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	 2	 Letter from the President and CEO, James D. Shields

As Draper’s new president, it is my 
pleasure to introduce this year’s 
edition of The Draper Technology 
Digest. An important element of our 

strategy is to focus on a limited set of critical 
technical capabilities and to maintain our skills 
in these areas at a world-class level. These capa-
bilities are:

•	 Guidance, navigation, and control.

•	 Autonomous air, land, sea, and space 
systems.

•	 Reliable, fault-tolerant embedded systems.

•	 Miniature, low-power electronic and 
mechanical systems.

•	 Large-scale networked systems integration.

•	 Biomedical engineering.

In each of these areas, we strive to be recognized 
as technology leaders through innovative appli-
cation of technology to solve sponsors’ prob-
lems. Technology leadership also requires that 
our staff share their accomplishments with the 
broader community by publishing, presenting 
at conferences, and serving on advisory boards 
and panels.

James D. Shields,
President and CEO

The Digest supports our efforts to encourage 
publishing by recognizing the authors of the best 
papers that were produced in the previous year. 
It also provides a forum to consolidate in a single 
volume a sampling of the technical accomplish-
ments across the range of our critical capabilities. 
The six papers this year cover topics in guidance, 
navigation and control, microelectromechanical 
systems (MEMS), and biomedical engineering. 
All were either published in a refereed journal or 
presented at a prestigious technical conference. 

Each year, during National Engineers Week, Eli 
Gai, our Vice President of Engineering, pres-
ents an award to the authors of the best techni-
cal paper published in the prior calendar year. 
Eli also gives awards recognizing the best patent, 
the most effective task leader, and an outstanding 
mentor to students who work at the Laboratory.  
I congratulate the winners of these awards, whose 
accomplishments are described in this issue.

Draper’s commitment to advanced technical educa-
tion through the Draper Fellows program, where 
Masters and PhD candidates are supported finan-
cially and academically by allowing them to do their 
thesis research on a Draper project, continued for 
the 34th consecutive year. We recognize this year’s 
graduates by listing them and their thesis titles. 



This issue marks the beginning of the second 
decade of the Draper Technology Digest. 
The fundamental purpose of the Digest is 
to recognize the outstanding achievements 

of Draper’s technical staff, as reflected in the papers 
published and patents awarded during the most recent 
calendar year. The Digest also recognizes the impor-
tant mentoring work performed by Draper’s technical 
staff by honoring the recipient of the Howard Musoff 
Student Mentoring Award. This year’s Digest features 
six excellent technical papers highlighting important 
hardware, software, and systems engineering achieve-
ments in support of our business areas of Space, 
Tactical, and Biomedical Systems. Also featured in 
this year’s Digest are the recipients of the Best Patent 
issued in 2006 and the winner of the Howard Musoff 
Student Mentoring Award for 2006. 

The first paper in this issue by Donald Gustafson, John 
Elwell, and J. Arnold Soltz was selected to receive 
the Vice President’s Award for Best Paper for 2006. 
In this paper, a new approach to indoor geolocation 
in multipath environments based on geometry-based 
modeling is described. Simulation results show that 
this approach significantly improves indoor geoloca-
tion accuracy.

The second paper by Amy E. Duwel, Rob N. Chan-
dler, Thomas W. Kenny, and Mathew Varghese 
describes new tools to evaluate and optimize micro-
electromechanical system (MEMS) structures for low 
thermoplastic damping. It includes an example that 
illustrates the use of the tools to design devices with 
higher quality (Q) factors, which results in improved 
sensor performance.

The third paper by Zach Putnam, Robert Braun, Sarah 
Bairstow, and Greg Barton describes modifications of 
the skip trajectory entry guidance used in the Apollo 
Program for use in the planned Crew Exploration 
Vehicle (CEV). A simulation shows that the modified 
guidance significantly improves the entry footprint of 
the CEV for the lunar return mission.

The fourth paper by Dale Landis, Tom Thorvald-
sen, Barry Fink, Peter Sherman, and Steven Holmes 
describes optimal estimation techniques used to 
combine a Global Positioning System (GPS)/inertial 
Deep Integration algorithm with measurements from 

other sensors to provide accurate position informa-
tion over extended missions for a personal, wearable 
navigation system. A field test of the system conducted 
under realistic GPS-stressed conditions demonstrates 
the practicality of the design.

The fifth paper by Marc Weinberg and Tony Kourepe-
nis describes the error sources limiting the performance 
of silicon tuning-fork gyroscopes (TFGs) and the tech-
niques that can be used to minimize them. The study 
includes three different sensors: the Honeywell/Draper 
TFG, the Systron Donner/BEI quartz sensor, and the 
Analog Device/ADXRS.

The last paper by Mukund N. Desai, David N. Kennedy, 
Rami S. Mangoubi, Jayant Shah, Clem Karl, Andrew 
Worth, Nikos Makris, and Homer Pien describes the 
application of a unified algorithm to smoothing and 
segmentation of diffusion tensor imaging in the brain. 
Results show improvement in brain image quality both 
qualitatively and quantitatively, as well as the robust-
ness of the algorithm in the presence of added noise.

This year, two patents were selected for the Vice Presi-
dent of Engineering’s Award for Best Patent: Multi-
Gimbaled Borehole Navigation System authored by 
Mitchell Hansberry, Richard Martorana, and the late 
Michael Ash, and Flexural Plate Wave Sensor authored 
by Marc Weinberg, Brian Cunningham, and Eric 
Hildebrant.

Nine staff members were nominated for the Howard 
Musoff Student Mentoring Award, and the winner 
for 2006 was Laura Forrest. Details on the award and 
Laura’s accomplishments can be found on page 86.
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Eli Gai,
Vice President, Engineering
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Introduction 
A number of approaches have been suggested for locat-
ing and tracking people and objects inside buildings where 
Global Positioning System (GPS) operation is denied. 
Most of these use radio frequency (RF) phenomena and 
are limited in performance by a single phenomenon: RF 
multipath. Performance has relied on the ability to deter-
mine the direct path distance from a number of reference 
sources to the person or object of interest. Within indoor 
environments, the received signal strength of indirect paths 
is often greater than the direct paths, sometimes resulting 
in undetected direct paths and detected indirect paths.[1] 
In these situations, methods based on direct paths cannot 
maintain accurate tracking over a period of time, particu-
larly when the object being tracked moves in an unpre-
dictable fashion. This limitation can be overcome in some 
cases by exploiting the geolocation information contained 
in the indirect path measurements.

Innovative Indoor Geolocation 
Using RF Multipath Diversity
Donald E. Gustafson, John M. Elwell, J. Arnold Soltz
Copyright © 2006, The Charles Stark Draper Laboratory, Inc. Presented at IEEE PLANS 2006, San Diego, CA, April 25-27, 2006

A new concept is presented for indoor geolocation in 
multipath environments where direct paths are sometimes 
undetectable. In contrast to previous statistically-based 
approaches, the multipath delays are modeled using a 
geometry-based argument. Assuming a series of specular 
reflections off planar surfaces, the model contains a maxi-
mum of three unknown multipath parameters per path that 
may be estimated when geolocation accuracy is sufficiently 
high. If some of the direct paths subsequently become 
undetectable, it is possible under certain conditions to 
maintain geolocation accuracy using only the indirect path 
length measurements. The new concept is illustrated via 
simulation using a relatively simple representative scenario. 
Performance is compared to a traditional method that uses 
only direct path measurements, indicating the potential 
for significantly improved indoor geolocation accuracy 
in environments dominated by multipath. Since the esti-
mated multipath parameters are geometry-dependent, this 
approach allows the possibility of building up indoor map 
information as the geolocation process commences. 

abstractBest Paper

2006
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This paper presents a new solution to this problem. Rather 
than treating multipath signals as noise and attempting to 
mitigate multipath-induced errors, this technique exploits 
the multipath signals by using them as additional measure-
ments within a nonlinear filter. The nonlinear filter uses 
simultaneous indirect and direct path measurements to 
build up parametric models of all detected indirect paths.
If one or more direct paths are subsequently lost, the 
nonlinear filter is able to maintain tracking by navigating 
off the indirect path measurements. Previous approaches 
to indirect path length modeling have relied on statisti-
cal models (e.g., direct-path length plus bias). In contrast, 
our approach is geometry-based. Of importance is the fact 
that the indirect path distance after a sequence of specu-
lar reflections off planar surfaces can be modeled exactly 
using only two parameters in two dimensions and three 
parameters in three dimensions, for any number of reflec-
tions. These parameters are estimated in real time in the 
nonlinear filter. 

Problem Formulation 
A typical indoor multipath RF signature is shown in Figure 
1, assuming a bandwidth of 200 MHz.[2] Received signal 
amplitude is plotted vs. time delay. The direct path ampli-
tude is below the detection threshold, while the amplitude 
of several indirect paths is higher than threshold. In partic-
ular, the strongest path is the first indirect path, which 
results in an error of 5.3 m for a geolocation system based 
on direct path measurements. 

	

Figure 1. Typical indoor multipath RF signature. 

Indoor Geolocation System Architecture 
The architecture for the indoor geolocation system under 
consideration is shown in Figure 2. Without loss of gener-
ality, we consider the problem of tracking a single tran-
sponding tag. The space is instrumented with multiple RF 
sources at known and fixed locations (nodes). Means are 
available to identify the RF source without error. The signal 
received at a node after reception and retransmission from 
the tag is modeled as 

,

where z(t) is the transmitted signal, subscript i refers to the ith 
path, (i = 0 is the direct path, and i > 0 is an indirect path), 
ai(t) is the complex attenuation factor, ti(t) is the path 
delay, n(t) is noise, m is the number of indirect paths, and 
td is the processing delay within the tag, which is assumed 
to be known. The direct path delay is t0(t) = ||r(t)-s||/c, 
where r(t) is the tag location, s is the node location, and c 
is the signal propagation speed.

 

Figure 2. Geolocation system architecture.

The differential delay is the excess delay of the indirect 
path relative to the direct path:

dti(t) = ti(t) − t0(t) > 0 ; i = 1,2,...,m.

A preprocessor is used to estimate all detected path delays. A 
number of methods have been developed for this purpose. 
In Reference [3], the received signal was modeled as the 
sum of the direct-path signal and a delayed version (one 
indirect path), with the indirect path amplitude less than 
the direct path amplitude. Using a first-order finite impulse 
response filter model, the differential delay and indirect 
path amplitude were estimated using the autocorrelation 
of the received signal. Another approach[4] used maximum 
likelihood to estimate the direct path delay in a multipath 
environment. In Reference [5], multipath measurements 
were used to increase the accuracy of the direct path delay 
estimate. This method required an a priori statistical model 
of indirect path delay statistics. Differential delays were 
modeled as biases in Reference [6], and algorithms were 
developed for multipath detection and bias estimation. In 
Reference [7], the known autocorrelation function within 
a GPS receiver was used for multipath mitigation. In Refer-
ence [8], GPS differential delays were estimated using a 
multiple-hypothesis Kalman filter. Differential delays were 
modeled as biases in Reference [9], and a particle filter 
was used for joint estimation of bias and tag location in an 
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indoor environment. The statistical bias model was gener-
ated using ultra-wideband measurements. 

In practice, it is important to correctly associate each calcu-
lated delay with the direct path or a specific indirect path 
(i.e., a specific sequence of reflections off the same set of 
reflecting planes). This is not a straightforward process in 
some scenarios with multiple nodes and complex envi-
ronments containing many reflecting surfaces of various 
orientations and size. The problem is made challenging by 
the presence of crossovers between pairs of time delays, 
appearance of new paths, disappearance and reappearance 
of existing paths, and the presence of noise. In order to be 
effective, the data association algorithm should be capable 
of detecting path persistence, so that the largest possible 
number of measurements for each path are obtained; this 
enhances the accuracy of multipath parameter estimation. 

All the methods mentioned above rely on a single param-
eter, the differential delay, for the multipath model. 
Multipath estimation is based on a priori statistical models 
of differential delay, typically as a bias (including means to 
detect sudden bias changes) or output of a low-order linear 
filter. In contrast, the approach suggested here is based on 
a geometrical model and the assumption that the indirect 
path length is the result of a series of specular reflections 
off planar surfaces. This model contains several geometry-
based parameters and does not depend on a priori statistical 
models of multipath delay. Thus, use of this model allows 
the possibility of inferring geometrical structure within the 
indoor environment. We now develop the measurement 
model that is appropriate for use in a nonlinear filter that 
is capable of joint estimation of tag location and the geom-
etry-based multipath parameters.

Geometry-Based Measurement Model
In the following, time delays have been converted into 
distances using the known signal propagation velocity in 
air. The indirect path distance after a sequence of m spec-
ular reflections off planar surfaces is derived as follows. 
Referring to Figure 3, the relevant equations are, for i = 
1,2,...,m 

	 	
(1)

	 	 (2)

	 	 (3)

	 	 (4)

and

	 	 (5)

	 	
(6)

where pi is the specular point on the ith plane, d1 is the 
distance from the source to p1, {di ; i = 2,3..., m} is the 

distance from pi−1 to pi, dm+1 is the distance from pm to r, wi 
is the unit vector along the incident ray, bi is the distance of 
the plane to the origin of the navigation frame, ui is the unit 
vector normal to the plane, and d is indirect path length. 
From (1), (5), and (6),

	 	
(7)

Thus,

	(8)

From (3) and (4),

	 	 (9)

Thus,

	 (10)

But, from (1) and (2),

	 	
(11)

Figure 3. Geometry for m specular reflections.
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Thus

	 	(12)

Continuing, we find that

	 	 (13)

By induction, we see from (8), (12) and (13) that for 
k=1,2,…,m+1 

	 	 (14)

The case of most interest is k = 1, which gives 

	 	
(15)

which can be written in the form

	 	 (16)

where

	 	
(17)

is a scalar offset distance that contains contributions from 
all m reflections.  In (16), wm+1 is the unit vector from the 
last specular point to the tag and contains potentially useful 
information regarding the geometry of the indoor space.

The multipath parameters {wm+1, cm} vary as the tag moves 
through the indoor space. If the variations are too large, 
the parameters may be essentially unobservable, resulting 
in poor performance. Generally, the variations decrease as 
the node moves away from the tag. To see this, write (5) 
in the form

	 	
(18)

where

Then

and

Since M1 depends only on the orientation of the reflecting 
planes, wm+1 becomes independent of r as . Similarly, 
from (17),

	 	
(19)

so that

Thus, cm also becomes independent of r as . For typi-
cal indoor environments and tag motion, parameter values 
are generally stable enough to allow reasonable tag local-
ization accuracy. A representative example is given in the 
sequel to illustrate this point. An important limiting case 
is the problem of navigation using GPS measurements in 
the presence of multipath. The distance to the nodes (GPS 
satellites) is essentially infinite and the multipath param-
eters are constant over sufficiently short periods of time 
where the effects of satellite motion may be ignored. This 
considerably simplifies the problem of navigating using 
GPS measurements in multipath environments. 

The indirect path parameter set {wm+1, cm} contains three 
unknown parameters in three-dimensional space and two 
unknown parameters in two-dimensional space. Impor-
tantly, the form of (16) is independent of the number of 
reflections, although the offset distance is significantly 
different. Hence, it does not matter that the number of 
reflections is unknown in practice, and the accuracy of 
estimating {wm+1, cm} is not affected by the number of 
reflections. For this reason, the reflection subscript m is 
dropped in the sequel.

Multipath Geolocation System Design
Equation (16) is in the form of a bilinear measurement 
equation that can be handled using appropriate recursive 
nonlinear filtering methods in which the goal is to track the 
tag location r and estimate the multipath parameters {w, c} 
simultaneously by processing a sequence of noisy measure-
ments of d as the tag moves through the indoor space. Note 
that this model includes the unknown effects of additional 
path delays associated with attenuation through materials 
in which the signal propagation speed is slower than in 
air. 

If the parameters are known exactly, then (16) is in the form 
of the usual linear measurement equation for a Kalman 
filter. If the parameter uncertainties are small enough, then 
tag position can be estimated with reasonable accuracy 
using an extended Kalman filter. In some practical situa-
tions, the uncertainty associated with the initial parameter 
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estimates may be large enough to preclude the initial use of 
an extended Kalman filter, and other means (e.g., particle 
filters, multiple-hypothesis filters, information filters) must 
be used at least initially to get within the linear range of an 
extended Kalman filter. 

The form of (16) indicates that accurate estimation of the 
multipath parameters {w, c} depends on meeting several 
conditions: 1) relatively accurate tag location estimates 
over a sufficient length of time, 2) tag motion sufficient to 
ensure observability of the parameters, 3) relatively small 
variation of the of multipath parameters as the tag moves 
through the indoor environment, and 4) persistence of 
the sequence of reflections. In the sequel, it is shown for a 
representative indoor scenario that the parameter variations 
tend to be relatively small as the tag moves through space, 
allowing reasonably accurate estimates of the multipath 
parameters to be obtained.

Data Association
A generic measurement data association algorithm is 
depicted in Figure 4. At any time, data for all current and 
past detected indirect paths are stored, both as all past raw 
measurement associated with that path and the coefficients 
of low-order ordinary least squares regression models of 
the path delays. When a new measurement is obtained, 
the distance to all current paths is calculated by compar-
ing the predicted values in the current database with the 
new value. If the minimum distance is less than a prespeci-
fied threshold, then the closest current path is updated, 
including the regression model. If the distance exceeds the 
threshold, a new indirect path is started. Note that new 
indirect paths may be started if a new path appears, an old 
path reappears, or a current path changes by a relatively 
large amount due to tag motion since the last measurement 
of that indirect path. The output of the data association 
algorithm is the identity of the path associated with the 
current measurement. 

	 Figure 4.	 Generic measurement data association 
algorithm.

Nonlinear Filter
Tracking the tag position in real time is accomplished 
using a nonlinear filter. A two-step process was used: 1) 
initialization using a particle filter, and 2) tracking using an 
extended Kalman filter. The purpose of the particle filter is 
to reduce the initially large tag position uncertainty to an 
error that is within the linearization range of the extended 
Kalman filter. A generic particle filter[10] can be used for 
initialization. Assuming no measurement data association 
errors, the first few direct-path measurements from each 
node may be correctly identified and processed to reduce 
the localization error to within the linearization region of 
an extended Kalman filter.

Recursive estimation of the tag location and the multipath 
parameters is carried out in two sequential steps: 1) 
propagation between measurements and 2) updating at a 
measurement. The tag position is assumed to propagate 
according to

	 	 (20)

where u(i −1)  is the control. In the sequel, we assume that 
no dead reckoning sensors are available so that u( i −1) is 
unknown. The state vector employed in the filter is xT(i) = 
[rT(i) wT(i) c(i)]. Between measurements, estimates of the 
conditional mean and error covariance matrix are propa-
gated in the filter using

	 	 (21)

where the prime (caret) denotes an estimate just prior to 
(just after) measurement updating,

,

,

and Q(i −1) > 0 is used in the filter to model the uncer-
tainty associated with the unknown control u(i − 1). 

From (16), the indirect path length measurements are 
modeled as

	 	 (22)

where n(i) is zero-mean Gaussian measurement error.

Updating at a measurement is performed using the extended 
Kalman filter update equations (cf., Reference [11]) 

	 	 (23)

where

is the measurement residual and K(i) is the optimal gain 
matrix:

	 	 (24)

where

Update OLS models
(all  paths)

Put y into path k

d<threshStart new path

Find distance to current
closest path

Prediction based on
OLS path model

Step 2

Step 1
New

measurement
(y)

no

d, k

yes
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and sn(i) is the rms measurement error.

In case the parameters are assumed to be completely 
unknown initially, it is necessary to initialize the param-
eter estimates and the associated error covariance matrix 
using the first several measurements. This is accomplished 
using the information form of the Kalman filter.[12] Let a 
denote the parameter vector: aT(i) = [wT(i) c(i)] and write 
the measurement equation as 

	 	 (25)

Assume that the first k measurements are direct path 
measurements resulting in accurate estimates of tag posi-
tion and let

.

Then, using the recursion,

	 	 (26)

	 	 (27)

the initialization is:

	 	 (28)

Direct path measurements are processed using the 
extended Kalman filter equations with x = r, h(x) =  

.

Estimates of the multipath parameters and covariances are 
unchanged.

Example 
A relatively simple two-dimensional example is presented 
here to demonstrate the potential effectiveness of the 
proposed approach. The performance of two filters was 
compared: 1) the multipath filter, and 2) a conventional 
extended Kalman filter, which operates on direct path 
measurements only. A single RF transponding tag is moving 
within a 30 x 30-m area with planar walls. The initial condi-
tions are shown in Figure 5. Two fixed RF nodes at known 
locations are located at adjacent corners of the space. It 
is assumed that the signal attenuation associated with a 
reflection is large enough to preclude detection of signals 
resulting from more than one reflection. Multipath signals 
are thus created by a single specular reflection off either a 
side (East/West) wall or the South wall. A single 5 x 10-m 
rectangular object is located within the room, which blocks 
all RF signals. The geometry in Figure 5 shows the direct 
paths (solid black lines) and the indirect paths (dotted 
black lines) to the transponding tag from the two nodes. 
The two direct paths are unblocked. The two indirect paths 
resulting from reflection off the East and West walls are 
also unblocked; however, the two indirect paths resulting 
from reflection off the South wall are blocked.

Figure 5. Example: initial conditions.

