Donatella TondiUniversità degli Studi di Modena e Reggio Emilia | UNIMO · Department of Life Sciences
Donatella Tondi
Associate Professor
About
64
Publications
11,371
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,436
Citations
Introduction
I am interested in drug design, synthesis and x-ray crystallography of small molecules acting as novel inhibitors of carbapenemases.
Publications
Publications (64)
The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-β-lactamases (MBLs) menace the efficacy of all β-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identif...
Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoprot...
The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CL pro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the b...
The spread of infections resistant to available anti-infective drugs is a serious menace to human health [...]
β-lactamases (BLs) represent the most frequent cause of antimicrobial resistance in Gram-negative bacteria. Despite the continuous efforts in the development of BL inhibitors (BLIs), new BLs able to hydrolyze the last developed antibiotics rapidly emerge. Moreover, the insurgence rate of effective mutations is far higher than the release of BLIs ab...
Bacteria are known to evade β-lactam antibiotic action by producing β-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available β-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially availabl...
The emergence of bacteria that co-express serine-and metallo-carbapenemases is a threat to the efficacy of the available β-lactam antibiotic armamentarium. The 4-amino-1,2,4-triazole-3-thione scaffold has been selected as the starting chemical moiety in the design of a small library of β-Lactamase inhibitors (BLIs) with extended activity profiles....
The worldwide spread of β-lactamases able to hydrolyze last resort carbapenems contributes to the antibiotic resistance problem and menaces the successful antimicrobial treatment of clinically relevant pathogens. Class A carbapenemases include members of the KPC and GES families. While drugs against KPC-type carbapenemases have recently been approv...
Aims:
LexA protein is a transcriptional repressor which regulates the expression of more than 60 genes belonging to the SOS global regulatory network activated by damages to bacterial DNA. Considering its role in bacteria, LexA represents a key target to counteract bacterial resistance: the possibility to modulate SOS response through the inhibiti...
Worldwide dissemination of pathogens resistant to almost all available antibiotics represent a real problem preventing efficient treatment of infectious diseases. Among antimicrobial used in therapy, β-lactam antibiotics represent 40% thus playing a crucial role in the management of infections treatment. We report a small series of phenylboronic ac...
Recent decades have witnessed a dramatic increase of multidrug resistant (MDR) bacteria, compromising the efficacy of available antibiotics, and a continual decline in the discovery of novel antibacterials. We recently reported the first library of benzo[b]thiophen-2-ylboronic acid inhibitors sharing broad spectrum activity against β-Lactamases (BL...
The worldwide spread of beta-lactamases with hydrolytic activity extended to last resort carbapenems is aggravating the antibiotic resistance problem and endangers the successful antimicrobial treatment of clinically relevant pathogens. As recently highlighted by the World Health Organization, new strategies to contain antimicrobial resistance are...
Bacterial resistance has become a worldwide concern, particularly after the emergence of resistant strains overproducing carbapenemases. Among these, the KPC-2 carbapenemase represents a significant clinical challenge, being characterized by a broad substrate spectrum that includes aminothiazoleoxime and cephalosporins such as cefotaxime. Moreover,...
The worldwide emergence of metallo β-lactamase NDM-1 as carbapenemase able to hydrolyze near all available β-lactam antibiotics has characterized the last decade, endangering efficacious antibacterial treatments. No inhibitors for NDM-1 are available in therapy, nor promising compounds are in the pipeline for future NDM-1 inhibitors. We report the...
Bacterial resistance has become a worldwide concern, particularly after the emergence of resistant strains overproducing carbapenemases. Among these, the KPC-2 carbapenemase represents a significant clinical challenge, being characterized by a broad substrate spectrum that includes aminothiazoleoxime and cephalosporins such as cefotaxime. Moreover,...
IN SILICO/IN VITRO APPROACHES FOR THE IDENTIFICATION OF NEW CARBAPENEMASE INHIBITORS
RSC, Cambridge 2017. 271 pp., hardcover, £169.00.—ISBN 978‐1‐78262‐424‐0
The emergence and dissemination of multi drug resistant (MDR) pathogens resistant to near all available antibiotics poses a significant threat in clinical therapy. Among them, Klebsiella pneumoniae clinical isolates overexpressing KPC-2 carbapenemase are the most worrisome, extending bacterial resistance to last resort carbapenems. In this study we...
