dysregulations.

A major problem is that the experimental metabolic profile is
influenced not only by the genotype but also by age, lifestyle,
environmental factors, nutritional status, assumption of drugs
(7, 8), and other metabolites from symbiotic organisms (i.e., the
gut microflora) (9–11). Consequently, changes in the metabolic
profile of biologically complex organisms (like humans) in

response to pathological stimuli may be difficult to distinguish
from normal physiological variations.

To overcome the problem of variability in studies with hu-
mans, attempts were made to minimize the variations by means,
for example, of standardized diet, avoiding any vigorous activity
and excluding smokers (12–14). Other studies examined the
influence of perturbing factors on the metabolic profile of
animals and humans such as diet, specific food, aging, and
multiple intrinsic and extrinsic physiological parameters (15–19).

In this perspective, it is crucial to assess whether it is possible
to eliminate the noise due to random daily variations and obtain
a ‘‘natural,’’ stable, and invariant metabolic profile that is typical
of a given subject, even if not necessarily unique. This includes
the need to separate within-group from between-group varia-
tions (each group of samples representing a single person), a
fundamental objective of many metabonomics studies (see refs.
20–22 and references therein). The possibility that such an
‘‘individual metabolic phenotype’’ could exist is suggested by
studies reporting differentiation between individuals on the basis
of a subject-specific response to particular stimuli [such as kinds
of diet (4, 23) or food (18, 19), drug treatment (24), or vitamin
intake (25)].

High-resolution NMR spectroscopy is a technique of choice
for the investigation of the metabolome (26–28) and has been
shown to provide a wealth of metabolic information that can be
related to physiological states or pathological conditions of an
organism (29). The sample under investigation typically contains
many metabolites, and simple one-dimensional 1H NMR spectra
provide several envelopes of not fully resolved signals (30, 31).
One approach is to look only for selected metabolites (1, 31, 32)
for diagnostic or prognostic purposes. This approach is similar to
the classic clinical analyses. Another approach is to try and
identify as many metabolites as possible (1, 31, 32), but this is a
difficult task and presently not enough rewarding. A general
approach is that of dividing the one-dimensional 1H NMR
spectrum in slices for statistical analysis (buckets), and to look at
the overall NMR fingerprint (a reflection of the whole detect-
able metabolome in that particular biofluid) to characterize a
single sample.

To assess the existence of an individual metabotype, in this
study a panel of healthy subjects (with no evident chronic
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pathologies) was chosen, and a multiple sample collection of
urine samples from each donor was performed. Metabolic
fingerprints were generated by one-dimensional 1H NMR spec-
troscopy. Innovative multivariate models (based on sequences of
well established methodologies) were developed with the aim of
maximizing intersubject differences and minimizing intrasubject
variability to establish whether an individual metabolic pheno-
type fingerprint could be found. We demonstrate the existence
of such fingerprint and show that it constitutes such a strong
characteristic of each donor as to allow its identification with
100% probability. By a projection/back-projection approach it
was also possible to obtain this ‘‘core’’ profile free from random
daily noise factors, opening new perspectives in metabonomic
studies. It is important to highlight that this ‘‘individual meta-
bolic phenotype’’ is not a consequence of a particular stimulus
but is an intrinsic general characteristic of a subject.

Results and Discussion
In this study, we collected �40 urine samples of 22 healthy
individuals (11 females and 11 males for a total of 873 samples)
with ages in the 25–50 range over a period of 3 months. The
corresponding one-dimensional 1H NMR spectra were mea-
sured on a spectrometer operating at 600 MHz proton Larmor
frequency following standardized procedures [see supporting
information (SI) Methods]. The spectra were first normalized to
the NMR signal intensity of the CH3-group of creatinine to
compensate for the large variations in urine metabolite concen-
trations and then segmented into N consecutively integrated
spectral regions (buckets) of fixed width. If not stated differently,
the bucketing ranges were set to a 0.5- to 9.5-ppm chemical-shift
range, and the bucket width was set to 0.02 ppm. The 4.5- to
6.0-ppm chemical-shift region was left out of the analysis to
remove the effects of variations in the suppression of the water
resonance and variations in the urea signal caused by partial
cross-solvent saturation through solvent-exchanging protons.