A particle filter was used initially to reduce the geoloca-
tion uncertainty to within the linearization region of 
an extended Kalman filter. A total of 25 particles was 
assumed, with the particles initially distributed uniformly 
within the room (black “x” in Figure 5). The initial 1-sigma 
error ellipse is shown by the dotted red circle. Initialization 
was accomplished by sequential processing of one direct 
path measurement from each of the two nodes (solid black 
lines) at the initial time. A standard sequential impor-
tance sampling algorithm[10] was used, with the normal-
ized importance weights proportional to the measurement 
likelihood function. The rms measurement error was sn 
= 1 ft. Since there were relatively few particles and the 
measurement error was much smaller than the initial posi-
tion uncertainty, the first particle filter update yielded 
only two unique particle locations (population = 10 and 
15), an example of the well-known problem of particle 
impoverishment. A simple spreading algorithm was used 
to increase particle diversity. The particles at each location 
were spread by sampling from a Gaussian distribution with 
an rms value of 1.5 m/axis. The same process was followed 
after updating using the measurement from Node 2.

The results of the initialization procedure are shown in 
Figure 6. Both filters were initialized with the same esti-
mates. The particle mean was used to initialize the tag posi-
tion estimates to

meters, while the tag position error covariance matrices 
were initialized to P(1) = 0.09 I2 meter2, in agreement 
with the assumed rms measurement error. The maximum 
dispersion of any particle from the true tag location was 5.7 
m, so that the dispersion of the particles was reduced to 
the point where initialization of the extended Kalman filter 
could be performed.
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Figure 6. Conditions after particle filter initialization.

Available measurements were processed every 0.5 s. Tag 
speed was held constant at 0.5 m/s. No dead reckoning 
sensors were employed, so that the geolocation estimates 
calculated by both filters were not propagated between 
measurements; however, the error covariance matrices 
were increased within both filters using (21). The process 
noise covariance matrix Q(i) = v(i)I was calculated using 
sequential differencing of the position estimates to estimate 
the variance v(i).

The simulation was run for 94 s at a time step of 0.5 s. 
The time delay (in meters) for the direct and indirect paths 
are plotted in Figure 7. The two indirect paths from Node 
1 have a single crossover point at 20 s. The two indirect 
paths from Node 2 have a single crossover point at 70 s, 
with a near-crossover at 17 s. The data association algo-
rithm given in the previous section was employed using 
quadratic regression models and produced no data associa-
tion errors. 

The true and estimated paths over time for both filters 
are shown in Figure 8. True tag location is shown by the 
solid black line. The estimated path for the multipath filter 
(MP) is shown by the solid colored line, while the esti-
mated path for the conventional filter (CV) is shown by the 
dotted colored line. While both direct paths are detected 
(for the first 55 s), the MP filter and the CV filter produce 
identical geolocation estimates (blue line). After the direct 
path from Node 2 is lost at 55.5 s, the CV filter is able to 
navigate off the direct path from Node 1 only, while the MP 
filter, in addition, is able to navigate off the indirect path 
from Node 1 reflected off the bottom wall and the indi-
rect path from Node 2 reflected off the West wall. The MP 
filter estimate (solid red line) produces very small tracking 
errors, while the CV filter errors (dotted silver line) start to 
grow. When both direct paths become undetected at 73.5 
s, the CV filter can no longer track at all; its geolocation 
estimate remains constant for the remainder of the simula-
tion. In comparison, the MP filter is able to navigate off the 

	

Figure 7. Measurement delay vs. time.

Figure 8. Comparison of true and estimated paths. 

detected indirect paths. Between 73.5 and 77.5 s, the MP 
filter navigates off the indirect path from Node 1 reflected 
off the bottom wall and both indirect paths from Node 2. 
At 78 s, the indirect path from Node 2 reflected from the 
West wall becomes undetected, and the MP filter is reduced 
to using both indirect path measurements off the bottom 
wall. At 84 s, all four indirect paths become detectable and 
are used by the MP filter until the end of the simulation. 

30

25

20

15

10

5

0

N
o

rt
h
 (

m
)

0	 10	 20	 30

East (m)

Node 1 Node 2

x1t1spr

70

60

50

40

30

20

10

m

0	 20	 40	 60	 80	 100

Time (s)

Node 1

60

50

40

30

20

10

m

0	 20	 40	 60	 80	 100

Time (s)

Node 2

30

25

20

15

10

5

0

N
o

rt
h
 (

m
)

0	 10	 20	 30

East (m)

Node 1 Node 2

x1tag

x1dy



	 Innovative Indoor Geolocation Using RF Multipath Diversity	 11

	

	 Figure 9.	 North position tracking performance 
comparison.

Figures 9 and 10 compare the tracking performance for 
the two filters along North and East. Position estimate 
histories are shown in the top panel. Solid lines show MP 
estimates, while dotted lines show CV estimates; red lines 
begin at 55.5 s, when the direct path from Node z is lost. 
The middle panel displays the error histories for MP, while 
the bottom panel displays the error histories for the CV. 
True errors are indicated by solid lines and filter-derived 
1s error bounds are shown in dotted lines. The red lines 
indicate the performance after the direct path from Node 2 
is lost at 55.5 s. The ability of MP to recover over the last 10 
s, after all four indirect paths are detected, is clearly shown. 
In comparison, CV cannot use the indirect path measure-
ments and its geolocation errors continue to diverge.

Multipath parameter estimation performance is shown in 
Figure 11 for the two indirect paths associated with Node 1 
and in Figure 12 for the two indirect paths associated with 
Node 2. In this two-dimensional example, the multipath 
parameters are the angle y(i) = arctan(x1(i)/x2(i)) (four 
quadrant) and the offset parameter c(i). In the figures, the 
solid black lines denote the true parameter values. The 
blue lines denote the estimates during periods of time 

	

	 Figure 10.	North position tracking performance 
comparison.

when the multipath parameters are being estimated (direct 
and indirect path measurements are available simultane-
ously), while the red lines denote the estimates during 
periods when direct path measurements are unavailable.

	

	 Figure 11.	Multipath parameter estimation: Node 1 
measurements.
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	 Figure 12.	Multipath parameter estimation: Node 2 
measurements.

For Node 1, the parameters for the first indirect path (off 
the West wall) are estimated with reasonable accuracy after 
40 s. The parameters for the second path (off the South 
wall) cannot be estimated for the first 27 s since the indirect 
path is blocked by the rectangular object. When estimation 
commences at 27.5 s, the parameters are almost immedi-
ately estimated with high accuracy, and this accuracy level 
continues until the direct path is blocked at 73.5 s.

For Node 2, the parameters for the first indirect path (off 
the East wall) are estimated with reasonable accuracy 
after 45 s. The direct path becomes blocked at 55.5 s, so 
that further updating of the parameter estimates was not 
possible. The second indirect path (off the South wall) 
was blocked for the first 34 s. At 34.5 s, the indirect path 
became unblocked and the indirect path parameters were 
estimated. At the next time step (35 s), the direct path 
became blocked and remained blocked for the remain-
der of the simulation, precluding further estimation of the 
indirect path parameters. Thus, in this case, the indirect 
parameter estimates are based on a single measurement 
pair.

As discussed previously, the variation in the true multipath 
parameters was relatively small in this representative 
example, so that relatively accurate tag tracking could be 
maintained when it was no longer possible to perform 
parameter estimation.

Conclusion
A new approach is suggested for the problem of indoor 
geolocation in the presence of dominating multipath using 
RF time-of-arrival measurements. Multipath delays are 
modeled using a geometry-based argument. Assuming a 
series of specular reflections off planar surfaces, the model 
contains a maximum of three unknown multipath param-
eters per path, which may be estimated in a nonlinear 
filter. Simulation results for a relatively simple represen-
tative example suggest that multipath parameters can be 
estimated with sufficient accuracy to maintain geolocation 
accuracy when one or more direct paths are undetected. 
This approach allows the possibility of building up indoor 
map information as the geolocation process commences. 
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Nomenclature
Variable 	 Physical Definition 

E 	 Young’s modulus 
a	 Coefficient of thermal expansion 
To 	 Nominal average temperature (300 K) 
r	 Density of solid 
Csp 	 Specific heat capacity of a solid 
Cv 	 Heat capacity of a solid, Cv = rCsp 
k 	 Thermal conductivity of a solid 
wmech 	 Mechanical resonance frequency 
tn 	 Characteristic time constant for thermal mode n 
s 	 Stress  
e 	 Strain  
l, µ 	 Elastic Lamé parameters 
T 	 Temperature 
S 	 Entropy 
[u  v  w] 	 Components of displacement in x,y, and z directions, respectively 

 = [u,  v]	 2D vector of mechanical displacements 
Um 	 Mechanical mode amplitude 

m	 Mechanical eigenmode shape function 
wm 	 Mechanical resonant frequency for eigenmode m 
An 	 Thermal mode amplitude 
Tn 	 Thermal eigenmode shape function 
wth 	 Characteristic frequency of dominant thermal mode 
DW 	 Energy lost from mechanical resonator system 
W 	 Energy stored in mechanical resonator 
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This paper presents two approaches to analyzing and calculat-
ing thermoelastic damping in micromechanical resonators. The 
first approach solves the fully coupled thermomechanical equa-
tions that capture the physics of thermoelastic damping in both 
two and three dimensions (2D and 3D) for arbitrary structures. 
The second approach uses the eigenvalues and eigenvectors of 
the uncoupled thermal and mechanical dynamics equations to 
calculate damping. We demonstrate the use of the latter approach 
to identify the thermal modes that contribute most to damping, 
and present an example that illustrates how this information 
may be used to design devices with higher quality factors. Both 
approaches are numerically implemented using a finite-element 
solver (Comsol Multiphysics). We calculate damping in typical 
micromechanical resonator structures using Comsol Multiphys-
ics and compare the results with experimental data reported in 
literature for these devices. 

abstract
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Introduction 
Micromechanical resonators are used in a wide variety 
of applications, including inertial sensing, chemical and 
biological sensing, acoustic sensing, and microwave trans-
ceivers. Despite the distinct design requirements for each 
of these applications, a ubiquitous resonator performance 
parameter emerges. This is the resonator’s Quality factor 
(Q), which describes the mechanical energy damping. In 
all applications, it is important to have design control over 
this parameter, and in most cases, it is invaluable to mini-
mize the damping. Over the past decade, both experimen-
tal and theoretical studies[1]-[6],[9],[22] have highlighted the 
important role of thermoelastic damping (TED) in micro-
mechanical resonators. However, the tools available to 
analyze and design around TED in typical micromechani-
cal resonators are limited to analytical calculations that 
can be applied to relatively simple mechanical structures. 
These are based on the defining work done by Zener in 
References [7] and [8]. 

Zener developed general expressions for thermoelastic 
damping in vibrating structures, with the specific case 
study of a beam in its fundamental flexural mode. In Refer-
ence [8], Zener’s calculation was based on fundamental 
thermodynamic expressions for stored mechanical energy, 
work, and thermal energy that used coupled thermal-
mechanical constitutive relations for stress, strain, entropy, 
and temperature. However, in order to evaluate these 
energy expressions for a specific resonator, Zener proposed 
that the strain and temperature solutions from uncoupled 
dynamical equations could be sufficient. He found the 
eigensolutions of the mechanical equation, and, separately, 
the eigensolutions of the uncoupled thermal equation. 
By applying these to the coupled thermodynamic ener-
gies, Zener calculated the thermoelastic Q of an isotropic 
homogenous resonator to be:   

	 	 (1) 

where the physical constants are listed in the Nomenclature, 
wmech is the mechanical resonance frequency, and tn is the 
characteristic time constant of a given thermal mode. This 
takes into account the fact that multiple thermal modes 
may add to the damping of a single mechanical resonance. 
The contribution of a given mode, n, is determined by its 
weighting function, fn. 

Zener explicitly calculated the weighting functions for a 
simple beam resonating in its fundamental flexural mode. 
In order to make the analysis tractable, he assumed that 
only thermal gradients across the beam width (dimension 
in the direction of the flexing) were significant. This left 
only a 1D thermal equation to solve. Zener found that a 
single thermal mode dominated, giving

	 	 (2)

Few structures are amenable to the simplifications that led 
to expression (2) for Q. However, Zener’s expression (1) is 
quite general. In the section “Weakly Coupled Approach to 
TED Solutions,” we show how numerical solutions to the 
uncoupled mechanical and thermal dynamics of a resona-
tor can be used to evaluate (1). This adds a great deal of 
power to Zener’s approach, since arbitrary geometries can 
be considered. 

We show how Zener’s weighting function approach offers 
an intuition into the details of the energy transfer. At the 
same time, our results highlight the limits of intuition in 
identifying the thermal modes of interest. For example, we 
find that the simplification Zener made in assuming only 
thermal gradients in one direction along the beam were 
significant does not capture the most important thermal 
mode, even for a simple beam. In addition, past efforts 
to estimate Q without explicitly calculating the weighting 
functions have been shown[9] to greatly overestimate the 
damping behavior of real systems. This “modified” inter-
pretation of Zener’s method can be misleading. 

In this paper, we describe a method for using full numeri-
cal solutions to evaluate Q using Zener’s approach. We call 
this a “weakly coupled” approach. We also present our 
numerical method for solving the fully coupled thermo-
elastic dynamics equations to calculate Q for an arbitrary 
structure. Using numerical solutions in the weakly coupled 
approach offers powerful guidance in engineering around 
thermoelastic damping, while fully coupled solutions offer 
the ability to precisely evaluate and optimize the thermo-
elastic Q of a resonator. 

Numerical Solution of the Fully Coupled TED
Equations 
The coupled equations governing thermoelastic vibrations 
in a solid are derived in Reference [19]. The following 
section, “Governing Equations in 3D,” outlines the basic 
principles of this derivation. “Governing Equations in 2D 
with Plane Stress Approximations” highlights modifica-
tions required for a 2D plane stress formulation. The full 
2D and 3D equations are written explicitly so that they are 
accessible to the user community. We numerically solve the 
2D and 3D dynamical equations using the finite-elements 
based package Comsol Multiphysics.[11] The Comsol imple-
mentation is described in References [12] and [13]. This 
analysis can be applied to the wide variety of microelectro-
mechanical system (MEMS) resonator structures reported 
in the literature. It is a useful tool for determining whether 
TED limits performance or whether other damping mecha-
nisms, such as anchor damping,[23] should be investigated 
instead. “Quality Factor Calculations for Typical MEMS 
Resonators” demonstrates the application of TED simula-
tions to a few example MEMS resonator structures. Quality 
factors are calculated and compared with the analytical Eq. 
(1) as well as with experimental measurements reported in 
the literature. 
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Governing Equations in 3D 
The constitutive relations for an isotropic thermoelastic 
solid, derived from thermodynamic energy functions, are 
in matrix form

	 	 (3)

and

	 	(4)

where reduced tensor notation has been used, and the vari-
ables are defined in the Nomenclature. 

To obtain the coupled dynamics, the constitutive relations 
are applied to the force balance constraints and Fourier’s 
law of heat transfer. Force balance in the x direction gives

	 	 (5)

with similar relations for the y and z directions. 

Substituting displacement for strain and simplifying, the 
3D equations of motion become

 	
		

(6)

	 		
		

(7)

	 		
		

(8)

To obtain the thermal dynamics, we apply Fourier’s law

	 	 (9)

The constitutive relations are applied, and the resulting 
equation is linearized around To, the ambient temperature, 
to give, in 3D

	 	 (10)

In summary, Eqs. (6)-(8) and (10) form a set of coupled 
linear equations in 3D. Since the equations are linear, we 
can use a finite-elements-based approach to solving them 
on an arbitrary geometry. We solve for the unforced eigen-
modes. The generalized eigenvectors contain u, v, w, and 
T at every node. The eigenvalues, wi, are complex. The 
imaginary component represents the mechanical vibration 
frequency, while the real part provides the rate of decay for 
an unforced vibration due to the thermal coupling. The 
quality factor of the resonator is defined as

	 	 (11)

Governing Equations in 2D with Plane Stress 
Approximations 
For long beams in flexural vibrations, we can identify one 
axis (we chose to be z) in which all strains are uniform 
and no loads are applied. For clarity, we define the x axis 
along the beam length and the y axis in the direction of 
flexing. Along the z direction s3, s4, and s5 must be zero 
throughout the structure. This is essentially a plane stress 
approximation. When s3 = 0 is applied to Eq. (3) above, 
we find that 

	 	 (12)

In the plane stress approximation, the force balance rela-
tion (5) is

	 	 (13)

Expanding the stress terms using the constitutive relations

	
	 	 (14)

Applying (12) to (14), the equations of motion become

	 		
		

(15)

	 		
		

(16)

The linearized temperature equation is

	 	 (17)

We apply Eq. (12) and also neglect z-directed temperature 
gradients to obtain
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	 	 (18)

In summary, Eqs. (15)-(16) and (18) form a set of coupled 
linear equations in 2D. In order to find Q, we solve for 
the unforced eigenmodes. The generalized eigenvectors 
contain u, v, and T at every node.

Quality Factor Calculations for Typical MEMS 
Resonators 
The thermoelastic Q values for several example MEMS reso-
nators have been calculated. Table 1 introduces the resona-
tor structures and the material parameters used. In Table 
2, we summarize the simulated Q values for the various 
structures. We compare simulated results to calculations 
based on Eq. (2) where applicable. We also compare to data 
reported in the literature. In some cases, the experimental 
data appear to have achieved the thermoelastic limit. For 
these devices, it is clear that structural modifications that 

can engineer a higher thermoelastic limit are warranted. In 
devices where the measured Q value is less than half the 
thermoelastic limit, investigation into and minimization of 
other damping mechanisms is warranted. 

A polysilicon beam resonating in its fundamental flexural 
mode was simulated and compared to measurements.[9] In 
the experiments, the beam was actually part of a doubly 
clamped tuning fork to minimize anchor damping. For a 
resonator operating at 0.57 MHz, the measured Q equaled 
10,281. Zener’s formula, Eq. (2), predicts Q = 10,300, for 
the beam at 0.57 MHz and with t = a2/p2 Dth (a = 12-µm 
beamwidth in the direction of flexural motion, and Dth = 
k/rCsp). The simulations used only a single clamped beam 
with dimensions matching the beam of the tuning fork. 
The simulated frequency was 0.63 MHz and the simulated 
TED Q = 10,211. This remarkable correlation between 
simulation results and experiments suggests that the flex-
ural beam Q is limited by thermoelastic damping. Higher 
thermoelastic Q might be achieved by geometry modifica-
tions as explored in Reference [9] or by fabricating a given 
structure from different materials as explored in Reference 
[6]. 

Resonator Units Flexural 
(2D)

Longitudinal 
(2D)

Longitudinal 
(3D)

Torsional 
(3D)

Flexural with 
Slit (3D)

Material Polysilicon Silicon Si0.35Ge0.65 Silicon Polysilicon

Material Property References Ref. [9] Refs. [14], [24] Ref. [9]

Critical Dimensions µm 400 x 12 x 20 290 x 10 x 10 32 x 40 x 2.2 5.5 x 2 x 0.2 150 x 3.5 x 35

Young’s Modulus GPa 157 180 155 180 157

Density kg/m3 2330 2330 4810 2330 2330

Specific Heat J/kg • K 700 700 377 700 700

Thermal Conductivity W/m • K 90 130 59 130 90

Thermal Expansion Coeff. ppm/K 2.6 2.6 4.3 2.6 2.6

Table 1. Summary of Parameters Used in Q Simulation and Calculations for a Longitudinal Resonator.

Table 2.	 Summary of Simulated Q Values for a Selection of MEMS Resonators. Simulation Results Are Compared with 
Calculations Based on Zener’s Single-Mode Approximation and Measured Results Reported in the Literature.

Resonator Simulated 
Frequency

Measured 
Frequency

Simulated
Q

Analytical
Q

Measured
Q

Experimental 
Reference

Fixed-fixed
beam 2D

0.63 MHz 0.57 MHz 10,300 10,300 10,281 Reference [9]

Longitudinal
2D

15.3 MHz 14.7 MHz 1,650,000 N/A 170,000 Reference [20]

Longitudinal
3D

70.5 MHz 74.4 MHz 366,000 N/A 2863 Reference [15]

Torsional
3D

4.4 MHz 5.6 MHz 2E8 N/A 3300 Reference [16]

Fixed-fixed
beam 2D

1.27 MHz 1.15 MHz 26,000 N/A 5600 Reference [21]
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A Si0.35Ge0.65 capacitively-actuated, longitudinal mode 
resonator was modeled and simulated based on geom-
etry information provided in Reference [15] and mate-
rial properties reported in References [14], [24]. 4 µm × 
4 µm anchors were included in the simulation, with fixed 
boundary conditions at the ends of the anchors. Quévy et 
al. report the Q measurement of 2863 for the fundamental 
longitudinal mode of a bar resonator. Equation (2) was not 
applied to calculate the analytical Q, since the derivation 
was for flexural modes only. We find that the TED Q is 
two orders higher than the measured Q. This suggests that 
thermoelastic damping, for the fundamental longitudinal 
mode, is not a significant contributor to the overall energy 
loss in this resonator. Other mechanisms, such as anchor 
damping, are being optimized by this group with tangible 
impact on Q being reported.[25] 

A second longitudinal resonator was also simulated. The 
device described in Reference [20] is single-crystal silicon, 
and its resonance length of 290 µm far exceeds its other 
dimensions. This resonator is also capacitively actuated 
and operates at 14.7 MHz. The measured Q is 170,000, 
while the simulated thermoelastic Q is an order of magni-
tude larger. This device also does not appear to be thermo-
elastically limited. 

A paddle resonator operating in its torsional resonance 
was simulated. The simulation model was based on the 
nonmetalized silicon-on-insulator (SOI) device described 
in Reference [16]. Fixed-fixed boundary conditions were 
applied to the ends of the tethers. The simulated resonant 
frequency was about 20% lower than the measured torsional 
frequency. The value of Young’s modulus used in the simu-
lations was on the high end of values reported in Reference 
[17], so is unlikely to explain the discrepancy. Analytical 
calculation of the torsional frequency using Reference [18] 
given a total torsional stiffness of 9.4 × 10-12 N • m/rad for 
the beams, and a second moment of inertia of 1.3 × 10-26 
kg • m2 for the plate yields 4.3 MHz, within 3% of the 
simulated result. The discrepancy between the measured 
frequency and the theoretical frequencies may be the result 
of fabrication-induced variations in the sample dimensions. 
Evoy et al. reported experimental Q values in the range 
of 3300 for room temperature measurements, while the 
simulations predict thermoelastic Q values of 200 million. 
The simulated result is consistent with the physical under-
standing that torsional deformations produce little or no 
volumetric expansion and should therefore have negligible 
thermoelastic damping.