β-Lactamases (BLs) able to hydrolyze β-lactam antibiotics and more importantly the last resort carbapenems, represent a major mechanism of resistance in Gram-negative bacteria showing multi-drug or extensively drug resistant phenotypes. The early detection of BLs responsible of resistant infections is challenging: approaches aiming at the identific...
Bacterial resistance has become a worldwide concern after the emergence of metallo β-lactamases MBLs. They represent one of the major mechanisms of bacterial resistance against beta-lactam antibiotics. Among MBLs, New Delhi metallo-beta-lactamase-1 NDM-1, the most prevalent type, is extremely efficient in inactivating nearly all-available antibioti...
Bacterial resistance represents a worldwide emergency threatening the efficacy of all available antibiotics. Among the several resistance mechanisms developed by bacteria, β-lactamase enzymes (BLs), which are able to inactivate most β-lactam core antibiotics, represent a key target to block, thus prolonging antibiotics half-life. Several approaches...
Background:
RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards...
7-β-Thien-2-yl-acetamido-3-[(4-nitro-3-carboxyphenyl)thiomethyl]-3-cephem-4-carboxylic acid (CENTA) is a yellow chromogenic β-lactamases (BL) substrate. It hydrolyses readily in the presence of all BL and is therefore suitable for kinetic studies, the detection of BL enzymes in crude extracts and chromatographic fractions. CENTA is commercially ava...
Abstract: Nowadays clinical therapy witnesses a challenging bacterial resistance limiting the available
armament of antibiotics. Over the decades strains resistant to all antibiotics have been selected while
medicinal chemists were not able to develop agents capable of destroying them or to prevent their ex-
tension. In particular, carbapenem-resis...
Nowadays clinical therapy witnesses a challenging bacterial resistance limiting the available armament of antibiotics. Over decades strains resistant to all antibiotics have been selected while medicinal chemists were not able to develop agents capable of destroying them or to prevent their extension. In particular, carbapenem-resistant Enterobacte...
Production of β-lactamases (BLs) is the most widespread resistance mechanism adopted by bacteria to fight β-lactam antibiotics. The substrate spectrum of BLs has become increasingly broad, posing a serious health problem. Thus, there is an urgent need for novel BL inhibitors. Boronic acid transition-state analogues are able to reverse the resistanc...
The ongoing emergence of bacterial strains resistant to even third- and fourth-generation β-lactam antibiotics is one of the most pressing and challenging issues in clinical therapy. Furthermore, under the pressure of antibiotics used ubiquitously over the last 80 years, functional mutations and new resistances are continuously increasing. Therefor...
Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that...
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
A small set of boronic acids acting as low nanomolar inhibitors of AmpC beta-lactamase were designed and synthesized in the effort to improve affinity, pharmacokinetic properties, and to provide a valid lead compound. X-ray crystallography revealed the binary complex of the best inhibitor bound to the enzyme, highlighting possibilities for its furt...
The chloro substituted 3,3-di-(4'-hydroxyphenyl)-1-oxo- 1H,3H-naphtho[1,8-cd]pyran was synthesized in a 40/60 mixture of C6 or C7 substituted isomers, respectively. The two isomers were separated by hplc. The X-ray crystal structure of the mixture was obtained. Both the mixture and the single isomers were tested against Lactobacillus Casei thymidyl...
The chloro substituted 3,3-di-(4′-hydroxyphenyl)-1-oxo-1H,3H-naphtho[1,8-cd]pyran was synthesized in a 40/60 mixture of C6 or C7 substituted isomers, respectively. The two isomers were separated by hplc. The X-ray crystal structure of the mixture was obtained. Both the mixture and the single isomers were tested against Lactobacillus Casei thymidyla...
The elucidation of the structural/functional specificities of highly conserved enzymes remains a challenging area of investigation, and enzymes involved in cellular replication are important targets for functional studies and drug discovery. Thymidylate synthase (TS, ThyA) governs the synthesis of thymidylate for use in DNA synthesis. The present s...
Benzo[b]thiophene-2-ylboronic acid, 1, is a 27 nM inhibitor of the class C beta-lactamase AmpC and potentiates the activity of beta-lactam antibiotics in bacteria that express this and related enzymes. As is often true, the potency of compound 1 against the enzymes is much attenuated in cell culture against Gram negative bacteria, where the minimum...