The raw dataset was then analyzed by applying standard
statistical methods or combinations thereof, as detailed in
Statistical Methods and SI Methods. On the descriptive level,
principal component analysis (PCA), hierarchical cluster anal-
ysis (HCA), and canonical analysis (CA) were used, where
multivariate analysis of variance (MANOVA) was used to
determine the dimensionality of the relevant CA subspaces. On
the predictive level, classification rules were derived on the basis
of soft independent modeling of class analogy (SIMCA) and
K-nearest neighbor (K-NN) methods. Several classification ap-
proaches for multiclass problems were used combining statistical
techniques, such as a multi-model SIMCA classification (MM-
SIMCA), a PCA subspace K-NN classification (PCA/K-NN),
and a PCA/CA subspace K-NN classification (PCA/CA/K-NN).
The identification of an individual person was performed either
from a single new sample/spectrum (single vote) or from a set of
new samples/spectra according to the majority vote—i.e., ma-
jority rule classification (MRC). The predictivity of the various
classification methods was assessed by using test-set validation
(TSV) combined with a Monte Carlo (MC) approach.

The first objective of the analysis was to ascertain whether the
spectral line-patterns of the individual samples carry unique
features that are donor-specific. For this purpose, the individual
objects of the data matrix were labeled according to donor
identity. For dimension reduction, the data were projected into
a PCA subspace explaining 99.9% of the variance in the data.
The respective score submatrix was used as input for MANOVA
to obtain the dimensionality of the multivariate group means,
which resulted to be 21 (with all p values �10�8). The score
matrix was projected into the respective 21-dimensional sub-
space with maximum group discrimination provided by CA. The
results are illustrated in Fig. 1, where a convex hull for each

donor, rather than the 37–41 individual data points enclosed, is
reported in the space of the first three canonical variables.

It is immediately clear (Fig. 1) that a very strong individual
characterization is possible, allowing even discrimination with
respect to individual donors [even if not looked for, some
‘‘natural’’ gender-clustering is also obtained (see SI Fig. 6)]. It
should be noted that no separation according to donors can be
found when looking at simple PCA scores plots (SI Fig. 7).

Although a limited overlap within a few pairs of clusters is
present in Fig. 1, it should be kept in mind that the discriminating
subspace is 21-dimensional according to the MANOVA output,
so that a 3-dimensional plot is not sufficient to provide the
complete picture. This becomes apparent from the results of
HCA applied to the canonical variables, where the complete
21-dimensional CA subspace is analyzed. The dendrogram in
Fig. 2 illustrates how, with the only exception of two spectra, all
of the remaining spectra are clearly clustered according to donor
identity. It is striking to notice how intergroup distances are by
far larger than intragroup distances.

Fig. 1. Projection of the one-dimensional 1H NMR spectral buckets into
PCA/CA subspace in the three most significant dimensions. Convex hulls of the
donor-specific point clusters (37–41 points each) are shown for better visual-
ization. Each individual donor has his/her own color code.

Fig. 2. Dendrogram relative to cluster analysis on the 21-dimensional
PCA/CA subspace. Clustering according to donor is obvious.

Assfalg et al. PNAS � February 5, 2008 � vol. 105 � no. 5 � 1421

CH
EM

IS
TR

Y

http://www.pnas.org/cgi/content/full/0705685105/DC1
http://www.pnas.org/cgi/content/full/0705685105/DC1
http://www.pnas.org/cgi/content/full/0705685105/DC1
http://www.pnas.org/cgi/content/full/0705685105/DC1
http://www.pnas.org/cgi/content/full/0705685105/DC1


It should be noted that the intergroup separation found by
simple PCA in combination with HCA is rather low, although
some clustering begins to appear (SI Fig. 8). This is due to the
fact that the principal components are aligned along the direc-
tions of maximum variance, which do not necessarily coincide
with the directions of maximum intergroup discrimination.

The separation in the PCA/CA subspace found among the
data of individual donors (Fig. 2) is impressive. However, this
analysis is on a purely descriptive level. The significance of these
findings ultimately depends on the possibility of correctly pre-
dicting the donors from unknown urine samples not included in
any model. It is shown below that an excellent predictive power
can be indeed achieved. To this end, we have applied MC/TSV
to assess the predictivity of three classification approaches—i.e.,
MM-SIMCA, PCA/K-NN, and PCA/CA/K-NN—using 1,000
MC steps for each. In each of the MC steps, the dataset was
randomly divided into a model set (30 spectra per donor) and a
test set (remaining spectra ranging from 7 to 11 depending on the
total amount of samples available from each donor).