Finally, the flexural mode polysilicon beam with a center 
opening described in Reference [21] was simulated. The 
case with a beam length of 150 µm and width of 3.5 µm 
was considered. Since the material parameters of the device 
were not available, we used the polysilicon values of Refer-
ence [9]. Although the center opening dimensions were 
not provided, the scanning electron microscope (SEM) 
indicated that the slit was extremely narrow. Using Comsol 

Multiphysics, the narrowest slit we were able to model was 
0.1 µm wide, centered in the 3.5-µm beamwidth. The slit 
was also centered in the 35-µm beam height, spaced 2 µm 
from top and bottom. The measured Q was 5600, while 
the simulated TED-limited Q was 26,000. This simulated 
Q dropped to 25,000 for a solid polysilicon beam at the 
same frequency. We also simulated a wider slit and found 
that the Q went up to 26,200 for a slit 0.35 µm wide. This 
suggests that at this frequency, the polysilicon beam has a 
TED-limited Q that starts at 25,000 and can be increased 
with an increasingly wider slit. The experimental refer-
ence may have had a narrower slit than we were able to 
model, but the simulations were useful in bounding the 
TED-limited Q between approximately 25,000-26,000 
and in identifying the trend. The TED Q is about 4.5 times 
higher than the experimentally measured Q. Though the 
device does not appear to be TED limited, thermoelastic 
damping is clearly important in this device and can still 
be optimized. 

Weakly Coupled Approach to TED Solutions  
Thermoelastic damping in MEMS resonators can also be 
calculated via a weakly coupled approach proposed by 
Zener. This approach uses eigenvalue solutions to the 
uncoupled mechanical and thermal equations.[8] We show 
how to numerically implement Zener’s approach so that 
structures more complicated than a solid beam can be stud-
ied. While the fully coupled numerical analysis presented 
in the previous section is much more accurate, we empha-
size that Zener’s approach can offer design insights that 
might not otherwise be possible. The next four sections 
describe the analysis. For simplicity, the formulas in this 
section are written for the 2D case and use vector nota-
tions, with

where u and v are the displacements in the x and y direc-
tions, respectively. 

In the next section, “Modal Solutions to Thermal and 
Mechanical Systems,” we introduce time-harmonic modal 
expansions for the mechanical and thermal domain solu-
tions. Both the thermal modes and the mechanical modes 
of a given structure can be found numerically by eigen-
value analysis, assuming no thermoelastic coupling. This 
section also shows how to calculate the relative thermal 
mode amplitudes that are driven by the one mechanical 
mode. The two sections that follow introduce two expres-
sions for the energy loss per cycle. In “Energy Lost from 
Mechanical Domain,” the mechanical energy loss as a 
function of mechanical and thermal modes is derived. 
By energy conservation, this is equal to the energy trans-
ferred to the thermal domain. In “Energy Transferred to 
Thermal Domain,” the energy coupled into the thermal 
domain is taken directly from Reference [8], where the net 
heat rise is derived in terms of the entropy generated per 
cycle. The expressions for energy lost per cycle in these 
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two sections can be evaluated directly from the modal solu-
tions obtained numerically. Although it is not obvious on 
inspection that the two expressions are algebraically iden-
tical, energy conservation requires that they are equal. We 
have validated this numerically for isotropic solids, and 
Reference [8] provides an algebraic proof for solids with 
cubic symmetry. 

In “Using Weighting Functions to Optimize a UHF Beam 
Resonator,” we apply the weakly coupled formulation to 
the cases of a solid beam and two versions of a slotted 
beam. We describe insights gained by studying the modes 
obtained in the weakly coupled approach. In each exam-
ple, we compare the Q value found with the Q calculated 
through a fully coupled analysis. A thorough experimen-
tal study of the slotted beam is referenced,[9] where TED 
calculations are compared with experimental measure-
ments over a wide range of frequencies. 

Modal Solutions to Thermal and Mechanical Systems 
Zener first identified the mechanical resonant mode of 
interest and assumed a sinusoidal steady state of the form

	 	 (19)

This is the mth eigensolution to the vector version of Eqs. 
(15)-(16), without the thermal coupling term. (x,y) is a 
real valued modal shape function, Um is the mode ampli-
tude, and wm is the mechanical resonant frequency. Note 
that the shape functions and frequencies can be found 
numerically using either Comsol Multiphysics or another 
commercially-available software package. 

Spatial variations of strain caused by the mechanical vibra-
tion generate thermal gradients that are captured by the 
driven thermal equation

	 	 (20)

where qc captures the combination of constants written 
explicitly in Eq. (17), and where the term of order a2 is 
neglected. For simplicity, we also limit our study to one 
mechanical mode at a time, mech and wmech

	 	 (21)

This equation is solved as a function of the mechanical 
resonance amplitude, Umech. Applying separation of vari-
ables, the response to a drive at frequency wmech is

	 	 (22)

The functions Tn(x, y) are the real-valued spatial eigen-
modes of the undriven thermal equation and An are the 
complex modal amplitudes. To find the modal amplitudes, 
we apply the orthogonality of the eigenmodes Tn(x, y). The 
expansion (22) is substituted into (21). Multiplying equa-
tion (21) by Tl and integrating over the volume, we obtain

	 	 (23)

with

	 	 (24)

	 	 (25)

The absolute magnitude of |An/Umech| from Eq. (23) can be 
used to assess the effective coupling of mechanical modes 
into the thermal domain. 

To calculate the mechanical quality factor, we first have 
to calculate the energy lost by the mechanical system per 
radian, or equivalently, the energy gained by the thermal 
system per radian. 

Energy Lost from Mechanical Domain 
The energy lost from the mechanical domain per radian is

	 	 (26)

in 2D, where s3 = s4 = s5 = 0. Stress in the above equa-
tion is expanded as a function of strain and temperature 
using Eq. (3). The strain is expressed in terms of the modal 
amplitude and shape function. This expansion is further 
simplified by recognizing that only the temperature-depen-
dent terms produce nonzero integrals over one cycle. Inte-
gration over time yields 

	 		
		  (27)

where each term in this sum, DWn, corresponds to the 
energy dissipated by the nth thermal mode. The thermal 
component of stress that is out of phase with the strain 
damps the vibration, and this term may be identified in the 
first bracket in Eq. (27). The second bracket is the strain. 

Energy Transferred to Thermal Domain 
The expression for energy gained by the thermal domain 
per cycle is derived in Reference [8] to be 

	 	 (28)

The T-1 term is replaced by its Taylor expansion, 1/T0 − 
T/To, where it is assumed that the driven modal amplitudes 
are small relative to the ambient temperature. Only the 
latter term in this expansion produces a nonzero integral 
over one cycle, so that 

	 	 (29)
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Where k is the thermal conductivity in Joules/(Kelvin-
second-meter). Expanding T using (22) and (23), it may 
be shown that Eq. (29) reduces to 

	 	 (30)

Weakly Coupled Quality Factor Calculation 
The maximum stored energy in the 2D mechanical system 
is given by 

	 	 (31)

where the integral is evaluated at the maximum mechani-
cal amplitude. This integral may be evaluated directly for 
a given mode shape by substituting Eq. (3) for stress with 
the appropriate 2D approximations (s3 = s4 = s5 = 0). The 
Q of the device is then calculated by

	 	 (32)

where Qn is an effective Q corresponding to the nth ther-
mal mode. In applying Eq. (32) to calculate Q, DW can be 
found from either Eq.  (27), the expression for mechanical 
energy lost, or Eq. (30), the thermal energy gained. These 
expressions can be shown to be equivalent. 

This analysis shows that we can use numerically calculated 
modal solutions of uncoupled thermal and mechanical 
equations to calculate the Q. For simplicity, we restricted 
our analysis to a single mechanical mode of interest. We 
considered that possibly many thermal modes would 
contribute to damping in the system. The individual terms 
in the sum Eq. (32) for Q can be used to identify the ther-
mal modes that contribute most to damping and evaluate 
their relative weights. 

Using Weighting Functions to Optimize a UHF Beam 
Resonator 
Figure 1 shows the calculated Q values for a range of ther-
mal modes in a beam. The beam is assumed to be in its 
fundamental flexural resonance at frequency 0.63 MHz. 
The frequency and mode shape were found numerically. 
The first 40 thermal modes were also found numerically. 
Using the approach described in the previous four sections, 
we evaluated the thermoelastic damping associated with 
each mode. The Comsol Multiphysics module was used 
to evaluate the overlap integrals in |An| (Eq. (23)) that are 
needed to evaluate DW in Eq. (27) or (30). The total Q, 
based on 40 modes in Eq. (32), was found to be 10,400. 
The Q calculated in a full TED simulation as described in 
“Governing Equations in 2D with Plane Stress Approxima-
tions” was 10,200. The weakly coupled calculations show 
that this damping is dominated by the contribution of a 
single mode, whose thermal eigenfunction is shown in the 
inset. This mode at 0.605 MHz gave Q = 11,000. Inter-
estingly, the temperature distribution of this mode is not 

uniform along the beam axis. Although Zener’s original 
approximation assumed that dominant thermal mode had 
no variation along the beam axis, we find that the uniform 
mode, also shown in Figure 1, has a high Q = 6,250,000. 

	  

Figure 1.	Q values for thermal modes in a fixed-fixed, 
thermally-insulated beam that is 400 µm long 
and 12 µm wide. The mechanical resonance is 
the fundamental flexural mode at 0.63 MHz. 
The first 40 thermal modes are calculated. 
The three most heavily damped modes are: 
at 0.6 MHz with a Q of 6,250,000, at 0.605 
MHz with a Q of 11,000, and at 0.611 MHz 
with a Q of 280,000 (spatial profile not shown 
in inset). The total device Q, including all 40 
thermal modes is 10,400. 

After observing the thermal distribution of the dominant 
thermal mode, we consider the effect of placing slots in 
the beam. The slots, proposed originally in Reference [9], 
are designed to alter the dominant thermal mode with-
out significant effect on the fundamental flexural mode 
frequency. Figure 2 shows the Qn values for the solid beam 
from Figure 1 next to the results for a slotted beam. The 
slots had the effect of modifying the thermal eigensolutions 
and characteristic frequencies. In the slotted beam, many 
more thermal modes contribute to the damping of the 
structure. On the other hand, the thermal modes with the 
greatest spatial overlap are moved to much higher frequen-
cies, minimizing their overall effect on damping. In this 
beam, the slots had the effect of raising the total Q value by 
a significant factor of four. 

If the mechanical mode frequency were already much 
higher than the dominant thermal mode, then moving the 
dominant modes up in frequency could have a detrimental 
effect on Q. This case is shown in Figure 3. Originally, in 
the solid beam, the mechanical frequency is at 4.327 MHz, 
while the dominant thermal mode is still at 0.605 MHz. 
When slots are added to this beam, thermal modes with 
significant spatial overlap move up in frequency, much 
nearer to the mechanical resonance. This lowers the Q to 
20,200 from 38,000 without slots. 

1

0.8

0.6

0.4

0.2

0

Q
-1
 (

x1
04

)

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1

0.605-MHz Thermal Mode:
Q = 11,000

0.60-MHz Thermal Mode:
Q = 6,250,000

	 fmech =	0.63 MHz
	 Qtot =	10,400



	 Engineering MEMS Resonators with Low Thermoelastic Damping	 21

	

Figure 2. Q values for thermal modes in a fixed-fixed, 
thermally-insulated beam that is 400 µm long 
and 12 µm wide. The top plot shows the solid 
beam thermal modes and mechanical resonance, 
while the bottom plot shows the same beam 
with 1-µm wide slits along the beam length. 
The effect of the slits on the thermal modes and 
their Q values indicated. The mechanical reso-
nance shifts slightly, as expected. The total Q 
value is higher in the beam with slits. 

	

Figure 3. Q values for thermal modes in a fixed-fixed, 
thermally-insulated beam that is 150 µm long 
and 12 µm wide. The top plot shows the solid 
beam thermal modes and mechanical resonance, 
while the bottom plot shows the same beam 
with 1-µm wide slits along the beam length. 
The effect of the slits on the thermal modes and 
their Q values indicated. The mechanical reso-
nance shifts slightly, as expected. The total Q 
value is lower in the beam with slits.

Since it is not always possible to predict the most rele-
vant thermal mode and its time constant intuitively, the 
numerical approach can be extremely helpful. We see that 
simple modifications to the resonator can have the effect 
of completely altering the thermal mode structure and 
introducing complicated weightings in the Q calculation. 

Both the frequency and the spatial overlap of the thermal 
modes are clearly important. When modes that have high 
spatial overlap are also close to the mechanical resonance 
frequency, large thermoelastic damping results. Since struc-
tural modifications that have a beneficial impact in some 
frequency regimes can be detrimental in others, engineer-
ing to optimize Q can be greatly enabled through the use 
of the numerical approach described here. 

Conclusion 
This paper presented two new tools to evaluate and opti-
mize MEMS structures for low thermoelastic damping. 
The weakly coupled approach is based on original work 
by Zener. We reviewed Zener’s approach and showed how 
numerical finite-elements-based approaches can be used 
to fully leverage Zener’s theory. In the weakly coupled 
approach, the fundamental thermodynamic energy expres-
sions are coupled. However, the strain and temperature 
solutions used to evaluate these energies are taken from 
solutions to uncoupled, standard mechanical and thermal 
equations. This allows us to use readily available finite-
element packages and evaluate thermoelastic damping. 
The approach enables a great deal of insight into the energy 
loss mechanism. We find that a spatial overlap of thermal 
modes with the strain profile in the mechanical mode of 
interest is a dominant term in the damping. In addition, 
the frequency separation between relevant thermal modes 
and the mechanical resonance frequency must be consid-
ered. By studying the damping contributions of individual 
thermal modes, their mode shapes, and their frequencies, 
it is possible to engineer MEMS resonators for higher Q. In 
addition, by reviewing the fundamental coupled thermo-
dynamic energy expressions, we achieve a greater insight 
into the energy loss mechanism itself. 

Finally, this paper outlines a method for solving the fully 
coupled thermoelastic dynamics to obtain exact expres-
sions for Q in an arbitrary resonator. The fully coupled 
simulations enable a precise evaluation of Q. We derive 
both 3D equations, as well as 2D plane stress thermoelas-
tic equations. The simulations were conducted in Comsol 
Multiphysics. This software can parameterize the mate-
rial parameters and geometry, so that detailed optimiza-
tion studies are enabled. We showed that the fully coupled 
simulations predict thermoelastically limited Q in struc-
tures reported in the literature. 
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The impending development of NASA’s Crew Exploration 
Vehicle (CEV) will require a new entry guidance algorithm 
that provides sufficient performance to meet all require-
ments. This study examined the effects on entry footprints 
of enhancing the skip trajectory entry guidance used in the 
Apollo program. The skip trajectory entry guidance was 
modified to include a numerical predictor-corrector phase 
during the atmospheric skip portion of the entry trajectory. 
Four degree-of-freedom (DOF) simulation was used to 
determine the footprint of the entry vehicle for the baseline 
Apollo entry guidance and predictor-corrector enhanced 
guidance with both high and low lofting at several lunar 
return entry conditions. The results show that the predic-
tor-corrector guidance modification significantly improves 
the entry footprint of the CEV for the lunar return mission. 
The performance provided by the enhanced algorithm is 
likely to meet the entry range requirements for the CEV.

Introduction 
In 2004, the President of the United States funda-
mentally shifted the priorities of America’s civil space 
program with the Vision for Space Exploration (VSE), 
calling for long-term human exploration of the Moon, 
Mars, and beyond.[1] This program focuses on return-
ing astronauts to the Moon by 2020 with the eventual 
establishment of a permanent manned station there. 
Experience gained from human exploration of the 
Moon is then to be used to prepare for a human mission 
to Mars. To complete these tasks, a new human explora-
tion vehicle, the Crew Exploration Vehicle (CEV), will 
be developed.  

1	 Graduate Research Assistant, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
2	 Associate Professor, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA. 
3	 Draper Fellow, Mission Design and Analysis, Draper Laboratory. 
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The NASA Exploration Systems Architecture Study 
(ESAS) selected a CEV similar to the Apollo program’s 
Command and Service Module, with a crewed 
command module and uncrewed service module.[2] The 
CEV command module will be a scaled version of the 
Apollo Command Module (CM), maintaining the same 
outer moldline with a larger radius. In addition, the 
CEV will be required to return safely to land locations 
during normal operations, as opposed to the ocean 
landings performed in the Apollo program. Success-
ful land recovery operations require an entry guidance 
algorithm capable of providing accurate landings over 
a large capability footprint. Preliminary requirements 
indicate that the CEV entry vehicle must be capable of 
downranges of at least 10000 km.[3]

The Apollo program entry guidance contained a long-
range option to provide an abort mode in the event of 
poor weather conditions at the primary landing site. 
A long-range entry capability also simplifies the phas-
ing and targeting problem by allowing the vehicle to 
perform entry targeting within the atmosphere during 
entry, possibly saving propellant during in-space entry 
targeting. Long-range entries can be achieved easily by 
moderate lift-to-drag ratio (L/D) blunt body entry vehi-
cles, such as the CEV, by employing a skipping entry 
trajectory. When performing a skipping entry, the vehi-
cle enters the atmosphere and begins to decelerate. The 
vehicle then uses aerodynamic forces to execute a pull-
up maneuver, lofting the vehicle to higher altitudes, 
possibly exiting the atmosphere. However, enough 
energy is dissipated during the first atmospheric flight 
segment to ensure that the vehicle will enter the atmo-
sphere a second time at a point significantly farther 
downrange than the initial entry point. After the second 
entry, the vehicle proceeds to the surface. A longer 
range trajectory is achieved in this manner, as shown 
in Figure 1.

	 	

Figure 1.	Skipping and nonskipping entry trajectories (alti-
tude vs. time).

The Apollo CM was capable of a maximum entry down-
range without dispersions of 4630 km (2500 nmi) 
when employing the Kepler (ballistic) phase of its skip 
trajectory guidance.[4] However, this capability was 
never utilized. Studies for the First Lunar Outpost in 
the early 1990s used a 1.05 scale Apollo CM. These 
studies also employed the Apollo entry guidance algo-
rithm and found a similar maximum downrange with-
out dispersions of 4445 km (2400 nmi).[5] However, 
in this study, trajectories using the Kepler phase of the 
guidance were excluded from nominal trajectory design 
for the following reasons: 

(1) 	Desire to maintain aerodynamic control of the vehi-
cle throughout entry.

(2) 	Relative difficulty of accurate manual control 
to long-range targets in the event of a guidance 
failure.

(3) 	Sensitivity to uncertainty at atmospheric interface 
and within the atmosphere, leading to inaccurate 
landings.

(4) 	No operational necessity for long-range entries.[5] 

While these issues remain significant concerns for the 
design of the CEV entry system, preliminary require-
ments state that the CEV must be able to achieve a down-
range of at least 10,000 km. Recent analyses indicate 
that the moldline of the CEV is fully capable of achiev-
ing downranges of this magnitude.[6] However, signifi-
cant enhancements in the Apollo algorithm are required 
to maintain landed accuracy at these downranges.  

Method 
The entry footprint of the CEV entry vehicle was evalu-
ated with a 4-DOF simulation written in Matlab and 
Simulink. Entry trajectories were simulated over a 
range of flight path angles, crossrange and downrange 
commands using the baseline Apollo skip trajectory 
guidance and both high and low lofting predictor-
corrector enhanced entry guidance algorithms. Uncer-
tainty analysis was not included in this feasibility 
study. 

Definitions 
This study utilized the following definitions. Atmo-
spheric interface, the altitude at which the entry vehicle 
enters the sensible atmosphere, was defined to be 122 
km (400,000 ft) above the Earth’s reference ellipsoid. 
Flight path angle (FPA) refers to the entry vehicle’s iner-
tial flight path angle at atmospheric interface. The iner-
tial flight path angle is the angle between the vehicle’s 
velocity vector and the local horizontal, where nega-
tive values refer to angles below the horizon. Down-
range is defined as the in-plane distance traveled by the 
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vehicle from atmospheric interface to landing. Cross-
range is defined as the out-of-plane distance traveled 
by the vehicle from atmospheric interface to landing. 
Miss distance is defined as the distance between the 
targeted landing site and the actual landing site. For 
the purposes of this study, an acceptable footprint was 
defined as the region within which the CM achieved a 
miss distance of 3.5 km or less. 

Assumptions 
Several assumptions were made for the analysis 
performed in this study. The atmosphere was assumed 
to be the 1962 U.S. Standard Atmosphere to facilitate 
comparison with original Apollo program data. All 
entries were assumed to be posigrade equatorial. The 
entry state used is given in Table 1. The entry vehi-
cle used was a scaled Apollo CM, as outlined in the 
ESAS,[2] with a maximum diameter of 5 m. Hypersonic 
blunt body aerodynamics were used, and the vehicle 
was flown at trim angle of attack, generating a lift-to-
drag ratio (L/D) of 0.4. Entry vehicle properties are 
summarized in Table 2.  

Table 1. Vehicle Entry State.

Parameter Value

     Inertial Velocity         11032 m/s

     Altitude         122 km

     Longitude         0 deg

     Latitude         0 deg

     Azimuth         90 deg

Table 2. Vehicle Properties.