Bacterial expression of beta-lactamases is the most widespread resistance mechanism to beta-lactam antibiotics, such as penicillins and cephalosporins. There is a pressing need for novel, non-beta-lactam inhibitors of these enzymes. One previously discovered novel inhibitor of the beta-lactamase AmpC, compound 1, has several favorable properties: i...
N,O-Didansyl-L-tyrosine (DDT) represented the starting lead for further development of novel non-substrate-like inhibitors of bacterial thymidylate synthase. The N-dansyl structure modulation led to a submicromolar inhibitor of Lactobacillus casei TS (LcTS), which is highly specific with respect to human TS (hTS). Using molecular dynamics simulatio...
Recent methodologies applied to the drug discovery process, such as genomics and proteomics, have greatly implemented our basic understanding of drug action and are giving more input to medicinal chemists, in finding genuinely new targets and opportunities for the development of drugs with original mechanisms of action. In this paper, an example of...
In honor of Professor Vincenzo Tortorella in the occasion of his "Fuori Ruolo" status (received 30 Abstract Phenolphthalein (Pth) was discovered as a low micromolar inhibitor of the enzyme Thymidylate Synthase (TS), an important target for anticancer chemotherapy. In the present work, a new series of Pth derivatives have been designed and synthesiz...
Thymidylate synthase (TS) (EC 2.1.1.45), an enzyme involved in the DNA synthesis of both prokaryotic and eukaryotic cells, is a potential target for the development of anticancer and antinfective agents. Recently, we described a series of phthalein and naphthalein derivatives as TS inhibitors. These compounds have structures unrelated to the folate...
Thymidylate synthase (TS) is a well-recognized target for anticancer chemotherapy. Due to its key role in the sole de novo pathway for thymidylate synthesis and, hence, DNA synthesis, it is an essential enzyme in all life forms. As such, it has been recently recognized as a valuable new target against infectious diseases. There is also a pressing n...
Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-parallel synt...
Background: Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-p...
Background: Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-p...
Background:
Group I beta-lactamases are a major cause of antibiotic resistance to beta-lactams such as penicillins and cephalosporins. These enzymes are only modestly affected by classic beta-lactam-based inhibitors, such as clavulanic acid. Conversely, small arylboronic acids inhibit these enzymes at sub-micromolar concentrations. Structural stud...
A new set of phthalein derivatives stemming from the lead compound, phenolphthalein, were designed to specifically complement structural features of a bacterial form of thymidylate synthase (Lactobacillus casei, LcTS) versus the human TS (hTS) enzyme. The new compounds were screened for their activity and their specificity against TS enzymes from d...
The substrate sites of enzymes are attractive targets for structure-based inhibitor design. Two difficulties hinder efforts to discover and elaborate new (nonsubstrate-like) inhibitors for these sites. First, novel inhibitors often bind at nonsubstrate sites. Second, a novel scaffold introduces chemistry that is frequently unfamiliar, making synthe...
Thymidylate synthase is an attractive target for antiproliferative drug design because of its key role in the synthesis of DNA. As such, the enzyme has been widely targeted for anticancer applications. In principle, TS should also be a good target for drugs used to fight infectious disease. In practice, TS is highly conserved across species, and it...
A series of 3,8-diazabicyclo[3.2.1]octanes substituted either at the 3 position (compounds 1) or at the 8 position (compounds 2) by a chlorinated heteroaryl ring were synthesized, as potential analogues of the potent natural analgesic epibatidine. When tested in the hot plate assay, the majority of the compounds showed significant effects, the most...
Protein structures have facilitated the discovery of new lead compounds for a large number of enzymes and receptors. The subsequent optimization of these leads has typically involved the one-by-one synthesis of variants, which is often slow. To speed up the "rational drug design cycle" we have combined structure-based methods with combinatorial tec...
A new series of N-(substituted)benzyl-1,8-naphthalimides 4, structurally related to the previously reported thymidylate synthase (TS) inhibitor naphthaleins 3, were synthesized and compounds tested for their inhibition of several species of TS. Moreover, their in vitro cytotoxicity together with antimycotic and antibacterial properties were assayed...
The conformations of a set of phthalein derivatives with bacterial thymidylate synthase (TS) inhibitory activity were investigated by 1H NMR spectra, performed at both room and low temperature, and by quantum chemical calculations. Since the crystal structure of the binary complex of phenolphthalein with the enzyme is known, we set out to study the...