The results are summarized in Fig. 3, where a, c, e, and g refer
to results obtained by individual classification of test-set spectra
(single vote), and b, d, f, and h refer to MRC results (majority
vote). The PCA/CA/K-NN approach, which is the most powerful,
permits a correct classification of the individual spectra at a
probability �0.95 for the spectra of all donors (15 at a probability
�0.99) (Fig. 3e and SI Table 1). When using a group of spectra
and MRC for donor identification instead of a single spectrum,
the overall results are further improved (cf. Fig. 3 a with b, c with
d, and e with f ). Also in this case, the PCA/CA/K-NN method is
the most powerful because this approach achieves a correct
classification for 100% of the MC runs (Fig. 3f and SI Table 1).
In summary, the results of Fig. 3f clearly demonstrate that a
natural metabolic phenotype characteristic of each individual
can be defined. Moreover, it is stable and invariant over at least
a period of 2–3 months (the time over which the urine samples
were collected).

A legitimate question is whether a similar result could be
obtained not by fingerprinting but rather by quantitating specific
metabolites, and how large their number should be to obtain
comparable results. We have provisionally addressed this point
by a limited metabolite quantitation in our dataset. Up to 40
different metabolites could be identified, and 12 of them were
clearly apparent in all spectra (see SI Methods). Surprisingly,
donor identification is largely possible already when using the
intensities of these 12 metabolites as input rather than using a
complete bucket table. When using the PCA/CA/K-NN model
tested by using MRC (Fig. 3h), 7 donors are always recognized
correctly, 10 donors are identified correctly in 95% of the cases,
and 5 donors are recognized correctly in at least 80% of the 1,000
MC runs.

It should be noted that the probability of correct classification
from the concentrations of the 12 metabolites from single
samples by PCA/CA/K-NN is always lower, and in some cases
significantly lower (see SI Table 1) with respect to MRC, ranging
from 41.2% for donor BG (81.1% in MRC) to 96.8% for donor
AR (100% in MRC). We recall that when using the complete
spectra for classification from BG and AR rather than just 12
metabolite concentrations, the probability of correct single-
sample classification increases up to 97.3% and 99.8%, respec-
tively. This illustrates that the donor-specific metabolic finger-
print is a real multiparametric fingerprint, in which the whole
detectable metabolome contributes. The more spectroscopic
descriptors used in the data analysis, the better the identification
of unique personal spectroscopic fingerprints.

It is also important to estimate the minimum number of
spectra required to obtain donor-specific fingerprints. Essen-
tially, it is necessary to define a learning curve indicating the
percentage of correct donor identification as a function of

the number of available model spectra per donor. Considering
the powerful performance of the PCA/CA/K-NN model, we
calculated the learning curve for this particular model. The
MC/TSV approach (1,000 runs) was used, and the model sets
were constituted by 5, 10, 15, 20, 25, and 30 spectra, respectively,
randomly selected out of the 37–41 spectra for each donor. At
variance with the previous case, the dimensionality of the
respective PCA subspaces needed to be defined between 98%
and 99.9% explained variance for numerical reasons. The pre-
dictive performance of each model was tested again by using for
each donor both a single spectrum (Fig. 4a) and an MRC
performed on the basis of seven spectra randomly selected from
those not in the model set (Fig. 4b). It can be noted that in the
MRC case, only 15 spectra are needed to obtain a prediction at
a probability very close to 1 for each subject (median � 1,
mean � 0.9994).

The present analysis has revealed, by subject discrimination on
a very high predictive level, that in each urine spectrum there are
highly donor-specific traits, providing a fingerprint characteristic

Fig. 3. MC/TSV results. MM-SIMCA (a and b), PCA/K-NN (c and d), and
PCA/CA/K-NN (e and f ) classification approaches using the bucket table, and
PCA/CA/K-NN classification approach using the signal intensity table from the
12 metabolites (g and h). (Left) Classification probabilities of individual test-
set spectra into donor-specific groups. (Right) Classification probability of
groups of test-set spectra into donor-specific groups by using MRC.
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of the donor that is consistent over time—at least over the
collection time (2–3 months) used. Such donor-specific traits can
in principle be reconstructed from an existing sample set coming
from a fixed set of donors. To illustrate this concept, the original
dataset (bucket table) and a reconstructed bucket table are
shown in Fig. 5 a and b, respectively. For reconstruction of each
bucket spectrum in Fig. 5b, its representation in the 21-

dimensional discriminating subspace described above (the di-
mension that was obtained, as already indicated, by MANOVA
output) was back-projected into the original space. Comparison
between original and reconstructed datasets confirms that the
procedure had just a ‘‘cleaning’’ effect without creating any new
artificial features.