Parameter Value

      Mass          8075 kg

      Reference Area          23.758 m2

      L/D          0.4

Parameters Varied 
Crossrange commands were varied between 0 km and 
1000 km; downrange commands were varied between 
1500 km and 13000 km. This set of commands fully 
captured the capability footprint of the entry vehicle. 
Three flight path angles were selected to examine vehi-
cle footprints over a range of atmospheric interface 
conditions, as shown in Table 3. Two of the FPAs were 
selected based on a CEV emergency ballistic entry (EBE) 
study conducted at the Charles Stark Draper Labora-
tory in September 2005. This set of parameters was 
used with both the baseline skip trajectory guidance 
and the high and low lofting versions of the enhanced 
skip trajectory guidance. 

Table 3.  Flight Path Angle Selections.

FPA Selection Criteria

 -5.635 deg  Center of aerodynamic corridor

 -5.900 deg  Approximate shallow boundary for EBE

 -6.100 deg  Approximate steep boundary for EBE

Results: Baseline Algorithm 
Baseline Algorithm Description 
The primary function of the entry guidance algorithm 
is to manage energy as the spacecraft descends to the 
parachute deploy interface. The bank-to-steer algorithm 
controls lift in the coupled vertical and lateral channels, 
with guidance cycles occurring at a frequency of 0.5 
Hz.  

Guidance’s chief goal is to manage lift in the vertical chan-
nel so that the vehicle enters into the wind-corrected para-
chute deploy box at the appropriate downrange position. 
For a given FPA, full lift-up provides maximum range while 
full lift-down provides the steepest descent. Lift-down may 
be constrained by the maximum allowed g-loads that can 
be experienced by the crew and vehicle. Any bank orien-
tation other than full lift-up or full lift-down will result 
in a component of lift in the lateral channel. Crossrange 
position is controlled in the lateral channel by reversing 
the lift command into the mirror quadrant (e.g., +30 deg 
from vertical to -30 deg) once the lateral range errors to the 
target cross a threshold. The vehicle continues this bank 
command reversal strategy as it descends to the target. As 
the energy and velocity decrease, the lateral threshold is 
reduced so that the vehicle maintains control authority to 
minimize the lateral errors prior to chute deploy. 

The baseline Apollo algorithm consists of seven phases 
designed to control the downrange position of the vehicle, 
as shown in Figure 2.

	

Figure 2. Baseline algorithm entry guidance phases.
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(1) 	Preentry Attitude Hold: maintains current attitude 
until a sensible atmosphere has been detected. 

(2) 	Initial Roll: seeks to guide the vehicle toward the 
center of the entry corridor, nominally command-
ing the lift vector upward, otherwise command-
ing the lift vector downward to steepen a shallow 
entry. 

(3) 	Huntest and Constant Drag: begins once atmo-
spheric capture is ensured, triggered by an altitude 
rate threshold.  This phase determines whether the 
vehicle will need to perform an upward “skip” in 
order to extend the vehicle’s range, decides which 
of the possible phases to use, and calculates the 
conditions that will trigger those phases.  The 
algorithm transitions to the Downcontrol phase 
once a suitable skip trajectory is calculated; other-
wise, the algorithm transitions directly to the Final 
(“Second Entry”) phase if no skip is needed. 

(4) 	Downcontrol: guides the vehicle to pullout using a 
constant drag policy. 

(5) 	Upcontrol: guides the vehicle along a reference 
trajectory, previously generated by the Huntest 
phase. This trajectory is not updated during the 
Upcontrol phase. The algorithm transitions into the 
Kepler phase if the skip trajectory is large enough 
to exit the atmosphere; otherwise, the algorithm 
transitions directly into the Final (“Second Entry”) 
phase. 

(6) 	Kepler (“Ballistic”): maintains current attitude 
along the velocity vector from atmospheric exit to 
atmospheric second entry.  Exit and second entry 
transitions are defined to occur at an aerodynamic 
acceleration of 0.2 g. 

(7) 	Final (“Second Entry”): guides the vehicle along 
a stored nominal reference trajectory, calcu-
lated preflight.  Once the velocity drops below 
a threshold value, the algorithm stops updating 
bank commands and the guidance algorithm is 
disabled.

The guidance phases and phase-transition logic are 
discussed fully in Reference [7]. 

Results Summary 
The results presented below are given in footprint plots. 
These plots show the miss distance associated with a 
particular downrange and crossrange command. Dark 
blue areas indicate accurate landings, while red areas 

indicate large miss distances. Light blue and dark blue 
areas provide acceptable accuracy, corresponding to 
miss distances of 3.5 km or less. It should be noted that 
red areas denote miss distance of 10 km or greater, with 
some miss distances in excess of 1000 km. 

Baseline Algorithm Results 
The entry guidance algorithm used for the Apollo 
program was selected as the baseline algorithm for 
the CM entry guidance. Figures 3-5 show the landed 
accuracy over a range of downrange and crossrange 
commands for several FPAs (see Table 3). Figure 4 
shows the footprint outlines at several FPAs.  

Figure 3 shows the footprint for the baseline algo-
rithm at an FPA of -5.635 deg. Maximum crossrange is 
approximately ±700 km. Minimum downrange is 2250 
km; maximum downrange is 7000 km. Within these 
ranges, the algorithm performs well. Figure 4 shows the 
footprint for the baseline algorithm at an FPA of -5.900 
deg. Performance remains similar at this FPA. The mini-
mum downrange decreases to 2000 km, while the maxi-
mum downrange remains 7000 km, with the exception 
of crossranges less than ±50 km. Some improvement is 
made in long-range performance, but accurate regions 
are patchy. Figure 5 shows the footprint for the baseline 
algorithm at an FPA of -6.100 deg. Significant perfor-
mance improvements are visible at this FPA. Maximum 
downrange increases to 7500 km; minimum downrange 
is 2000 km. Maximum crossrange increases to ±750 km 
at large downranges. Long-range performance becomes 
accurate in two regions at crossranges greater than 400 
km.

	 	

Figure 3.	 Baseline miss distance (km) with FPA = -5.635 deg.
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Figure 4.	 Baseline miss distance (km) with FPA = -5.900 deg.

	 	

Figure 5.	 Baseline miss distance (km) with FPA = -6.100 deg.

Overall, the baseline algorithm provides good performance 
over downrange commands between 2000 km and 7000 km 
with crossranges up to 700 km, as shown in Figure 6. However, 
improvement is required for long-range performance.  

	 	

Figure 6.	Baseline range capability over several FPAs, miss 
distance <3.5 km.

Rationale for Algorithm Improvement 
Analysis of trajectories for long target ranges showed that 
the degradation of precision landing performance for the 
baseline Apollo algorithm occurred as the result of two 
issues. First, the Upcontrol phase did not guide the vehi-
cle to the desired exit conditions calculated by the Hunt-
est phase. The control gains for the reference-following 
controller were likely designed with shorter target ranges 
in mind, and did not achieve the intended results for the 
longest target ranges. Second, the exit conditions calculated 
by Huntest were inaccurate due to an outdated assump-
tion. Since the baseline Apollo algorithm was designed 
for target ranges of less than 4,600 km, the Kepler phase 
would always be short enough to ignore the effects of accu-
mulated drag in the Kepler phase when calculating the exit 
conditions. For the much-longer target ranges intended 
for the CEV, this assumption is no longer valid. These two 
issues combined to cause severe undershoot in the longest 
target ranges. 

Results: Enhanced Guidance Algorithm 
Enhanced Algorithm Description 
The issues causing degradation in precision landing perfor-
mance for long target ranges using the baseline Apollo 
algorithm were resolved by implementing three enhance-
ments to the algorithm. First, the Upcontrol and Kepler 
phases were replaced with a numeric predictor-corrector 
(NPC) algorithm, which targets the second entry condi-
tions rather than the atmospheric exit conditions. This 
change in the guidance phase logic is reflected in Figure 
7. The NPC algorithm used for this purpose, PredGuid, is 
an aerocapture NPC guidance algorithm developed for the 
Aero-assist Flight Experiment (AFE). The PredGuid algo-
rithm is described in Reference [8]. An analytic predictor-
corrector option was investigated but rejected due to the 
lack of a suitable closed-form expression to describe the 
entire skip trajectory.

	    

Figure 7. Enhanced PredGuid algorithm.
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Next, the Final phase reference trajectory was redefined 
and extended to recenter it with respect to the CEV’s 
range capability, since the CEV has different vehicle 
characteristics from the Apollo CM. Finally, the Final 
phase range estimation method used by the Huntest and 
PredGuid phases was updated to enable the new Final 
phase reference trajectory to support a wider spread 
of target ranges. More detail about the enhancements 
made to the algorithm is available in Reference [9]. 

The affects of modulating the start time of the PredGuid 
phase was also investigated. A comparison was made 
between starting the PredGuid phase at the beginning 
of the Upcontrol Phase (as described above) and start-
ing the PredGuid phase at the beginning of the Down-
control phase. The difference in these two approaches 
resulted in different trajectory shaping. Starting the 
PredGuid phase at the nominal time by replacing the 
Upcontrol and Kepler phases resulted in a lower-alti-
tude, shallower skip trajectory. Starting the PredGuid 
phase earlier by also replacing the Downcontrol phase 
resulted in a higher-altitude, steeper lofting.  

Enhanced Algorithm Results 
The results presented below detail the entry footprint of 
the CM using the enhanced numerical predictor-correc-
tor guidance algorithm with both high and low loft-
ing. Figures 8-13 show the landed accuracy, in terms 
of miss distance, of the CM at various downrange and 
crossrange commands for a given FPA. Figures 11 and 
12 show the footprint outlines for high and low lofts 
for several FPAs. 

Figure 8 shows the footprint for a low loft at an FPA of 
-5.635 deg. The CM achieves a maximum crossrange 
of approximately ±750 km. The minimum downrange 
is 2250 km and significant accuracy is lost when 
downranges greater than 10000 km are targeted. The 
footprint for a low loft at an FPA of -5.900 deg is shown 
in Figure 9. The CM achieves a maximum crossrange of 
±850 km, an increase of 100 km over the -5.635 deg case. 
The minimum downrange decreases to 2000 km from 
2500 km in the -5.635 deg case. Significant accuracy 
is still lost when downranges greater than 10000 km 
are targeted. The footprint for a low loft at an FPA of 
-6.100 deg is nearly identical to that of the -5.900 deg 
case (Figure 10). Of note is the much larger red region 
starting at 11000 km, indicating a deterioration of long-
range performance with steepening FPA.

	  

Figure 8.	 Low loft miss distance (km) with FPA = -5.635 deg.

	  

Figure 9.	 Low loft miss distance (km) with FPA = -5.900 deg.

	  

Figure 10.	 Low loft miss distance (km) with FPA = -6.100 deg.
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Figure 11 shows the footprint for a high loft at an FPA 
of -5.635 deg. The CM achieves a maximum crossrange 
of approximately ±900 km, a 150-km increase over the 
low loft case. The minimum downrange is 2250 km and 
the maximum downrange is 11250 km. No accuracy is 
lost between 10000 km and 11250 km as in the low loft 
case. The footprint for a high loft at an FPA of -5.900 deg 
is slightly better (Figure 12). The CM achieves a maxi-
mum crossrange of ±950 km. The minimum downrange 
is 2000 km and the maximum downrange is 11000 km, 
slightly less than the -5.635 deg case. Of particular note 
are two regions of inaccuracy near 3000 km downrange. 
Figure 13 shows the footprint for a high loft at an FPA 
of -6.100 deg. The CM achieves a maximum crossrange 
of ±900 km. Downrange performance is similar to the 
-5.900 deg case. The two inaccurate regions near 3000 
km downrange have disappeared at this FPA.

	  

Figure 11. High loft miss distance (km) with FPA = -5.635 
deg.

	  

Figure 12. High loft miss distance (km) with FPA = -5.900 
deg.

	  

	  

Figure 13. High loft miss distance (km) with FPA = -6.100 
deg.

Figures 14 and 15 show the footprints for low and 
high loft trajectories, respectively, at three FPAs. The 
footprint outlines correspond to miss distances of 3.5 
km or less. As shown before, -5.900 deg and -6.100 
deg provide similar performance, while -5.635 deg is 
slightly less capable. All trajectories begin to lose accu-
racy beyond 10000 km. As in the low loft cases, the 
performance of the high loft -5.900 deg and -6.100 
deg cases is similar, with the exception of the two inac-
curate regions in the -5.900 deg case near 3000 km 
downrange. The -5.635 deg case is slightly less capable 
in minimum downrange and maximum crossrange, but 
slightly more capable in maximum downrange, provid-
ing capability to 11250 km. 

	 	

Figure 14.	Low loft footprints for several FPAs, miss 
distance <3.5 km.
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Figure 15.	High loft footprints for several FPAs, miss 
distance <3.5 km.

These data show that with the inclusion of the enhanced 
guidance algorithm, range performance is consis-
tent over a large downrange and crossrange area. The 
shapes of the footprints are consistent with previous 
work performed with the Apollo CM. Over a range of 
FPAs, a crossrange of ±900 km is easily achievable with 
reasonable accuracy, while a downrange of 11000+ km 
is easily within the vehicle’s capability. Table 4 provides 
a summary of the range performance data. 

As shown in Table 4, there is no significant change in 
landing accuracy within the range of FPAs examined. 
Miss distances of the CM remain within 3.5 km for low 
loft trajectories with downranges less than 10000 km. 
Miss distances of the CM remain within 3.5 km for high 
loft trajectories with downranges less than 11000 km, 

with the exception of two regions near 3000 km down-
range at an FPA of -5.900 deg. It should be noted that 
these analyses include no uncertainty.  

At steeper FPAs with a low loft trajectory, the maxi-
mum crossrange capability is increased slightly and 
the minimum downrange is decreased, both desirable 
effects. High loft trajectories exhibit similar minimum 
downrange performance with increased maximum 
crossranges. While the minimum downrange capabil-
ity is better for steeper FPAs with high lofting, no clear 
advantage exists in crossrange performance for steep or 
shallow FPAs. It should be noted that a compromise 
between the high and low loft guidance algorithms 
could be implemented and that such an implementa-
tion would further decrease footprint dependence on 
FPA. 

Conclusion 
The CEV CM achieves significant capability footprint 
improvements over the baseline algorithm with use of 
the enhanced predictor-corrector entry guidance algo-
rithm. With this algorithm, the CM can robustly achieve 
a maximum crossrange of ±900 km, a maximum down-
range of 10000 km, and a minimum downrange of 
2000 km while maintaining a landed accuracy within 
3.5 km of the target. In addition, the CM footprint is 
largely independent of flight path angle at atmospheric 
interface. 
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Table 4.  Guided Range Performance Summary.
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The objective of the Personal Navigator System (PNS) is to 
construct a wearable navigation system that provides accu-
rate position over extended missions in a deprived Global 
Positioning System (GPS) environment. The prototype 
multisensor navigator included a set of micromechanical 
inertial sensors, a three-axis miniature radar, a selective 
availability antispoofing module (SAASM) GPS receiver, 
and a barometric altimeter. Real-time embedded software 
sampled sensor data, controlled GPS receiver tracking 
loops, and hosted a multisensor optimal estimator whose 
output position was transmitted via wireless link to a high-
resolution personal data accessory (PDA) tracking display. 
The fully packaged system was field tested in Cambridge, 
Massachusetts under realistic, GPS-stressed conditions.

This paper focuses on the deep integration (DI) algorithm 
design used for the optimal estimation of both position 
and receiver tracking control. The algorithm was tailored 
here for intermittent GPS visibility on the ground and in 
outdoor-indoor-outdoor maneuvers. DI has been used 
previously for missile guidance, navigation, and control 
with clear sky view. 

The PNS required an optimal estimator that combined 
the nonlinear GPS/inertial DI algorithm with measure-
ments from other sensors. The mission duration here 
was much longer, and the satellite environment over the 
ground track was highly variable compared with earlier 
DI applications. This required the development of strate-
gies for dropping satellites from track after long blockage 
times and for taking control of newly visible satellites 
under DI tracking. Here, the advantage of DI tracking 
is the ability to extract GPS pseudorange information 
almost instantly if a satellite reappears momentarily from 
a blockage. 

This paper reviews the DI approach with stress on the 
receiver correlator power measurements, nonlinear filter 
equations, and the calculation of numerically-controlled 
oscillator (NCO) commands. Specific problems encoun-
tered, such as clock error recalculation and numerical 
issues, will be mentioned. Urban canyon performance data 
demonstrating accurate navigation under sparse GPS avail-
ability are also described.

Dale Landis, Tom Thorvaldsen, Barry Fink, Peter Sherman, Steven Holmes
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Introduction 
The PNS is a small package containing a Draper Laboratory 
micromechanical inertial measurement unit (IMU), a Rock-
well Collins GPS receiver, a triad of Doppler radar velocity 
sensors, a barometric altimeter, a PDA that allows human 
user interface, and a processor that contains Draper-devel-
oped, real-time navigation software. This package is wear-
able in a front-mounted configuration by a foot soldier, and 
its objective is to provide long-term accurate coordinates in 
both outdoor and indoor environments, including signifi-
cant periods of GPS signal deprivation. 

The software comprises strapped-down navigation algorithms 
combined with Draper’s deep integration (DI) nonlinear filter 
for processing GPS correlator outputs, based on previous 
Draper munitions shell applications. Doppler updates, naviga-
tion initialization, and satellite line-of-sight (LOS) error estima-
tion were among the many features added for the application.

Demonstration in a full hardware mode was done in Spring 
2005. An example is shown in Figure1.

 

Figure 1.	Real-time PNS test results in Technology Square, 
Cambridge.

The test illustrated involved an outdoor phase followed 
by an indoor GPS-deprived period. Figure 1 shows that 
position accuracy was maintained, even during the indoor 
phase. An overlay of the recorded track onto geolocated 
floor plans showed very good registration with hallways. 
In the vertical direction, stairwell landings are clearly seen. 
The PNS effectively locates the user to the correct floor. 
The tests also showed that on return to the outdoor envi-
ronment, GPS resumed almost immediately. Results of this 
test program were reported at JNC’05.[1]

The algorithm that accomplished this performance is 
surveyed in subsequent sections, with emphasis on the 
components that required fresh techniques. 

Navigation Algorithm and Related Calculations
The inputs to the navigation algorithm are 100-Hz sampled 
specific force (accelerometers) and rate (gyroscopes) in a 
PNS orthogonal body-fixed frame that is designated by b 
in this paper. The core of the PNS navigation algorithm is a 
standard strapped-down integration algorithm comprising 

IMU compensation, quaternion third-order integration, 
gravity compensation of accelerometer outputs, and veloc-
ity and position integration in earth-fixed, earth-centered 
(ecef or e) coordinates. For future reference, the navigation 
major outputs are:

	 	 =	 position e frame

	 	 =	 velocity e frame

	 q	 =	 quaternion b to e

	 	 =	 direction cosine matrix

Navigation initialization, omitting many details, is as 
follows. The receiver begins with conventional acquisition 
and tracking, downloads ephemeris, and sends a posi-
tion and velocity to navigation. A crude azimuth estimate 
is made by assuming an initial north and level orienta-
tion (accuracy of 10 deg in azimuth is sufficient). Once 
the receiver enters deep integration mode (less than a 
minute), the wearer moves horizontally, and the filter is 
able to refine the attitude estimates sufficiently for contin-
ued operation using the difference between IMU- and GPS-
determined accelerations. Current work at Draper includes 
more advanced forms of attitude initialization that impose 
less artificial restraints on the PNS wearer.

In addition to navigation proper, there are calculations that 
keep track of optimal estimates of other quantities, primar-
ily the following:

	 dtR	 =	 user (receiver) clock bias

	 d 	 =	 user clock frequency error

	 dbk	 =	 LOS delay error satellite k

An error filter based on perturbation of the navigation algo-
rithm is used to process all the measurements. The filter 
states are listed for future reference in Table 1.

Table 1. PNS Filter States.

Error States Units

 Position dr 3 chips

Velocity dv 3 chips/s

Attitude y 3 rad

Gyro Bias Shift 3 rad/s

Gyro Bias Markov 3 rad/s

Accel. Bias Shift 3 chips/s2

Accel. Bias Markov 3 chips/s2

User Clock Bias 1 chips

User Clock Frequency 1 chips/s

Doppler Misalignment (6) 6 rad

Satellite Delay 12 chips

Altimeter Bias 1 chips

Position NEU

East (ft) North (ft)

Recorded 3-D Track

In-Building
GPS-Denied

Rooftop Start
Sky in Full View

Finish

450
400

350
300

250
200

150
100

50
0

200
150

100
50

0
-50

-100

20
0

-20
-40
-60
-80

U
p

 (
ft
)
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The chip units are defined for P code (which is used in 
PNS) by 96.146 ft/chip or 9.775 x 10-8 s/chip.	

The filter performs the GPS DI updates plus Kalman 
updates for the other sensors. A set of corrections for 
the navigation system and clock model are computed 
and then fed back to the navigation algorithm for a 
reset of the full system state.

The algorithm-embedded software is coded in three rate 
groups: high (100 Hz), medium (50 Hz), and low (10 
Hz). High rate performs IMU compensation, attitude 
integration, and incremental transition matrix calcula-
tions. Medium rate performs navigation position and 
velocity integration, bookkeeping of the receiver clock 
error estimate and satellite atmospheric delay estimates, 
and all GPS receiver interfacing (described below). 
Both high and medium rate perform resets based on 
corrections supplied by the nonlinear filter. Low rate 
performs all filter updates and sends corrections to high 
and medium rate.

Deep Integration GPS
Background of Draper’s Deep Integration

DI was developed to extend GPS tracking to poor 
GPS signal-to-noise conditions, especially intentional 
jamming environments. Deep integration requires 
a custom receiver configured so that the navigation 
software can issue the numerically controlled oscilla-
tor (NCO) commands (overriding the internal tracking 
loops) and also receive integrated correlator outputs. 
For previous results with DI, see Ref. [2]. 

Prior to PNS, Draper DI was used successfully in artillery 
shells with high dynamics and short duration, where 
the instrumentation was limited to inertial sensors and 
the receiver.

For the personal navigator, Draper extended the use 
of DI in significant ways. First, mission duration in 
the tests was stretched from minutes to one half hour. 
There is no inherent mission duration limitation here. 
Second, the capability of the nonlinear algorithm was 
extended to perform both the nonlinear GPS updates and 
conventional Kalman updates (from the Doppler radar 
and altimeter). In contrast to the fixed set of satellites in 
view for a short time-of-flight missile, the ground navi-
gation system described here needed to adapt to satel-
lite configuration changes. Finally, of course, this was 
all done with hardware compressed to a point practical 
for use by a foot soldier. 

A key advantage of DI for the ground navigation appli-
cation is the ability to recover satellite track after signal 

is temporarily lost, perhaps due to masking from a 
landscape fixture. A second advantage is that deep inte-
gration, by design, is able to track a satellite when its 
power is weaker, due to factors such as forest canopy or 
indoor attenuation. 

Summary and Technical Overview
In conventional operation, the GPS receiver is based 
on internal tracking loops, in which tracking loops are 
maintained for GPS code and carrier signals, based on 
correlator outputs and NCO commands, both of which 
are invisible to the end user. The user is supplied with 
pseudo and delta range information tapped from these 
loops, or final position and velocity. Conventional GPS 
is covered in numerous sources, among which Ref. [3] 
may be cited.

In deep integration, the correlator outputs are issued to 
the navigation processor, along with a code phase (or 
equivalently, pseudorange) for the replica signal. The 
navigation software sends rate commands to the receiver 
NCOs, which the receiver uses to generate the replica 
signal. This operation replaces the internal loops.

In practice, there is an alternation between modes in 
PNS. Sometimes (initially and during extended signal 
loss), the receiver maintains control of tracking loops. 
Whenever possible, internal loops are replaced by the 
DI process. These modes are referred to as “receiver 
control” (internal loops) and “host control” (deep 
integration). 

Description of PNS Deep Integration
A compressed technical summary of deep integration 
can be given by reference to the main interfaces in PNS, 
shown in Figure 2. First, the code and carrier NCO 
commands issued to the receiver are discussed in detail. 
Then the receiver outputs sent to navigation and their 
transformation into filter observations are discussed. 
Finally, the filter corrections applied to the navigator 
are discussed.

Figure 2. Deep integration interfaces in PNS.
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The 50-Hz rate command that the navigator gives to the 
code NCO is a code phase rate, which may be given in 
speed of light units as:

	 	 (1)

where tcorr is a “correction” to bring the code phase to 
the navigation predicted position, and the  reflects 
navigation predicted rate. Dt is the time interval of the 
NCO command application (20 ms).

The correction term, also referred to as the NCO “poke,” 
is represented by:

	 	 (2)

where

	 	 =	 user time bias estimate 

	 	 =	 range-to-satellite estimate 

	 	 =	 atmospheric delay estimate

	 	 =	 satellite clock bias estimate

	 r*	 =	 replica code pseudorange

The range term is calculated from navigation position, 
and the clock error is derived from the navigation filter. 
r* is the receiver-supplied pseudorange.

It is instructive to see a derivation of this command. 
Navigation information may be used to calculate the 
time (referenced to the satellite clock) of transmission 
of a light pulse currently received, which is the calcu-
lated satellite signal code phase. This is:

	 	 (3)

where tR is receiver user time. The receiver sends a 
measured replica code pseudorange, from which the 
replica code phase may be calculated as:

	 t* = tR – r*	 (4)

The goal is to drive the replica code to a phase where, 
according to navigation and clock estimates, it would 
match the incoming code from the satellite. The altera-
tion of code phase that accomplishes this is:

	 tcorr = tcalc – t	 (5)

If Eqs. (3) and (4) are substituted into Eq. (5), the result 
is precisely Eq. (2).

The second term (also called the “push”) in the command 
is:

	 	 (6)

where

	 	 =	 user time frequency error estimate

	 	 =	 range rate estimate (from navigation velocity)

	 	 =	 satellite clock frequency error estimate

In the current DI configuration, the carrier NCO is also 
commanded by the push term derived above. This is 
sufficient to maintain the accuracy of the P code track-
ing, which is the primary information source for the 
PNS.

Note that these commands have the following effect: 
replica code is lined up with navigation prediction. As 
a consequence, the correlator information will make the 
navigation errors (including PNS clock error estimates) 
directly observable. This forced observability of naviga-
tion error in I and Q (in phase and quadrature) output 
is fundamental to deep integration.

Using the NCO commands to generate the replica code, 
the receiver produces I and Q integrated correlator 
outputs in the standard way. (See for example Ref. [3].) 
As shown in Figure 2, the receiver sends these I and Q 
data, integrated over 20-ms intervals, to the navigation 
medium rate function. At each time, these are indexed 
over the satellite set (N) and over the number of corre-
lators, T = 2K + 1 (5 for PNS). 

The navigation medium rate task compresses these by 
summing their squares over five time samples. Using 
i for the time index (i = 1,...,5), k for the correla-
tion index (k = 1,...,T), and suppressing the satellite 
(receiver channel) index, the measurement is: 

	 	 (7)

For each 100-ms interval, this gives a T-element vector 
measurement (in contrast to conventional loops that 
form a scalar measurement, gaining local linearity at the 
cost of information). The vector measurement for one 
satellite for one 10-Hz filter pass is readily derived from 
standard equations for I and Q data giving:
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	 	 (8)

where

	 dt 	 =	 20 ms

	 S 	 =	 signal power

	 R 	 =	 pseudorandom code correlation function

	 e 	 =	 LOS delay error in chips

	 D 	 =	 correlator spacing = 0.5 chip

	 b 	 =	 bias

	 n 	 =	 noise

The bias and noise both derive from squaring the raw I 
and Q noise and equations for their distributions may 
be derived. The ideal correlation function is:

	 	 (9)

Finally, the LOS error is modeled as:

	 	 (10)

where u is a unit vector from the IMU to the satellite, 
dba is the residual atmospheric delay error, and dtR is 
user clock residual error. 

The DI filter first uses the dz measurements to estimate 
the signal-to-noise ratio (SNR), allowing for smooth 
adaptation to jamming or low signal strength. Then, the 
DI filter performs an update of the filter error state. The 
details of this update algorithm are omitted here. Since 
the measurement model is highly nonlinear due to the 
form of R and its square, common Kalman methods 
must be replaced by algorithms from nonlinear estima-
tion theory. Further discussion is in Ref. [4].

The remaining arrow in Figure 2 shows the low to 
medium rate transfer of corrections. After all estimates 
are processed for one 10-Hz filter pass (all satellites, 
plus radar and altimeter measurements), the error state 
is used to calculate these corrections. At the end of the 
next 10-Hz interval, the navigation system incorpo-
rates these corrections in a reset. The following items 
are reset based on filter error states: position, velocity, 
quaternion, gyroscope, and accelerometer compensa-
tors, user clock error estimates, and LOS delay errors 
for satellites being tracked.

The two-rate scheme of Figure 2 is critical to the opera-
tion of DI GPS. The data from the filter are not sent 
directly to the receiver. Rather, the corrections go to 

medium rate, and then indirectly affect NCO commands 
via the 10-Hz resets. The 50-Hz receiver control allows 
for tracking high-frequency dynamics in the correla-
tors, while the lower rate filter execution allows for a 
more advanced estimation algorithm with more accu-
rate estimates. 

Clock Errors: Initialization and Reacquisition
Timing and clock errors are critical to deep 
integration.

The previous section indicated how the navigation filter 
kept up accurate clock error estimates while tracking 
satellites in deep integration. Two closely related prob-
lems are clock initialization and clock recapture after 
satellite signal loss.

Time is determined in navigation on the basis of high-
speed interrupts from the Rockwell Collins receiver, 
referred to as t10 (10 ms apart) and t1000 (1 second 
apart). These are driven directly by the receiver 
oscillator. 

Navigation time, or user time, is based directly on 
a count of t10 interrupts. The user clock bias and 
frequency errors are defined in speed-of-light units as:

	 dtR	 =	 user time – GPS time

	 	 =	 user time frequency – true frequency

For practical purposes, GPS time is considered perfect. 
True frequency is, in speed-of-light units, 1 + Doppler. 
As seen above, estimates of these enter into navigation-
issued NCO commands. From this follows the deep 
integration requirement:  clock estimates must always 
be within about a chip (approximately 100 ft) of accu-
racy to retain code lock in deep integration. 

Initialization: At initial operation, the receiver is 
in control of its NCOs, and the navigation software 
receives t1000 interrupts and messages with the match-
ing GPS times. The navigation wrapper software does 
careful bookkeeping of these data over at least three 
low-rate passes (t1000 interrupts). From this, a linear 
relationship between user and GPS time can be deter-
mined algebraically. The data are then passed to the 
navigation algorithm, which in turn (after navigation 
initialization), issues a command to the receiver to 
accept host control.

Reacquisition: After a long period of time without visible 
GPS satellites, it was found that the receiver clock can 
drift nonlinearly to a point well outside the 100-ft accu-
racy requirement. An immediate return to DI updates 
would result in the loss of lock and poor performance 
of the PNS navigator.
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An elementary solution based on a quick coarse clock 
recalibration was developed. The solution assumes that 
the time of GPS signal loss is sufficiently short so that 
the navigation position error has maintained relative 
accuracy (about 150 ft). This condition can be readily 
checked from filter variances. On return of signal power 
from one satellite, the navigation software calculates a 
candidate tcorr (see Eq.(2)), but instead of sending it 
to the receiver as an NCO command, it replaces the 
current clock error estimate with this value. Likewise, a 
difference in two tcorr calculations is assigned as clock 
frequency error. At the same time, filter variances are 
opened to indicate the coarseness of these estimates. 
At this point, the navigator again takes control of the 
NCOs, and subsequent filter passes allow for further 
refinement of clock and position errors.

For the PNS tests conducted in 2005, the position errors 
were well  under 150 ft, thus supporting the validity 
of the algorithm described above. Draper is currently 
investigating methods to extend the clock correction to 
relax the restriction on small position error.

Doppler Radar
The Doppler radar sensors provide a three-dimensional 
velocity vector using short-range, low-power trans-
ceivers. The Doppler measurement is crucial to PNS 
in situations where GPS signals are unavailable, since 
it is the primary means (along with the altimeter) of 
damping position, velocity, and attitude drift inher-
ent in the strapped-down navigation system. Tests 
have demonstrated that the Doppler allows for excel-
lent performance indoors (with no GPS signals) for 
extended periods; furthermore, by keeping position 
errors bounded, it enables quick return to the GPS deep 
integration mode when satellite signals return.

There are three Doppler sensors nominally in an 
orthogonal frame (designated dopp), with the sensing 
axes aligned so that in normal walking motion, each 
will reflect a signal off the floor or ground. Each sensor 
outputs 512 measured amplitudes from the reflected 
signal over 0.1 s, providing 2 cm/s Doppler resolution. 
The data are sent to the 10-Hz navigation function, 
which shifts the raw signal to baseband, performs a 
fast Fourier transform, then applies the Doppler law to 
derive LOS velocity. This velocity is shifted to the IMU 
center, giving a final processed Doppler measurement 
from the triad of:

	 	 (11)

This represents earth-relative velocity of the IMU center 
in the Doppler axis frame. The velocity is not instanta-
neous but an average over the 0.1-s interval of validity.

The measurement is linearized for a Kalman update 
for the navigation error states. The filter observation is 
calculated as:

	  	 (12)

The bar over the navigation velocity indicates an aver-
age over the interval of validity. 

Finally, an error model for this measurement was 
derived by taking differentials. Showing only the most 
important terms, the resulting model is:

	 	 (13)

The error states in Eq. (13) are defined in Table 1. 
The Doppler error term consists of Doppler input axis 
misalignments (modeled by individual axis, not shown 
here) and discrete measurement noise. 

The fact that Equation 13 employs Doppler coordinates, 
rather than ecef, has major advantages. In these axes the 
three scalar measurements can be modeled with inde-
pendent noise, and the three scalar updates can be done 
sequentially. This allows skipping or performing updates 
on a sensor-by-sensor basis, in response to sensor output 
validity indicators. The power level output by the Doppler 
sensors is used for this purpose. If one or two Dopplers 
measure very low power, this is taken to indicate invalid 
axes; for example, an axis may be pointing to a very 
distant reflector or to infinity. If all three axes read low 
power and other sanity checks are met, this indicates a 
stand-still event, and a zero velocity update is executed 
instead.

Also note that the Doppler observation is a combination 
of velocity and attitude error, a consequence of the fact 
that it measures in a body-fixed frame, in contrast to 
GPS, which measures velocity in the earth-fixed frame. 
This can often create interesting results. For example, if 
GPS signals are strong and velocity is accurate, attitude 
can be improved by the Doppler. On the other hand, 
in a GPS-deprived scenario, attitude error can limit the 
improvement of navigation position accuracy.

Summary
Results have shown that Draper’s configuration of deep 
integration GPS combined with other sensors is a prac-
tical design for a personal navigator. This paper has 
illustrated the main features of the algorithm design.
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This paper analyzes the error sources defining tactical-
grade performance in silicon, in-plane tuning-fork gyro-
scopes such as the Honeywell-Draper units being delivered 
for military applications. These analyses have not yet 
appeared in the literature. These units incorporate crystal-
line silicon anodically bonded to a glass substrate. After 
general descriptions of the tuning-fork gyroscope, order-
ing modal frequencies, fundamental dynamics, force and 
fluid coupling, which dictate the need for vacuum pack-
aging, mechanical quadrature, and electrical coupling are 
analyzed. Alternative strategies for handling these engi-
neering issues are discussed by introducing the Systron 
Donner/BEI quartz rate sensor, a successful commer-
cial product, and the Analog Device (ADXRS), which is 
designed for automotive applications.

Introduction 
The development of microelectromechanical systems 
(MEMS) inertial sensors offers revolutionary improvements 
in cost, size, and ruggedness relative to fiber-optic and 
spinning mass technologies.[1],[2] Driven by high-volume 
commercial market needs, applications continue to grow 
for modest performing components at prices below $10/
axis. The Army is funding a $100M initiative to realize 
producible, low-cost, tactical-grade MEMS inertial measure-
ment units (IMUs) for gun-launched munitions and missile 
applications. The continued maturation of the technology 
will enable new applications and markets to be realized.

This paper analyzes design considerations necessary to 
reach tactical-grade performance in a silicon MEMS tuning-
fork gyroscope (TFG) such as the Draper-based design that 
Honeywell is delivering in military systems. In the appen-
dices, alternative strategies for handling these engineering 
issues are discussed by introducing the Systron Donner/

abstract
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BEI quartz rate sensor, a successful commercial product, 
and the Analog Device (ADXRS), which is designed for 
automotive applications.

While many universities, government organizations, and 
companies have done research or even advertised the avail-
ability of inertial sensors, only a handful produces inertial 
instruments on a commercial scale. University of Califor-
nia, Berkeley,[3]-[5] University of Sheffield, UK,[6] University 
of Newcastle, UK,[7] Seoul University, Korea, U. Neuchatel, 
Switzerland,[8] the Massachusetts Institute of Technology 
(MIT), Tohoku University, Japan,[9] Sandia,[10] Integrated 
Micro Instruments,[10] Cal Tech, Jet Propulsion Lab,[11] 
University of California, Los Angeles (UCLA),[11] National 
University of Singapore,[12] University of Michigan,[13],[14] 
Sagem,[15] and many others have published on MEMS 
gyros. Three hundred sixty eight MEMS fabrication facili-
ties have been identified worldwide.[16] 

The MEMS angular rate sensor or gyroscope divides itself 
into tactical and automotive/commercial performance 
categories. Two companies are producing tactical-grade 
performance on the order of 1 to 10 deg/h. Several are 
producing automotive grade, which is loosely defined as 
several hundred to a few thousand deg/h. The scarcity of 
commercial sources despite the plethora of research efforts 
and advertisements underscores the difficulty in construct-
ing MEMS angular rate sensors.

Based on technology developed at Draper Laboratory, 
Honeywell is delivering HG1900, HG1920, and HG1930 
navigation systems. After a decade of excellent test data, 
production quantities are now being realized. In 2004, 
several hundred systems were delivered for military appli-
cations, such as artillery shell and mortar shell guidance. 
Discussed further in the next section, this gyro is crystal-
line silicon-on-glass and has two mechanically-coupled 
proof masses moving in antiparallel directions, and senses 
rate in the wafer substrate plane.

Systron Donner/BEI has built hundreds of thousands of 
quartz TFGs over the past 15 years.[17],[18] For their higher 
performance units, quoted specification sheet performance 
is 36 deg/h/  noise, and uncompensated thermal sensi-
tivities are 21 deg/h/°C and 300 ppm/°C. These sensors 
have been used in many higher performance automobiles 
for traction and stability control and in military systems.

Automotive or commercial-grade angular rate sensors 
perform at several hundred to a few thousand deg/h. 
Analog Devices’ ADXRS150 specifies noise of 180 deg/h/  
and uncompensated thermal sensitivities of 1440 deg/h/°C 
and 1700 ppm/°C (typical values are 180 deg/h/°C and 150 
ppm/°C). Analog employs polysilicon deposited over oxide 
sacrificial layers. Because of integrated on-chip electronics, 
these gyros are small and consume only 30 mW per axis. 

Silicon Sensing Systems, a collaboration of BAE Systems 
and Sumitomo, sells an automotive gyro consisting of a 
MEMS ring resonator driven by magnetic fields. Delphi 

pursued ring resonators for several years, but no informa-
tion has been released in recent years. In their automo-
tive products, Bosch has incorporated a rate sensor that 
can be purchased as a replacement part at BMW dealers. 
The sensor consists of two linear accelerometers supported 
in a vibrating frame.[19] Bosch employs a 10-µm polysili-
con process[20] that results in gorgeous parts with straight 
smooth sidewalls.

For several dollars, Murata sells a vibrating beam gyro-
scope with a piezoelectric readout. Since stability is poor, 
high-pass filtering is recommended. This gyro has been 
applied to vibration control problems such as camera and 
camcorder stabilization. O-Navi (formerly Gyration) is 
selling sample quantities.[21] Crossbow Technology and 
Cloud Cap Technology, Hood River, Oregon, deliver six-
axis systems based on Analog Devices’ inertial sensors. 

Other gyro manufacturers include L-3, Panasonic, and 
Samsung.[22],[23] Although mentioned on their web sites, 
little is known about these angular rate sensors. Imego, 
Sweden,[24] produces small numbers of sensors. Kionix,[25] 
Ithaca, NY, and Microsensors, a subsidiary of Irvine 
Sensors, advertise automotive-grade MEMS gyroscopes. 
SensoNor will ship their SAR10 automotive-grade angular 
rate sensor on short notice.[26] 

This paper’s unique contributions include: 1) analysis 
and tolerances required to realize antiparallel tuning-
fork motion; 2) two-degree-of-freedom model of instru-
ment dynamics, including fluid and mechanical cross-axis 
couplings; 3) force and fluid coupling models, which 
dictate evacuated packages for better performance units; 
and 4) mechanical quadrature models that have led to laser 
trimming.

When discussing performance, most published work on 
MEMS angular rate sensors focused on z-axis gyros, which 
sense rate perpendicular to the substrate, and emphasized 
wide bandwidth resolution. For z-axis gyros, nonideal 
suspension geometries were studied in References [27] and 
[28]. More recently, the University of California, Irvine, has 
considered z-axis gyro scale-factor variation with frequency 
and temperature.[29],[30] 

Description of Honeywell/Draper TFG
The Draper/Honeywell TFG is shown in Figure 1. This 
sensor was designed to achieve the highest perfor-
mance consistent with costs that are low compared with 
traditional mechanical sensors. The gyro consists of 
two perforated proof masses supported by a system of 
suspension elements. The suspension and proof masses 
are doped crystalline silicon anodically bonded to a 
Pyrex or glass substrate at the suspension beam anchors 
and at the comb structures.[31],[32] Curling from etch 
stop doping gradients is avoided by annealing silicon 
diffused with boron or by employing uniformly grown 
silicon-on-insulator. The glass substrate precludes on-
chip electronics; however, the high resistivity reduces 
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stray capacitance, which mitigates the need for on-chip 
circuitry. (With silicon wafers, bond pads are isolated from 
the conducting substrates by thin dielectric layers so that 
high stray capacitance limits performance. With on-chip 
circuits, bond pads and stray capacitance are avoided.)

Figure 1.	 The Draper/Honeywell TFG mechanism. In 1(b) 
and 1(c), silver is metal, diagonal lines indicate 
silicon attached to glass, and white indicates 
suspended silicon. Electrical contact pads are 
right motor drive (RM), right sense electrode 
(RS), motor pickoff (MPO), left sense electrode 
(LS), left motor drive (LM), and sense pick off 
(SPO). 

On either side of each proof mass are interdigitated 
combs.[33] The outer combs (left and right motor in Figure 
1) are used for electrostatically driving the proof masses 
antiparallel to the substrate in the x direction. The inner 
combs (motor pickoff in Figure 1) sense the drive motion 
and are typically biased to 5 Vdc through an op amp that 
senses charge traversing the comb gap. As described in “The 
Fundamental Dynamics of Oscillating Coriolis Sensors” 

section, rotation about the in-plane z-axis induces Corio-
lis acceleration, which deflects the proof masses in oppo-
site directions perpendicular to the substrate. Beneath the 
plates are deposited metal electrodes that are excited with 
dc voltages of opposite polarities. The right sense plate (RS 
in Figure 1) is typically excited with 5 V and the left sense 
plate (LS) with -5 V. Differential proof mass motion induces 
electrical currents in the structure that flow through the 
suspensions and sense pickoff (SPO, Figure 1) into a 
preamplifier whose input contains the input angular rate 
modulated by the drive frequency.