It is even possible to obtain, by applying a similar procedure
(see SI Methods), median reconstructed spectra for individual
donors (Fig. 5c). Such spectra may be viewed as representing an
image of the individual metabolic fingerprint (somewhat related
to ‘‘metabotype’’) and by which it is possible to assess easily, even
from visual inspection, donor-specific spectral differences. For
example, it is possible to note that subject AU is characterized
by persistently low intensity of the doublet at �7.36 ppm and of
the two triplets at �7.45 and 7.74 ppm (i.e., very low levels of
hippuric acid despite the absence of antibiotic treatment),
whereas subject BI presents higher intensity of the multiplet at
�1.73 ppm (higher lysine levels) than the other individuals. A
graphical representation of the variability of each spectral point
and of its discrimination ability is given in SI Fig. 9. However,
identification of just one particular metabolite for discrimination
of a single person seems to be the absolute exception (see SI Fig.
10). When analyzing the concentration levels of the 12 selected
metabolites, apart from donor AU, no single metabolite can be
used for unique identification of any other donor in the panel.
Instead, the unique fingerprints are coded in the levels of
multiple markers. For example, donor AZ is unique because of
a combination of high levels in seven metabolites—i.e.,
3-hydroxyisovalerate, citrate, glycine, isoleucine, lactate/
threonine, leucine, and valine. In another example, median
concentrations of donor AO with respect to creatinine,
3-hydroxyisovalerate, alanine, citrate, dimethylamine, glycine,
isoleucine, lactate/threonine, leucine, and valine are consistently
at the lower end within the panel. In both examples, the
combined concentration values are quite unique, leading to a
high single-sample correct classification rate even on the basis of
the 12 selected metabolites (AZ, 90.4%; AO, 87.8%), and in the
MRC approach AZ and AO can be correctly recognized in
practically 100% of the cases. Unfortunately, available metadata
are not sufficient for any conclusion on the origin of this
particular metabolic finding.

Conclusions
So far, metabonomic studies have concentrated on metabolic
‘‘snapshots’’ of individual samples, which were ostensibly influ-
enced by uncontrolled variables. The possibility, demonstrated
here, of eliminating the daily noise by multiple sample collection
hints at a new perspective in metabonomic studies, based on the
definition and identification of an individual metabolic finger-
print constituted by the invariant part of multiple samples of a
single subject.

Although the genotype surely is a unique characteristic of each
and every living organism, the existence of a truly individual
metabolic phenotype still needs to be assessed. We report
experimental evidence of the possibility of recognizing with
100% probability a subject within a group of individuals (none
of which being subjected to particular imposed treatment or diet)
by the metabolic fingerprint of one of its biofluids. This finger-
print is linked to the genotype but probably also to the general
lifestyle and persisting environmental factors. It seems, however,
to be independent from random daily variation. NMR confirms
itself as a valuable tool for obtaining such fingerprints.

It is interesting to consider that a subject could be already
characterized by only using the data from 12 metabolites, and
identified with a confidence not much lower than in the case of
the analysis performed on the complete fingerprint, provided
that MRC is used. If one considers that in biofluids there are
hundreds (cerebrospinal f luid) to thousands (urine) of metab-

Fig. 4. PCA/CA/K-NN learning curves: Box plots reporting the probability of
correct classification as a function of number of spectra in model set. (a)
Single-spectrum classification. (b) Classification using seven spectra and MRC.
Probabilities were determined by MC/TSV using 1,000 individual runs for
averaging.

Fig. 5. Reconstruction of the one-dimensional 1H NMR spectra by back-
projection into the original space of their representations in the 21-
dimensional discriminating subspace. (a) Image of the original bucket table.
(b) Image of the table reconstructed from the bucket spectra representation
in the 21-dimensional donor-discriminating PCA/CA subspace. (c) Median
reconstructed spectra for individual donors (red, female; blue, male).
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olites, there is a strong possibility of being able to distinguish
individual fingerprints even in a much larger panel study. From
the investigation of the 12 metabolites, we conclude that a
significant part of the individual metabolic fingerprint seems to
be ‘‘coded’’ in the concentration levels and ratios of the metab-
olites rather than ‘‘coded’’ just by their pure presence or absence.
It is the strength of NMR to provide access to multiparametric
metabolic fingerprints in a fast, untargeted, and highly repro-
ducible manner providing precise quantitative information even
on the smallest concentration changes of multiple metabolites at
the same time, despite a large dynamic range covering several
orders of magnitude.

Characterizing individual metabolic fingerprints may allow
researchers to (i) better plan personalized therapy and nutrition;
(ii) perform studies of pharmacometabonomics to better predict
and assess drug efficacy and toxicity; (iii) follow phenotype
changes as a function of disease progression, possibly leading to
earlier diagnosis and prognosis; (iv) perform cost-effective
screenings on large human populations; and (v) address how
possible long-term changes may be related to aging, because the
metabolic fingerprint found is consistent over at least the
collection period (�2–3 months).

Statistical Methods
Data Analysis. The software package MATLAB (MathWorks; Version 5.3.1
R11.1) was used for data preparation, data preprocessing, and statistical
analysis, using standard MATLAB and routines developed in-house.

Multivariate Statistical Analysis. In the current study, several classification
approaches for multiclass problems were used by combining, in an innovative
way, classic methods (see SI Methods) used for data analysis.
PCA subspace K-NN classification (PCA/K-NN). PCA was applied on a set of model
data for dimension reduction, first defining a relevant PCA subspace. New
test-set data were classified by applying the K-NN classification based on
measured distances between representations of test-set objects and model set
objects in the PCA subspace defined by the respective previous PCA on the
model set.
PCA/CA subspace K-NN classification (PCA/CA/K-NN). PCA on the model data were
initially applied as in the PCA/K-NN approach. MANOVA and CA were then
applied to the model set representations in the relevant PCA subspace to
define a further reduced subspace with optimum group separation. Its di-
mensionality was chosen according to the MANOVA output of the dimen-

sionality of the respective group means. In practice, in the PCA/CA/K-NN, two
subsequent coordinate transformations and dimension reductions were per-
formed to identify a subspace with optimum multigroup discrimination. The
final classification procedure of new test-set objects was similar to the PCA/
K-NN approach. They were first projected in the discriminating subspace
defined by the model set and then the K-NN classification was applied.
Majority rule classification (MRC). It was introduced for the current study such
that a predefined group of test samples was classified according to the relative
majority of the single-sample classification results. The reasoning is that an
improved donor identification from spectral metabolic fingerprints of body
fluids is expected if several samples per donor are used for testing rather than
performing the identification on the basis of a single sample. In the context of
this study, 7 spectra were used for MRC. This choice was made to account for
the fact that 30 spectra per donor were needed to establish the respective
models, so that the maximum number available for all donors for testing the
MRC performance was 7 (considering that the samples available for the AH
subject were 37).
Test-set validation (TSV). The dataset was subdivided into a training set and a
test set. Class membership of training- and test-set samples were known in
advance. The respective classification rule and model under evaluation was
designed from the training-set data exclusively and applied to the test-set
samples that were left out during the modeling process. The classification
result for the test-set samples was compared with the known true class, and
the fractions of correct and false classifications were recorded. If not stated
differently, in each TSV approach, 30 spectra were used as training set per
donor as well as the remaining spectra in the test set.
MC embedded TSV (MC/TSV). This validation was performed as a generalization
of a cross-validation procedure, looping an MC test scenario over multiple
TSVs (e.g., 1,000 times). In each MC iteration step, the dataset was divided into
a training set and a test set, randomly assigning a predefined number of
objects from the dataset to either of both subsets. Then, models and classifi-
cation rules were derived on the basis of the respective training set and
applied to the current test set. For evaluation of the classification perfor-
mance, several parameters were recorded—i.e., the group into which each
test-set sample was classified (possibly multiple groups in the case of MM-
SIMCA), the fraction of test-set samples classified correctly, and the MRC result
on all combined samples from the respective test set. Once the classification
was finished, the next MC step was initiated by a new random split of the data
into a training set and a test set, and so on. Classification results were recorded
for each MC step.
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