With drive resonant frequencies from 10 to 20 kHz, these 
gyroscopes are relatively stiff with suspension stiffnesses 
greater than 100 N/m. With 3-µm gaps, mechanical spring 
force of 300 µN is available to overcome sticking; neverthe-
less, care in etching and release, in electronic excitation, 
and mechanical handling is required.

As detailed below, the challenge is to obtain excellent 
performance in a device where the sensitivity to angular 
rate is small. Obstacles include manufacturing tolerances 
and the relatively large magnitudes of non-Coriolis forces 
and electrical drive and excitation signals.

Mode Ordering
A first challenge is designing the angular rate sensor’s 
dynamic eigenfrequencies. If one considers the TFG proof 
masses (Figure 1) rigid and the suspension beams without 
mass, 3 rotations and 3 translations times 2 masses imply at 
least 12 dynamic modes. For advanced designs, proof mass 
compliance and suspension modes add further consider-
ations. The TFG is designed so that the lowest frequency 
modes are generally: 1) drive or tuning fork, 2) translation, 
3) sense, and 4) out-of-plane. In the tuning-fork mode, the 
proof masses move antiparallel to the substrate. One usually 
attempts to excite this mode through the electrostatic motor 
drive. Similar proof mass amplitudes are the design goal. 
The drive frequency is designed for 10-20 kHz to reduce 
vibration and acoustic effects. For the translation mode, 
the proof masses move parallel to the substrate. Because 
the drive combs are controlled to apply forces in opposite 
directions, translation should not be excited by electrostatic 
drive; however, translation is excited by linear acceleration. 
To ensure tuning-fork operation despite beam width toler-
ances, the in-plane translation frequency is usually set 10-
15% or more away from the drive frequency. 

The sense mode has the two proof masses moving away 
or toward the substrate in opposite directions. This could 
also be a rotation about their common center. For good 
gain, the sense eigenfrequency is set 5-15% away from the 
drive. While higher gain can be achieved at smaller separa-
tion, small variations in the resonant frequencies result in 
larger fractional changes of scale factor. When the out-of-
plane mode is excited, the two proof masses move together 
perpendicular to the substrate. It is important that the lowest 
modes do not fall close to one another and that higher order 
modes are not integral multiples of the basic four. 
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Obtaining ±2% sense-drive frequency separation toler-
ance is challenging. The mechanical design is done using 
modal analysis in finite-element calculations. The toler-
ance required is estimated by noting that the beam mass 
is small compared with that of the proof mass. As a first 
approximation, stiffness is determined by beam bending 
(more detailed analyses include torsion elements) so that 
the sense resonant frequency depends on the beam thick-
ness as w1/2t3/2, while the drive resonance depends on the 
beam width as t1/2w3/2. For a fixed thickness, the frequency 
separation is proportional to the beam widths. With greater 
detail, the frequency separation is still strongly determined 
by tolerances on the beam width and thickness. In the 
dissolved wafer process[31] used for the Draper/Honeywell 
TFGs, the beam width and thickness are determined in 
independent steps. The thickness is determined by boron 
diffusion or by purchased silicon-on-insulator wafers. The 
beam widths are set by masks and deep reactive ion etching. 
Typical beam widths are 10 µm. Achieving 2% accuracy in 
frequency separation requires 0.2-µm absolute accuracy of 
the beam widths. This accuracy challenges the tolerances 
on masks and requires great control of deep etching.

Consider separation of the in-plane translation and drive 
or tuning-fork mode where the proof masses translate 
in parallel but opposite directions. Tuning-fork motion 
is desired to common mode reject in-plane linear accel-
erations and to reduce damping forces. With tuning-fork 
operation, the proof masses move in opposite directions so 
that the base beam (Figure 1) remains essentially station-
ary, and only small shear stresses are transmitted through 
the anchors to the substrate. With no anchors bending, 
energy is not transmitted or radiated to the substrate so 
that a high mechanical quality factor, a precursor to low 
force coupling (see next section), is attained. The tuning-
fork eigenfrequency depends only on the suspension beams 
from the proof mass to the base beam (Figure 1). With 
only a single proof mass, acceleration near drive frequency 
would alter the proof mass velocity and appear directly as 
a scale-factor error in (4). For order of magnitude common 
mode rejection, the driven amplitudes of the two proof 
masses should match to 10%; that is, the common mode 
motion or translation mode should be 5% of the individual 
proof mass motion.

A lumped parameter, two-mass three-spring model for 
drive-translation motion is shown in Figure 2. Derived in 
Appendix A, the translation is related to the tuning fork or 
differential motion by:

 	 	 (1)

where 

	 k	 =	 nominal stiffness of beam from proof mass to base 
beam

	 Dk	 =	 stiffness deviation from nominal (k1 = k + Dk/2, 

k2 = k - Dk/2)

	 Dx	 =	 differential proof mass motion (x1 – x2)

	 Sx	 =	 translation motion (x1 + x2)

	 wH	 =	 eigenfrequency of hula (in-plane translation) 
mode

	 DF	 =	 F1 – F2 = differential force (excites tuning-fork 
mode)

	 s	 =	 Laplace transform of d /dt = jwD

Figure 2. Lumped parameter model of in-plane dynamics.

Where the tuning-fork beams (from proof mass to base 
beam) largely determine the drive resonance, the trans-
lation mode also depends on the anchor beams (from 
anchors to base beam). Smaller differential stiffness and 
larger drive-translation frequency separation excites trans-
lation less. The stiffness depends on beam width cubed. 
Assume that the beam widths differ by 1% for the right 
and left proof masses, the differential stiffness is 3%. With 
the translation frequency 90% of the drive frequency, the 
translation motion is 6.4% of the tuning-fork motion. The 
beams must match to 0.1 µm (see earlier portion of this 
section). Achieving good separation often requires that the 
anchor beams be thinner than the tuning-fork beams. If the 
anchor beams are thick and rigid, the base beam is attached 
to the substrate and the proof masses move independently; 
that is, the drive and translation modes are identical. These 
thin beams present challenges and often approach the limits 
of micromachining capability.

Fundamental Dynamics of Oscillating Coriolis Sensors
To understand TFG performance, consider a model that 
includes only the sense and drive modes. As shown in the 
previous section, the drive motion can often be consid-
ered separate from the translation (hula) modes. With only 
linear terms considered, the drive and sense axis dynamics 
are described by second-order spring-mass systems with 
coupling between modes:

Drive	

	    	 (2)

Sense	

	    	 (3)

where 

	 m	 =	 mass of one proof

	 d,s	 =	 subscripts that indicate drive and sense axes, 
respectively.
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	 b	 =	 damping   

	 k	 =	 stiffness. Mostly mechanical with modifications 
by electrostatic forces

	 kds	 =	 quadrature coupling. The drive axis suspension 
force coupling into the sense axes

	 bds	 =	 in-phase damping ‘surfboard’ coupling to sense 
axis

	 x	 =	 motion along drive axis (parallel to substrate)

	 y	 =	 motion along sense axis (normal to substrate)

	 s	 =	 Laplace transform of d /dt

	 Fd	 =	 motor drive force applied by the outer combs in 
Figure 1

	 WI	 =	 slowly varying  input rate

	 a	 =	 drive force coupling to sense axis

	 Q	 =	 quality factor

From (2) and (3), another challenge emerges. The driving 
force as well as the drive axis suspension force and drive 
axis damping are coupled into the sense axis. With good 
design, these forces should be small compared with the 
Coriolis Force .

For low-frequency angular rate inputs, the desired output 
is the angular rate modulated by the drive frequency. As 
shown in the electrical circuit of Figure 3, the proof masses 
are the negative input of a high input impedance, high-
gain operational amplifier whose input node is at virtual 
ground. The feedback resistor is large so that it does not 
affect the output at the gyro’s drive frequencies. From (3) 
and Figure 3, the preamplifier output is given by (Appen-
dix B):

	 	 (4)

where 

	 Vo	 =	output of preamplifier

	 Vs	 =	bias voltage (plus and minus applied to right and 
left sense plates in Figure 1) on sense electrodes 
(5 V, example values are given in parentheses)

	 Vc	 =	coupling (drive feedthrough)

	 VN	 =	preamplifier input voltage noise (10-8 V/ )

	 Cfb	 =	feedback capacitor about the sense axis pream-
plifier (2 pF)

	 Cs	 =	total of sense capacitors (2 pF)

	 CN	 =	preamplifier input capacitance to ground (5 
pF)

	 Cc	 = 	coupling (undesirable capacitor) to virtual 
ground (preamplifier input)

	 dCs/dy	 =	differential change of sense capacitors with y 
motion (2 pF/3 μm)

	 SC	 =	sum of all capacitors attached to the virtual 
ground. Includes strays, working, feedback, 
and amplifier capacitors (12 pF).

	 wd	 =	drive mode undamped natural frequency  
(20 kHz x 2 πrad/s)

	 ws	 =	sense mode undamped natural frequency   
(22 kHz x 2 πrad/s)

	 xo	 =	amplitude of drive motion (10 µm zero-to-peak)

	 Fs	 =	cross coupling forces acting along the sense 
direction (B-6)

	 q	 =	phase shift through sense dynamics (B-6)

Figure 3. Circuit diagram for sense preamplifier analysis.

In (4), it is assumed that the proof mass motion is driven 
so that the displacement is a sinusoidal function of time. 
The rate signal, the Coriolis term, is in phase with the 
proof mass velocity, i.e., in quadrature with the proof mass 
position. For the sample parameters above, the gyro scale 
factor at the preamplifier output is 1.3 mV/rad/s. With a 
field effect transistor (FET) preamplifier whose input noise 
at drive frequency is 10 nV/ , the rate equivalent noise 
is 10 deg/h/ . Attaining the theoretical noise limit is a 
challenge discussed further in the “Electrical Coupling” 
section. 

Because of the sense-drive frequency separation and high 
sense-axis quality factor, the damping term is omitted in 
the denominator of (4); therefore, gain does not depend 
on damping. High resonant frequencies are desired to 
remove the gyro’s sensitive frequencies from acoustic 
noise and vibration and to permit isolators that allow 
adequate bandwidth. For a fixed sense-plate bias, higher 
sensitivity is achieved by lowering the resonant frequen-
cies and/or by decreasing the separation between sense 
and drive mode. Drive frequencies of 10-25 kHz and 
sense-drive mode separations of 5-15% have worked well 
for MEMS TFGs. At baseband, the transfer function of 
output voltage to rate input has a lightly damped peak 
at the frequency separation. Placing the separation at 1-2 
kHz allows a 100-Hz bandwidth, which adequately filters 
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the undamped peak. If the frequency separation is small, 
the scale factor becomes sensitive to small variations in 
resonant frequencies (4).

Demodulation (Figure 4) multiplies the output (4) by 
sin(ωdt+j), a signal in-phase with the drive velocity. 
The output after demodulation and low-pass filtering is 
(Appendix B):

	 	 (5)
where 

	 Gac	 =	 gain before the demodulator

	 VB	 =	 bias voltage in dc section often caused by ampli-
fier offset voltages.

	dem	 =	 demodulation operation. Frequencies near the 
demodulation frequency are transferred to base-
band by the sin(ωdt+j) demodulation

	 j	 =	 small phase shift between rate signal in sense 
chain and demod reference

Figure 4. TFG electrical block diagram.

In (5), small angle approximations for the angles q and 
j were applied. The ac gain, typically 5-20 V/V, and the 
low-pass filtering blocks are shown in Figure 4. This low 
pass filter, typically 50-100 Hz, sets the gyro’s bandwidth. 
Feedthrough terms (5) are extremely important. The 
demodulation function dem emphasizes that extra voltages 
in phase with drive velocity appear directly as dc bias errors 
in the TFG. Components in quadrature to drive velocity 
are greatly reduced at the dc output; however, mechani-
cal and electric phase shift error causes quadrature terms 
to appear as in-phase bias. Individual challenges and their 
implications on gyro construction are discussed in the next 
section. 

Error Mechanisms
Force-Related Errors – The Impetus for Evacuation

Vacuum packaging is needed to reduce the required motor 
force and the voltage required to drive the motor. From (3), 
the motor force couples into the sense axis. For reason-
able scale factor, large drive amplitude is desired so that the 
drive axis is operated at resonance; that is, the motor force 
is in phase with the drive velocity. When the interdigitated 
combs are over a ground plane, lift forces are exerted.[33] 
Derived in Appendix C, the erroneous estimated angular 
rate can be calculated from:

	 	 (6)

For a single set of combs, the coupling coefficient α is 
of the order of 0.3.[33] Because the left and right motors 
behave similarly, this is common mode coupling. Since 
both outer combs cause lift and since the sense plate exci-
tation is selected to detect differential motion, the differ-
ential coupling determines the gyro bias. The coupling 
coefficient depends strongly on vertical misalignment (the 
disengagement) of the moving and stationary combs.[33] 

With a 20-kHz drive frequency and 100,000 quality factor, 
the erroneous common mode angular rate is 0.2 rad/s. The 
differential magnitude is typically an order of magnitude 
smaller. Because damping changes by a factor of three over 
operating temperature, thermal compensation is usually 
employed; nevertheless, the absolute tolerances and stabil-
ity of the comb disengagements must be held very closely 
to achieve tactical performance.

In addition to the electrostatic force coupling, hydrody-
namics couple drive force into sense force. Described by 
lubrication theory, the fluid coupling is described in detail 
with closed-form solutions in Reference [34]. Once the 
coupling coefficient is calculated, (6) can be used to esti-
mate the impact on estimated angular rate. Evacuation 
and pressure relief holes are required for acceptably low 
effects on in-phase bias. Perforated designs such as Figure 
1 result in hydrodynamic lift that is smaller than the elec-
trostatic coupling. The perforations also assist cleaning and 
inspection.

The random motion of the proof mass is dictated by Brown-
ian motion. To achieve preamplifier limited performance, 
gas damping must be reduced by evacuation so that the 
principal damping is material and radiation through the 
anchors into the glass.

Even if a vacuum is not required (as in an accelerometer), 
the small gaps and masses dictate hermetic sealing since 
humidity variation causes unacceptable variations in scale 
factor because of effective gap change. As temperature 
changes even with hermetic sealing, outgassing deposits 
material and changes the sense and motor gaps so that the 
scale factor is changed.

To summarize, evacuation is required in high-performance 
gyros for the following reasons: 1) reduce the electrostatic 
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drive force and, hence, coupling into sense axis force; 2) 
reduce hydrodynamic lift (surfboarding) effects; 3) main-
tain acceptable phase stability between sense and drive axes 
(the omitted damping in the denominators of (4) and (5)); 
4) render Brownian motion small so that wide bandwidth 
resolution is achieved; and 5) enhance resolution since low 
damping does not restrict sense-axis motion in (4) and (5).

Low damping increases proof mass motion if shocks are 
applied. These effects are reduced by the two-mass design, 
which rejects common mode inputs, and modal frequency 
selection. The high resonant frequencies are above most 
shock spectra, which are often defined to a few kilohertz. 
With high resonant frequencies, shocks and acoustic 
inputs are reduced by suspension isolating the IMU. The 
sense axis baseband peak, which occurs at the drive-sense 
separation, typically 10 kHz, is greatly reduced by sense 
chain low-pass filtering.

Mechanical Quadrature

The drive axis is operated at resonance so that the stiffness 
and inertial forces in (2) cancel and the drive-axis response 
is dominated by damping; nevertheless, a relatively large 
spring force is being exerted. Because of manufacturing 
imperfections or tolerances, the mechanical stiffness force 
results in the cross-coupling term kds. A slender beam tries 
to bend along its principal axes of inertia.[35] If the princi-
pal inertias are not aligned with the drive and sense axes, 
an attempt to bend the beams in the x direction results in 
a y force. Consider the cross section of a simple suspen-
sion beam where the sidewalls are not cut vertical but at 
an angle θ to form a parallelogram cross section as shown 
in Figure 5. For small sidewall angles θ, the ratio of cross-
coupling to in-plane force is given by:[36] 

	 	 (7)

where 

	 t	 =	 thickness of suspension beams and proof mass as 
defined in Figure 5

	 w	 =	 nominal beam width as defined in Figure 5

	 θ	 =	 tilt of sidewalls

Figure 5.	Nomenclature for analyzing quadrature from 
beam sidewall angle.

Because the suspension consists of several beams rather 
than a simple cantilever, the mechanical quadrature is 3-
10 times smaller than that calculated by (7). Equating the 
Coriolis term to the cross-coupled term as in Appendix C, 
the estimated input rate error from cross coupling is given 
by:

	 	 (8)

Because the coupling is in-phase with drive position, the 
cross-coupled force term is in quadrature with the desired 
rate signal. With good demodulation (see “Mode Order-
ing”), little quadrature should appear in the indicated 
rate output. In a typical TFG, t/w = 2. Because of the two 
proof masses, the differential coupling between right and 
left masses is the principal concern. With sidewall slopes 
matched to 0.002 r (0.1 deg), a tight tolerance for verti-
cal deep etching in silicon, the coupling ratio aQ is 0.008 
and the magnitude of the quadrature signal (8) is 502 rad/
s (108 deg/h). For tactical performance, the sheer magni-
tude of the possible quadrature signal presents major design 
challenges. In addition to dynamic range, small variations 
in demodulator phase lead to unacceptable bias shifts.

The TFG handles quadrature by very careful microma-
chining and by applying a quad nulling loop[37] to reduce 
the quadrature signal injected into the sense channel. As 
shown in Figure 4, the sense axis output is demodulated 
into components in-phase and in quadrature with the 
desired input rate-drive velocity signal. The sense chain 
quadrature signal is nulled by applying a dc voltage bias to 
the drive combs in addition to the two frequencies motor 
drive. Because of limited available voltage, mechanical 
quadrature must be less than 50 rad/s for successful quad 
nulling. Because of the nulling loop, the sense chain does 
not require head room for the large mechanical quadra-
ture. High-performance or as-etched quadrature larger 
than 50 rad/s requires mechanical trimming, a procedure 
described in Reference [36]. The difficulty of quadrature is 
that small imperfections lead to large quadrature; however, 
only small amounts of material must be removed for effec-
tive trimming.

Electrical Coupling

The drive voltages are typically 5 V. From (4) or (5), 100 
fF (Cc = 10-13 F) stray capacitance to the sense node results 
in an output voltage of 250 mV, equivalent to 200 rad/s 
(4 x 107 deg/h). Small coupling capacitance can lead to a 
sense change signal much larger than the desired angular 
rate resolution and to dynamic range issues. This coupling 
effect is mitigated by two-frequency operation and balanced 
drive. The coupling can occur at the combs or in the leads 
leading to the package or even in the electronics itself.

For an electrostatic drive, the force is proportional to the 
voltage squared; thus, the drive force could be at the differ-
ence frequency between two input voltages.[37] Because 
the two frequencies can differ from the drive frequency 
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at which demodulation is done, coupling effects from the 
motor to the sense are greatly reduced (5). Because the half 
frequencies are generally derived from the motor position 
signal, the motor drive must be designed carefully to make 
motor frequency signals small.

Voltage squaring allows the motor to be driven with plus 
and minus voltages, which reduce the coupling into the 
sense chain. Because of amplitude mismatch (see “Mode 
Ordering”), the voltages must cancel for each proof mass so 
that layout and connections become more complicated. A 
bias is added to the motor drives to null mechanical quadra-
ture signals and charge injected by the motor pickoff.

For proper operation, the motor drives must also be 
isolated from the motor sense so that the drive oscillator 
loop locks onto the mechanical motion and not onto the 
half frequency signals. Considerations of dynamic range, 
motor loop oscillator, and stability dictate that capacitance 
be matched to 10 fF, a significant design and manufactur-
ing challenge. This figure is supported by simulation and 
results of production units.

Conclusion
For TFGs, the phenomena that cause the principal errors in 
estimating angular rate were evaluated. To realize a work-
ing MEMS gyroscope, many design features must be done 
correctly. Design teams must converge quickly to a feasible 
solution or have sufficient resources to afford several itera-
tions. The challenges overcome in realizing a high-perfor-
mance MEMS gyro included: 1) geometric tolerances, 
2) attaining theoretical noise limits, 3) vacuum packag-
ing, 4) reduction of mechanical quadrature, 5) eigenfre-
quency location, 6) electrical coupling, and 7) thermal 
expansion effects. Precise suspension beam dimensions 
were required to maintain the desired ordering of modes 
and frequency separation to achieve beam symmetry for 
reasonable quadrature and to maintain comb disengage-
ment, which causes vertical forces. Achieving acceptable 
quadrature required mechanical trimming and electrical 
feedback. Reaching theoretical noise limits required care-
ful, symmetric layout of electrical leads, of electronics, and 
of the sensor itself to avoid coupling through unbalanced 
stray capacitance. Thermal expansion changes dimensions 
that change gyro performance; for example, comb engage-
ment alters sense axis force, and, hence, instrument bias, 
and sense gap alters scale factor. Alternatives for overcom-
ing the above challenges are presented by introducing the 
Analog Devices and BEI angular rate sensors.

Draper used the considerations and analyses presented 
here in developing the TFG technology Honeywell has 
applied to its navigation systems. After a decade of excel-
lent test data, production quantities are now being real-
ized. In 2004, several hundred systems were delivered for 
mainly military applications, such as artillery shell and 
mortar shell guidance. Gyro noise is 5-10 deg/h/  with 
bias and scale factor repeatability over temperature and 

turn off better than 30 deg/h and 400 ppm, respectively. 
Raw, uncompensated thermal sensitivities are 10 deg/h/°C 
and 250 ppm/°C. 

Appendix A. Derivation of Translation Mode from 
Differential Force
The relation for translation mode versus differential mode 
(1) is derived. From Figure 2, consider only motion paral-
lel to the substrate. Neglect damping and apply Newton’s 
law to proof masses 1 and 2 and to the base beam:

	 F1	 =	 m1s2x1 + k1(x1 – xb)	 (A-1)

	 F2	 =	 m2s2x2 + k2(x2 – xb)	 (A-2)

	 0	 =	 (mbs2 + kb)xb – k1(x1 – xb) – k2(x2 – xb)	 (A-3)

where 

	 k	 =	 stiffness of extension spring

	 m	 =	 mass

	 x	 =	 displacement of mass

	1,2,b	 =	 subscripts indicating proof mass 1, proof mass 2, 
or base beam

	 s	 =	 Laplace transform of d /dt = jwD

Add (A-1) and (A-2) to obtain the translation equation:

	 	 (A-4)

where 

	 Dk	 =	 stiffness deviation from nominal (k1 = k + Dk/2, 
k2 = k - Dk/2)

	 Dm	 =	 mass deviation from nominal (m1 = m + Dm/2, 
m2 = m - Dm/2)

	 Dx	 =	 differential proof mass motion (x1 – x2)

	 Sx	 =	 sum of translation motion (x1 + x2)

	 DF	 =	 F1 – F2 = differential force (excites tuning-form 
mode) usually applied by electrostatic comb 
drive

	 SF	 =	 F1 + F2 = sum of forces (excites translation). Loads 
caused by substrate acceleration along the drive 
direction are included here.

Subtract (A-2) from (A-1) to obtain the differential drive 
mode equation.                      

	 	 (A-5)

With perfect construction, the translation (A-4) includes 
the base motion while the differential motion (A-5) is free 
of base motion. Reorder (A-3).                             

	 	 (A-6)

With a large number of teeth, the differential drive force is 
much larger than the sum. The base beam mass is much 
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less than the proof masses. Therefore, set mb and ΣF to 
zero and solve (A-4) through (A-6) simultaneously for Σx, 
Dx, and xb.	                                           

	 	 (A-7)

where wH	 =	 eigenfrequency of hula (in-plane translation) 
mode

	 =	 	  

	 wd	 =	 drive frequency =  	

Because of their larger lateral dimensions, proof masses 
match more closely than the spring stiffnesses; therefore, 
Dm in (A-7) was set to zero to obtain (1).

Appendix B. Derivation of Sense Preamplifier Output
The sense axis preamplifier output (4) and the demodu-
lated output (5) are derived. Solve (2) and (3) simultane-
ously for the drive and sense axis positions x and y. Assume 
that fluid and suspension cross couplings bds and kds, the 
Coriolis coefficient 2mΩI, and the force coupling α are 
small. Because is motion is driven by small terms, the sense 
position becomes a small term. Neglecting the products of 
small terms, the drive and sense positions are determined 
by:                                           

	 	 (B-1)

	 	 (B-2)

where s  =  Laplace transform of time derivative d/dt

Because the drive oscillator loop requires that the drive 
loop operate at resonance, the drive position and force 
are sinusoids once steady-state operation is achieved; that 
is:                                

	 x(t) = xocos(wdt)	 (B-3)                    

	 Fd(t) = -bdxowdsin(wdt)	 (B-4)

Since the sense mode resonant frequency is typically 10% 
different from the drive resonant frequency, the damping 
can often be neglected in determining the steady-state sense 
position magnitude. Solve (B-2) with (B-3) and (B-4).       

	 
	 	 (B-5)

where 

	 θ	 =	 phase shift through sense dynamics

		

=

	  

The hydrodynamic lift and the drive force coupling are in-
phase with the desired rate signal, while the suspension 
force coupling is out of phase. The sense position (B-5) can 
be written as:              

	 	 (B-6)

where 

	 Fs	 =	 force acting in sense direction

	 Fs	 =	 (abd – bds)xowdsin(wdt + q) + kdsxocos(wdt + q)

The sense preamplifier output is determined from the 
circuit diagram of Figure 3. The sense plates below the 
proof masses are biased with opposite voltages (Figure 1) 
so that antiparallel vertical motion is detected. Because of 
the amplifier’s high gain, the preamplifier input, which is 
wired directly to the proof masses, is at virtual ground. 
Because the feedback resistor Rfb is large, the resistor 
and its Johnson noise are small effects at the gyro drive 
frequency ωd.              

	 	 (B-7)

Inserting (B-6) into (B-7) yields (4). Demodulation (Figure 
4) multiplies the output (4) by sin(ωdt+ϕ), a signal in-
phase with the drive velocity. High-frequency content is 
removed by low-pass filtering so that the output after ac 
gain and demodulation is described by (5), which includes 
a bias voltage from amplifier offsets in the dc chain.

Appendix C. Derivation of In-Phase Bias Error from 
Force Coupling
Equation (6) for calculating the in-phase bias caused by 
force coupling is derived. Since the TFG is operated at the 
drive resonance, the drive force amplitude on one proof 
mass is given by:                                           

	 	 (C-1)

To calculate the angular rate errors, the undesired sense 
axis forces Fs are compared to the Coriolis accelera-
tion 2mΩIωdxo; that is, the estimated rate is calculated 
from:                        

	 	 (C-2)

The undesired force is the drive force multiplied by the 
coupling coefficient αF. Inserting αFd from (C-1) into (C-2) 
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results in (6). Because both the coupled and Coriolis forces 
act on the sense axis dynamics, the frequency separation 
denominator of (4) does not appear in (C-2).

Appendix D. In-Plane Quartz Gyroscope
The quartz rate sensors (QRS) reached the market in the 
late 1980s, a decade before silicon MEMS devices were 
developed. The QRS has been a very successful product; 
therefore, a comparison with silicon TFGs is instructive. 
A typical Systron Donner/BEI QRS is shown in Figure 6. 
Per References [17] and [18], the actual designs differ 
depending on applications, which range from tactical to 
automotive. The H-shaped sensing mechanism is made of 
piezoelectric quartz, a significant variation from the elec-
trostatically silicon gyros. Electrodes are deposited so that 
the upper tines are driven as a tuning fork with antipar-
allel motion in the substrate plane. Because of symmetric 
construction and mechanical coupling, the lower tines 
oscillate at the drive frequency, although they are not 
excited electrically. When the substrate is rotated about an 
axis parallel to the tines (Figure 6), the drive tines move 
into and out of the plane in response to the Coriolis accel-
eration, deflections that are coupled into the lower, sense 
tines. The sense electrodes are designed, deposited, and 
wired to sense the out-of-plane sense motion. 

Figure 6.	 BEI quartz rate sensor: (a) sensing mechanism, 
(b) schematic of operation.[18]

Because of the piezoelectric material, drive and detection 
signals are at the same frequency for constant rate inputs, 
and gaps around the moving elements are much larger than 
the 1-4 μm typical of the electrostatically-driven devices. 
Silicon micromachining’s deposition, doping, and wafer 
bonding techniques are not available in quartz; therefore, 
quartz parts are generally limited to wafer thickness, which 
is greater than 100 µm (silicon parts are 5-20 µm thick or 
several hundred micron). 

The greater thickness and the required proximity of in- and 
out-of-plane eigenfrequencies results in moving elements 
larger than those of the silicon MEMS devices. Drive oscilla-
tion at 9 to 17 kHz dictates the length of the tines, while the 
continuous beams and the number of tines dictate that the 
tines and tip masses must be shaped carefully.[18] Because 
the wafers are 100 µm thick, the wafers are much smaller 
than those used in silicon processing. The combination of 
small wafers and large die tend to make the projected QRS 
costs higher than those for silicon rate sensors. Because of 
the thick part and large air gaps, sticking should not be an 
issue for the QRS. Because of the thicker parts and larger 
gaps that result in lower damping, it is possible that the 
QRS can be sealed at higher pressures than the TFG and 
still demonstrate low Brownian motion noise.

The quartz’s etching characteristics are not as controlled 
as those of silicon because of the fundamental nature 
of quartz crystallographic properties and the etchants. 
The etching results in sidewalls (see “Error Mechanisms: 
Mechanical Quadrature”) that require each part, including 
automotive, be trimmed.[18] Trimming has been done by 
the addition of mass and by laser removal, a process that 
has been highly automated. For high-performance sensors, 
the level of quadrature trimming is suspected to be quite 
tight because the linear piezoelectric drive does not offer 
the possibility of quadrature nulling discussed in the “Error 
Mechanisms: Mechanical Quadrative” section. 

With piezoelectric operation, both the drive signals and the 
sense output are at the same frequency for no rate input. In 
electrostatically operated silicon devices, the drive voltages 
can be at different frequencies from the sensed output (see 
“Error Mechanisms: Electrical Coupling”). For the QRS, the 
sense and drive electrodes are physically separated in the 
H structure so that coupling within the sensor should be 
small; nevertheless, controlling stray capacitance is chal-
lenging. BEI has demonstrated proprietary electronics[18] 
that enable tactical performance so that other stray paths 
have been controlled.

Appendix E. Analog Devices Out-of-Plane Gyroscopes
Analog Devices began their gyro development with the 
ground rules that the instrument should be inexpensive 
but should satisfy automotive applications. To minimize 
expense, Analog’s accelerometer CMOS and polysilicon 
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process was mandated. In the mid-1990s, the process 
focused on 2-µm thick suspended parts. Based on perfor-
mance considerations, Analog has moved to 4-µm thick 
suspended polysilicon parts.[38] The 4-µm thickness 
results in smaller moving parts, shorter beams, and smaller 
deflections than for the larger TFGs. To incorporate on-
chip circuitry, the substrate must be silicon. The moving 
elements, wire runs, and bonding pads are isolated from 
the conducting silicon substrate by an oxide layer.

As shown in Figure 7, the gyro mechanism consists of two 
independent mechanical structures.[38] For each structure, 
the inner member is driven and sensed electrostatically. The 
sensing frame supports the driven member. An angular rate 
about an axis perpendicular to the substrate moves the driven 
mass along the sense direction (Figure 7), which is parallel to 
the substrate plane. As discussed below, the suspension is 

designed so that the sensing frame does not move in the drive 
direction, but follows the proof mass in the sense direction. 
Electrostatic combs detect the frame position.

Eliminating trimming to reduce quadrature was a dominant 
decision in ADXRS design.[38]-[42] With crab leg or folded 
beam suspension, different beam stiffness can cause sense-
axis motion when driving the proof mass.[40] Because this 
motion is in phase with position, it is in quadrature to the 
desired rate-induced motion. The ADXRS beam widths are 
1.7 μm, and width tolerances are 0.2 µm so that quadra-
ture reduction was a major design goal.[38] Straight beams 
between the sense and drive elements (Figure 7) result in 
very little sense-axis motion. The beams have stress relief 
at their ends (not shown in Figure 7) to reduce longitudi-
nal stresses from polysilicon thermal expansion and from 
drive motion. Although Analog has not employed it, a fine 
quadrature trim is possible by fingers excited to exert a 
sense force that is modulated by the drive motion.[43] 

In the ADXRS, both the sense and drive motions are paral-
lel to the substrate’s plane; thus, all critical dimensions are 
done in one masking and etching operation. If the poly-
silicon thickness is off, all frequencies move together so 
that mode ordering is maintained. While the proof mass 
is driven at 7-µm amplitude, the sense motion for angu-
lar rate is roughly 10-10 m/rad/s,[38] an order of magnitude 
lower than for TFGs. This smaller motion is attributed to 
smaller drive amplitude, the fact that the drive mass must 
also drive the additional sense mass, and 20 to 30% sepa-
ration of sense and drive resonant frequencies. The greater 
separation is consistent with 2-µm beam width compat-
ible with 4-µm thickness and the resulting proof mass and 
suspension dimensions.

The gyro consists of two mechanically independent mech-
anisms (not tuning forks, see “Mode Ordering” section) 
whose drive frequency is roughly 15 kHz and whose 
quality factor is 45.[38] The units are electrically cross-
connected[42] so that the proof masses move antiparallel 
to common mode reject linear acceleration. To achieve 
common mode rejection with a Q of 45, the two drive 
resonant frequencies should be within 1% of each other.

If the moving drive teeth are not centered with respect to 
the stationary teeth (i.e., the entire proof mass is moved 
relative to the stationary combs), a large coupling to drive 
force results. The coupling of drive force to sense-axis 
effects are described in (3). Since the drive force is large 
because of the high damping and since the drive force is 
in phase with the drive velocity and, hence, the Coriolis 
acceleration, the proof mass must be centered to very tight 
levels. 

With 1.7-µm wide beams, achieving the geometric control 
for sense drive frequency separation, matching drive 
frequencies, and centering the combs is challenging.
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Figure 7.	Mechanism for Analog Devices ADXRS angular 
rate sensor: (a) photomicrograph,[41] (b) sketch 
of one proof mass assembly.[42]
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The ADXRS is hermetically sealed at 1 atmosphere. 
Because of the resulting damping, noise is limited by 
Brownian motion.[38] To achieve drive amplitude, the 5-V 
supplies must be boosted to approximately 12 V. Damping 
adds phase shift between sense and drive axes. Electron-
ics design and increasing separation between sense and 
drive frequencies reduce the effect of this additional phase 
shift. The resulting damping renders the ADXRS tolerant 
of operating shock.

The ADXRS relies heavily on its on-chip electronics to over-
come the small size and low scale factor of the mechanical 
parts. The sense displacement per rate input is 10% and 
the capacitance variation is 1% of the 20-µm thick TFGs. 
Analog measures displacement resolution similar to the 
TFGs, but with much smaller capacitors.
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This paper applies a unified approach to variational smooth-
ing and segmentation to brain diffusion tensor image data 
along user-selected attributes derived from the tensor, with 
the aim of extracting detailed brain structure information. 
The application of this framework simultaneously segments 
and denoises to produce edges and smoothed regions within 
the white matter of the brain that are relatively homogeneous 
with respect to the diffusion tensor attributes of choice. The 
approach enables the visualization of a smoothed, scale-
invariant representation of the tensor data field in a variety 
of diverse forms. In addition to known attributes such as 
fractional anisotropy, these representations include selected 
directional tensor components and, additionally associated 
continuous valued edge fields that may be used for further 
segmentation. A comparison is presented of the results of 
three different data model selections with respect to their 
ability to resolve white matter structure. The resulting 
images are integrated to provide a better perspective of the 
model properties (edges, smoothed image, etc.) and their 
relationship to the underlying brain anatomy. The improve-
ment in brain image quality is illustrated both qualitatively 
and quantitatively, and the robust performance of the algo-
rithm in the presence of added noise is shown. Smoothing 
occurs without loss of edge features due to the simultane-
ous segmentation aspect of the variational approach, and the 
output enables better delineation of tensors representative of 
local and long-range association, projection, and commis-
sural fiber systems.

Introduction 
Diffusion weighted and diffusion tensor magnetic resonance 
imaging (MRI) has come into widespread use over the 
past few years. This is mainly because of the unique view 
diffusion imaging provides of the microstructural details 
within the cerebral white matter in health and disease. As it 
represents a relatively new class of image data, the process-
ing required for visualization and analysis of tensor data 
provides numerous new challenges. 

1	Control and Information Systems Division, Draper Laboratory, Cambridge, MA.
2	Center for Morphometric Analysis and Massachusetts General Hospital (MGH)/MIT Athinoula A. Martinos Center 
for Biomedical Imaging, Department of Neurology, MGH, Boston. 
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these examples, the identification of white matter anatomic 
structure is qualitatively enhanced and reduction of regional 
anisotropy variance is quantified. This reduction in variance 
is then shown to be robust in the presence of added noise. 

While demonstrated with respect to specific data models, 
this simultaneous smoothing and segmentation framework 
is general and opens a rich and versatile set of processing 
options to address the noisy, voxel-averaged sampling of 
DTI data. It also enables the selection of appropriate models 
of various physical characteristics of the diffusion tensor in 
cerebral white matter. Specific clinical objectives will dictate 
the optimal selection of “mapping” models and parameters 
for enhanced smoothing and segmentation and will be the 
focus of future studies. 

Materials and Methods
Data Acquisition
The sample data used in this paper used the following proto-
col: Siemens 1.5 Tesla Sonata, five sets of interleaved axial 
slices to provide 2 × 2 × 2 mm3 contiguous coverage, single-
shot echo-planar imaging (EPI) with six directional diffusion 
encoding directions, and a nonencoded baseline acquisition 
was performed with TR = 8 s, TE = 96 ms, averages = 12, 
number of slices = 12 per interleave, data matrix = 256 (read-
out) × 128 (phase encode), and diffusion sensitivity b = 568 
s/mm2. The total imaging time for the session was approxi-
mately 45 minutes. The subject provided informed consent 
and was a 35-year old, right-handed male normal control 
from a study of schizophrenia. The Institutional Review 
Board of the Massachusetts General Hospital approved the 
study protocol.

Computation of the Diffusion Tensor Attributes
Once the diffusion tensor, g, is sampled, the magnitude (or 
trace) can be calculated to express the total (no direction-
ality) diffusivity at the voxel location. The directionality of 
the diffusion is assessed by an eigen decomposition of the 
diffusion tensor

where li, si, i = 1,…3 are the three eigenvalue-eigenvector 
pairs for the tensor with eigenvectors of unit magnitude. The 
largest eigenvalue and the associated eigenvector correspond 
to the major directionality of diffusion at that location. The 
fractional anisotropy fa[29] is a scalar measure that is often 
used to characterize the degree to which the major axis of 
diffusion is significantly larger than the other orthogonal 
directions. 

Specifically regarding brain imaging, to the extent that 
white matter fiber systems have homogeneous directional-
ity at the spatial scale of the voxel size, these fiber systems 

The history and general descriptions of the standard meth-
ods for diffusion imaging are discussed in detail in recent 
reviews of the field.[1]-[3] Diffusion imaging has been used in 
a host of clinical and research application areas.[4]-[13] The 
ability to use diffusion tensor imaging (DTI) directional-
ity and anisotropy to characterize the compact portion of 
discrete corticocortical association pathways in the cerebral 
white matter of living humans has been demonstrated and 
validated.[14] Identification and visualization of specific fiber 
tracts[15]-[24] and exploration of the potential to elicit infor-
mation about functional specificity[25] have also been carried 
out. The wide variety of application areas, along with the 
fact that the novel in vivo data are obtainable in this fashion 
makes DTI a potentially powerful clinical tool. 

Compared with conventional MRI, however, DTI image 
acquisition is quite slow, due to the need to encode multi-
ple different directions of diffusion sensitivity. This leads 
to practical tradeoffs in the use of DTI between acquisition 
time, diffusion sampling method, spatial resolution, and 
slice coverage. Partial volume effects are particularly prob-
lematic in DTI since competition of multiple different direc-
tional features within a voxel can render the resultant tensor 
not representative of the underlying anatomic structure. The 
development of methods that take optimal advantage of the 
diffusion data in light of potentially low signal-to-noise ratio 
(SNR) is an important objective for making DTI more clini-
cally relevant. 

Prior work in regularizing or smoothing diffusion tensor 
fields include the work in Reference [15], where a Markov-
ian model is proposed to track brain fiber bundles in the DTI 
data. Diffusion direction is applied to fiber tract mapping 
and smoothing in Reference [26], in which the total varia-
tion norm algorithm is applied to the raw data. Regulariza-
tion of diffusion-based direction maps to track brain white 
matter fascicles is reported in Reference [21], in which the 
emphasis is on the use of prior information in a Bayesian 
framework, and in Reference [27], in which the paths of 
anatomic connectivity are determined based on the direc-
tionality of the tensor. A continuous field approximation 
of discrete DTI data has been applied in Reference [28] to 
extract microstructural and architectural features of brain 
tissue. Smoothing employing parametric patches has been 
applied in Reference [23] to three-dimensional (3D) scat-
tered data that describe anatomic structure.

In this paper, we present an algorithm for simultaneous 
smoothing or denoising and segmentation of diffusion 
tensor data. This algorithm smooths the image field within 
homogeneous regions, while at the same time preserves the 
edges of these regions at discontinuities by generating the 
associated edge fields based on user-selected tensor attri-
butes. The smoothing and edge estimation are applied with 
respect to a user-selectable “mapping,” or models, of the 
input tensor data in order to emphasize specific properties of 
the tensor. Sample application of the algorithm is presented 
that demonstrates smoothing with respect to normalized 
tensor magnitude and principal eigenvector direction. In 
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are expected to demonstrate significant anisotropy. More 
general eigenvalue/eigenvector-based scalar as well as vector 
and tensor features can be used to capture the underlying 
structure in the diffusion tensor image. 

We have developed a segmentation and smoothing approach 
that permits user selection among these (and other) features 
of the tensor image in order to capture the relevant underly-
ing structural details. 

The Approach
The core concept of the method is the simultaneous varia-
tional segmentation and smoothing formulation. Given 
an observed tensor field, g, the objective is to obtain 
two outputs: the smoothed tensor u, and edge field v. 
These outputs, respectively, represent the simultaneous 
smoothing and segmentation of the raw tensor data. The 
approach, shown schematically in Figure 1, makes use of 
the following:

•	A specified data fidelity model H(u, g).

•	A continuity model, f(u), that forms a basis for adap-
tively determining the regions of continuity within 
which smoothing is to take place. 

Energy Functional 
In general, we may consider a region of interest Ω in a 
Euclidean space Rn. Let x designate the pixel position in 
Ω. Thus, for 3D spatial data, we have n = 3. Our results are 
based on the processing of a slice from a brain image, so n = 
2, and Ω is a two-dimensional (2D) region, and the vector 
x is a 2D position vector in, for instance, Cartesian coordi-
nates. Over this region Ω, estimation of a field u = u(x) is 
of interest, and measurements g = g(x) are collected. The 
following energy functional[30] for scalar fields is based on 
the energy functional of References [31] and [32]

	 	 (1)

We generalize the above functional to vector field smooth-
ing (introduction of tensor notation at this stage, although 
more cumbersome, provides no additional insight) with the 
introduction of the data fidelity and continuity functions 
(h1(u), h2(g)), and f(u), respectively 

	 	 (2)

For a given data g and choices of functions h1(u), h2(g), and 
f(u), the energy functional is minimized with respect to u 
and v. Input data g and smoothed data u are vector fields 
(tensor processing can be recast as vector processing) of 
dimensions m and r, respectively, whereas v is a scalar field 
that represents the edges of the smoothed vector field u. 
Further g, u and v are continuous n-dimensional fields and 
are defined for all x in region Ω in an n dimensional space x. 
The first term in the above functional represents a smooth-
ing penalty term that favors spatial smoothness of vector 
field f(u), rather than of u, at all interior points of the region, 
where edge field v << 1 with 0 ≤ v ≤1, as explained later. 
It is worth noting that the field f may be of a lower dimen-
sion than the field u and that the smoothing penalty is in 
terms of a metric F(fx(u)) of fx(u), the Jacobian with respect 
to x of the smoothed continuity function f(u(x)), which we 
simply denote by f(u). Note that since the edge field v is also 
simultaneously estimated, the spatial extent of smoothing is 
adaptive with the smoothing penalty tending to zero over 
parts of region Ω, where edge strength v tends to 1. 

The second term reflects data fidelity between the input data 
g, and smoothed field u, as given by the metric H(h1(u), 
h2(g)). We specify explicit forms for h1, h2, and f in the next 
section. The third and fourth terms represent prior models 
for the characteristics on the type of edge field dependent on 
just parameter ρ. The third term provides for smoothness of 
the edge field in terms of the 2-norm of its spatial gradient 
vx, while the fourth term penalizes the excessive presence 

Figure 1. Block diagram of the variational segmentation processing framework.  Variables are referred to in Eq. (1).

Raw Tensor Data, g

Edge Data, v

Smoothed Data, u

Anisotropy Attributes,
Eigenspace Attributes

Attributes of u, v
Variational Segmentation

and Smoothing

Specifications of:
	 (1)	Weights a, b, r
	 (2)	Data Fidelity Model, f
	 (3)	Data Continuity Model, h
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of edges. The constants a, b, and ρ represent the chosen 
weights on the accompanying cost components and deter-
mine the nominal smoothing radius, the edge width, as well 
as govern the value of edge function v. Specifically, the ratio 
a/b is related to the nominal smoothing radius, ρ to the 
edge width, and a governs the edge strength. Further details 
governing the choice of constants a, b, and ρ is discussed 
in Reference [33]. For more details on the segmentation 
approach and on the results of the application of the func-
tional for smoothing and segmentation of phantom, MRI 
and functional magnetic resonance imaging (fMRI) scalar 
data, as well as for the fusion of different modality data, see 
References [33]-[36] and the references therein. 

The edges are estimated based on continuity attributes f(u) 
of the smoothed tensor field u and the specified prior model 
on edge field. The Euler Lagrange equations that are the 
necessary conditions associated with the minimization of 
the energy functional can be solved by the gradient descent 
method (e.g., References [33]-[35]). 

From the outputs u and v, additional relevant attributes 
associated with size, shape, and orientation of the diffusion 
ellipsoid may be distilled for further analysis. Example attri-
butes include the trace (for diffusion magnitude), anisot-
ropy measures (for diffusion “shape”), and the direction 
of eigenvectors (for diffusion orientation).[37] The ability 
to select functions f(u) and h1(u), h2(g) to satisfy various 
continuity and data fidelity requirements, respectively, is an 
important advantage that enables the viewing of the same 
DTI data from different perspectives.

Application to DTI Data
Depending on the objective, one can select the continuity 
functions h1(u), h2(g) and fidelity function f(u) to obtain 
an edge field v and an accompanying smoothed tensor 
field u with respect to specific features of the data. Differ-
ential smoothing concerns can thus be applied to different 
weighted eigenspace components of the tensor, and more 
generally, to any other sets of attributes of the tensor. 

We next illustrate two different models that capture differ-
ent characteristics of spatial similarity for the tensor data 
by selection of different forms of continuity function f(u) 
and the data fidelity function h2(g) while retaining the same 
form of function h1(u) = u

(a)	 Normalized tensor smoothing

(b)	 Dominant directional tensor component smoothing

 

where λ1 is the maximum of the three eigenvalues of the 
tensor g.

The first model represents a scale-invariant continuity crite-
rion for the tensor data g. By contrast, the second model 

assumes the same invariance continuity criterion as the 
first, but with respect to only the subspace of tensor g asso-
ciated with its dominant eigenvector s1. The objective of 
identifying regions of spatial continuity within the image, or 
equivalently, segmenting, motivates the choice of model. It 
may be noted that for dominant directional tensor smooth-
ing in (b) above,  we have chosen to work in the rank-1 
dominant tensor space s1sT

1 rather than the vector space of 
associated direction s1. 

For measures, we adopt the following choices for F, H of 
Eq. (2) 

	      	 (3)

	 	 (4)

where F and H represent the Euclidean norm of the gradi-
ent of f(u) and the estimated error u - h2(g), respectively.

Assessment
In order to assess the results of the application of this process-
ing to clinically relevant DTI data, we selected a representative 
axial slice that included a comprehensive set of neuroanatomic 
white matter regions of interest (ROIs). These anatomic 
regions include the corpus callosum, internal capsule, 
superior longitudinal fasciculus, and cingulum bundle. 
First, we visually inspect the results of the smoothing 
modes on the appearance of fractional anisotropy (fa) maps 
as well as in visualization of tensor orientation information. 
Second, we quantify these observations by evaluating the 
distribution of fa values over the anatomic regions listed 
above. Third, we evaluate the sensitivity of the proposed 
methodology by comparing, using images and the change 
in performance with traditional methods when noise is 
added to the raw data. We choose to add Gaussian noise at 
increasing levels to the data, with negative values set to zero 
to remain within the physical constraint of non-negative 
intensity. In addition to comparing the proposed method 
and the traditional approach using images, we also quan-
tify the effect of noise on the performance of the proposed 
approach in terms of the coefficient of variation of the fa 
over each anatomic region of interest. 

Results
In this section, we demonstrate the operation of the algo-
rithm in the context of two different smoothing models, 
characterize this processing in the context of anatomic 
information contained within the DTI data, and summarize 
some of the noise properties of the implementation. Figure 
2 demonstrates a number of different views of the results 
of this smoothing procedure on an axial brain slice. This 
includes the raw (unsmoothed) data in the first column as 
well as the results of the two different smoothing models: 
normalized tensor in the second column, and directional 
projection in the third column. The “cuboid” and color 
representations[38] of the directional information contained 
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Figure 2.	Effect of two smoothing models (2nd and 3rd columns) on an axial brain slice. The fractional anisotropy and edge 
maps are displayed in the first two rows, and the “cuboid” and color representations of the directional information 
contained in the resultant tensor fields are displayed in the last two rows. Maximum details emerge when smoothing 
is most selective, directional projection based (3rd column), within the edge field boundaries.
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in the resultant tensor fields are presented in the third and 
fourth rows, respectively. 

From the edge field visualization in the first row, it is clear 
that the most details consistent with the anatomic struc-
ture emerge when smoothing is most selective within the 
edge field boundaries. Specifically, the edge map in the 
third column, which is based on the directional projection, 
displays more details than the edge map in the second 
column, which is based on the normalized tensor. 

The second row of images indicates that the impact of 
edge preservation on the smoothing of the tensor field 
and its components can also be appreciated from the fa 
images for the smoothed tensor. The raw data’s fractional 
anisotropy is shown in the first column for comparison. 

It might be remarked that by definition, the fractional 
anisotropy of the directional component in the raw data 
will be unity and of interest is the deviation from unity that 
arises from the spatial variation of the dominant direction 
component that is reflected in the smoothing. The quanti-
tative impact of different modes of smoothing is presented 

in Table 1. This includes the mean and standard deviation 
of the functional anisotropy fa (as well as the coefficient of 
variation (CV)) for five anatomically motivated and manu-
ally defined regions annotated in Figure 3. These regions 
were identified by a trained neuroanatomist using both 
tensor orientation and anisotropy information. For the case 
of normalized tensor smoothing, SNR, or equivalently the 
reciprocal of the CV, is improved for all regions except for 
lateral ventricle whose edges with the adjacent region of the 
internal capsule are not well delineated, resulting in loss of 
restricted regional smoothing at the border of that region. For 
the case of directional smoothing, SNR values are uniformly 
enhanced for all regions due to better regional edge details 
and attendant region limited smoothing. The CV is reduced 
by at least 2.5-fold when comparing directional smoothing 
to the original measures of anisotropy, indicating a concomi-
tant increase in the resultant SNR for these measures.

The “cuboid” displays in the third row of Figure 2 can explain 
the superior performance of the directional projection method 
in the third column. These cuboid displays are better appreci-
ated by looking at a closeup of particular regions, as is done in 

Table 1.

	 	 Raw Tensor fa	 Smoothed	 Smoothed Dominant	
			   Normalized	 Directional Tensor
			   Tensor fa	 Component fa

	 Corpus Callosum

	 Mean (m)	 0.646	 0.5806	 0.9575
	 Std. Dev (s)	 0.117	 0.1014	 0.0493
	 CV (100 s/m)	 18.1	 17.46	 5.14

	 Cingulum Bundle

	 Mean (m)	 0.5524	 0.4306	 0.9238
	 Std. Dev (s)	 0.151	 0.0953	 0.0515
	 CV (100 s/m)	 27.3	 22.13	 5.57

	 Internal Capsule

	 Mean (m)	 0.3615	 0.28	 0.9308
	 Std. Dev (s)	 0.0768	 0.0493	 0.0620
	 CV (100 s/m)	 21.24	 17.61	 6.67
	 Superior Longitudinal
	 Fasciculus

	 Mean (m)	 0.5676	 0.4928	 0.9496
	 Std. Dev (s)	 0.1078	 0.0799	 0.0598
	 CV (100 s/m)	 18.99	 16.21	 6.30

	 Lateral Ventricle

	 Mean (m)	 0.2647	 0.2078	 0.8103
	 Std. Dev (s)	 0.1136	 0.1233	 0.0883
	 CV (100 s/m)	 42.92	 59.34	 10.90

This table demonstrates the quantitative impact of different modes of smoothing and segmentation in 
terms of mean, standard deviation and coefficient of variation (CV) statistics of fractional anisotropy fa in 
five different regions of the brain for the particular 2-D slice of DTI data shown in Figure 4. The CVs are 
lowest, an indication that directional smoothing yields effective segmentation of homogeneous regions.



	 62	 Model-Based Variational Smoothing and Segmentation for Diffusion Tensor Imaging in the Brain

the second row of Figure 4. The closeup region, a portion of 
the cerebral hemisphere, is indicated in the top image of the 
first row. We added images displaying the dominant direc-
tion vectors for the raw data, the smoothed normalized tensor, 
and the smoothed directional projection in the third row of 
Figure 4 for the sake of comparison. Again, we see that direc-
tion details are better kept using the smoothed directional 
projection. One example is the region above the thick arrows, 
where directional (curved corners) structure is preserved in 
the directional image, but smoothed over in the normalized 
tensor image. Comparison of other parts of the closeup views 
leads to a similar conclusion. It is this preservation of the higher 
dimensional directional characteristics of the tensor at the pixel 
level that is responsible for the superior image obtained from 
the directional projection method.

We now consider added noise, our third assessment 
criterion. The effect of added noise is evaluated to 
establish the robustness of the approach. In Figures 5 
and 6, we compare the results of increasing noise levels 
added to the raw data. Levels of the additional noise 
range from 0 (no simulated noise added) to approxi-
mately 5 times the estimated sigma value. The sigma 

value was estimated from the raw data outside the 
brain. These images include: top row – raw data frac-
tional anisotropy (fa); second row – smoothed frac-
tional anisotropy; third row – our edge field v; bottom 
row - conventional Sobel edge field of raw fa. Using 
anatomically-based ROIs, Figure 6 illustrates, for the 
corpus callosum region, that the smoothed tensor-
based estimate of regional anisotropy fa in the second 
row of Figure 5 has a substantially lower coefficient of 
variation (bottom curve in Figure 6) than the original 
data (top curve in Figure 6); the reduction is by almost 
a factor of 10. Similar reductions were obtained for all 
other regions of Figure 4: cingulum bundle, superior 
longitudinal fasciculus, and internal capsule. Addition-
ally, as Figure 5 indicates, comparison of edge fields 
from our approach on the third row with a conventional 
Sobel edge field on the fourth row illustrates that, while 
added noise has a deleterious effect on the Sobel edge 
field, the new models introduced to the energy func-
tional preserve details even as noise is added. 

Discussion
The above results demonstrate the model-based variational 
segmentation functional approach’s ability to provide a 
diverse collection of output images within a unified frame-
work. The usefulness of the variational segmentation func-
tion approach has been demonstrated for other forms of 
brain imaging, such as structural[34] and functional magnetic 
resonance imaging data.[35] 

The versatility of these functionals, in their ability to 
produce a diverse collection of output images, is an impor-
tant addition to the methods or tools available for image 
analysis. This innovation provides a unified framework 
for spatially selective smoothing of noisy brain image 
data along attributes of choice derived from the diffusion 
tensor whereby we can adaptively determine smoothed 
regions within the white matter that are relatively homo-
geneous with respect to specific tensor properties of 
shape, size, and orientation of the associated diffusion 
ellipsoid. In addition to providing a demarcation of the 
regions with respect to user-specified attributes of homo-
geneity in the DTI data, the segmentation functional is 
amenable and flexible to using prior information on attri-
butes of both the tensor and edge field with incorporation 
of additional penalty terms in the functional. Determin-
ing smoothed regions with specific tensor properties 
enhances the ability to characterize the morphometric 
properties of the compact portion, or “stem,” of the major 
white matter pathways in regions where partial volume 
problems and the validity of the tensor assumption are 
less problematic.[14] 

A comparison has been presented of attributes such as 
anisotropy and direction of diffusion for the raw tensor 
itself without smoothing, the smoothed normalized tensor, 

Figure 3. 	Manual delineation of five anatomically moti-
vated regions for further analysis (Figure 6, Table 
1) of impact of different modes of smoothing 
and segmentation on fractional anisotropy of 
smoothed tensor in the regions. Delineations 
were based on tensor orientation and anisot-
ropy and are shown with respect to the fractional 
anisotropy map here. 

CC	 Corpus Callosum

IC	 Internal Capsule

SLF	 Superior Longitudinal
	 Fasciculus

CG	 Cingulum Bundle

lv	 Lateral Ventricle
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Figure 4.	Closeup displays demonstrate the effect of normalized tensor (2nd column) and directional projection (3rd column) 
smoothing more clearly by displaying the ‘cuboid’ (2nd row) and dominant direction vector (3rd row) of the principal 
eigenvector for these two models for a portion of the cerebral hemisphere marked on fractional anisotropy display. 
Region above thick arrows are one example where directional projection preserves details more visibly. 
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Figure 6.  Effect of noise on smoothing. The 
coefficient of variation of the smoothed fa 
(bottom curve) corresponding to the second 
row of images in Figure 5 is significantly 
lower than that of the raw or original fa 
(top curve) corresponding to the first row 
of Figure 5. Curves are for corpus callo-
sum region. Similar results obtain for other 
regions in Figure 3.

Figure 5.	Effect of added noise on raw fa, smoothed fa, our edge field v, and conventional Sobel edge field. 
The directional projection-based smoothing and segmentation (2nd and 3rd) row are more robust to 
added noise. 
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and the smoothed tensor component associated with the 
dominant eigenvector. The underlying diffusion character-
istics of the white matter in the brain motivate the choice 
of these mappings, whereas normalization provides scale 
invariance of salient features. Therefore, it is possible to 
visualize attributes of anisotropy and direction of the resul-
tant tensor fields and the associated edge field in various 
ways. In this fashion, the applicability of a unified and 
versatile image processing framework for smoothing and 
feature extraction in support of fiber pathway identifica-
tion within the human brain is demonstrated. 

Specifically, promise of the utility of the variational simulta-
neous smoothing and segmentation functional to improve 
the characteristics of tensor-valued imaging data has been 
demonstrated. The result is an improvement of the over-
all signal that preserves the anatomic detail. Within the 
directional component smoothing case, regions of discrete 
directionality are smoothed, but transitions between 
regions are well preserved. This can be particularly well 
seen as one traverses from the cortex toward the central 
portion of the images shown in Figure 4. The white matter 
contained within the gyral folds near the cortex remains 
nicely visualized and oriented “out” of the gyri. Transitions 
of radially oriented white matter of the corona ratiata and 
U fibers with the perpendicularly oriented internal capsule 
and various associational pathways are clearly demarked. 
This level of detail is only retained in the directional 
smoothing case. Finally, it should be noted that visualiza-
tion based on the dominant direction coding in Figure 2 is 
less sensitive to the underlying variations and noise struc-
ture, presumably due to the subtleties of the variations in 
intensity of directional noise compared to the large color 
differences of the different fiber systems. For the images 
examined, directional smoothing thus seems appropriate 
because of the simple fact that it simultaneously smooths 
while preserving directionality. This smoothing can act as 
a preprocessing step for virtually any subsequent process-
ing of the diffusion data, such as between group analyses 
of anisotropy data,[11],[39] anatomic regional characteriza-
tion,[40] and tractographic reconstruction.[41]-[43] 

Turning to the results of Figures 5 and 6, we examine 
respectively two aspects: the edges and the coefficient of 
variation over ROIs. First, as the graph demonstrates, the 
coefficient of variation of  fa calculated over the anatomic 
region of the corpus callosum is dramatically reduced 
(improved) with simultaneous smoothing and segmenta-
tion, and that this substantial improvement holds even in 
the presence of the greatly reduced image quality at the 
maximum added noise.   

Turning to the edges in Figure 5, we observe that with 
incrementally increasing noise added to the raw data, 
the conventional (Sobel) edge field is seen to deteriorate 
more rapidly. By contrast, with our approach, edges are 

maintained at the increased noise levels. This result is a 
direct consequence of working with a most dominant 
feature of the tensor, specifically, the dominant rank-1 
tensor. 

Limitations
A method that is generalizable in terms of processing image 
data and its dimensionality is presented. The application 
used to illustrate the processing, namely DTI, is an impor-
tant and new radiological tool for the clinical assessment of 
cerebral white matter. Processing can improve the resultant 
SNR without penalizing the resultant spatial resolution, and 
thus can enhance the utility of these measurements. This 
improvement in SNR can be used to shorten the potentially 
lengthy diffusion acquisition time. It is acknowledged that 
the tensor acquisition may not be optimal for observation 
of specific fiber tracts themselves, and that this acquisi-
tion optimization is an open research question. These 
processing tools, however, will extend to a higher order 
(i.e., q-space and high angular resolution) diffusion acqui-
sitions,[44]-[46] and can still play an important role in the 
processing and analysis of these classes of data acquisition. 
Indeed, the utility of submodel-based smoothing becomes 
even more important as the complexity of the input data 
increases. The flexibility of the methods we report here can 
be adapted easily for processing models defined in terms 
of any matrix decomposition of the acquired data, not just 
the eigen-decomposition typical in the six-direction tensor 
acquisitions. Also, there is a spatial resolution tradeoff 
between the need for high resolution to observe subtle white 
matter pathways and the acquisition time available for the 
subjects. These processing tools will be helpful to extend 
the limits of SNR in the extraction of meaningful anatomic 
information. An additional area of potential impact for a 
tool such as this includes utilizing tensor information in 
solving for neural systems-based functional imaging.[47]-
[49] It might be remarked that the focus of the reported 
work is the model-based optimal extraction of information 
for a given SNR and DTI data acquisition parameters, and 
future work remains necessary for optimization involving 
SNR and data acquisition parameters.

We note that the simultaneous smoothing and segmen-
tation process can change the nature of the error in the 
smoothed estimates and the use of smoothed estimates for 
further analysis, such as for group analysis, which may need 
to employ alternate analysis approaches that are not neces-
sarily based on a specific noise model assumption such as 
Gaussian noise. For example, for decision support, meth-
ods such as support vector machines can be employed.

In addition, the method’s appeal is the flexibility to use 
various lower dimensional attributes of the higher dimen-
sional data using functions F and H, and we demonstrate 
this strength here primarily in the context of 2D data. The 
method, however, can be readily applied to 3D data. In the 
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case of  3D analysis, additional terms associated with gradi-
ents of the data and edge fields in the added third dimension 
arise in the energy functional E of (2). We, therefore, have 
edge surfaces in 3D that are smoother than those obtainable 
from edge boundaries produced by the 2D analysis.

To conclude, we have presented a general framework for 
smoothing diffusion tensor data and have developed a tool 
to execute this processing. The preferred choice of the fidel-
ity and continuity functions h1(u), h2(g) and f(u) generally 
will depend on both the image and the objective of the 
image analysis task. There is no universal image model that 
outperforms all others in all situations. Moreover, different 
regions of the data domain require segmentations based 
on more than one model. An important objective in this 
study is, therefore, to identify for DTI data a small number 
of potent models that can be adapted for effective segmen-
tation. Further, as no single model applies over the entire 
image due to variations in the underlying tissue and partial 
volume effects, adaptive learning of relevant features at 
every voxel based on neighborhood characteristics is another 
focus of ongoing research. The improved output data will 
enable a more refined analysis, including segmentation of 
white matter substructures using various manual and auto-
mated techniques.
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2, March-April 2006, pp. 289-302 

Duwel, A.E.; Candler, R.N.; Kenny, T.W.;
Varghese, M. 
Engineering MEMS Resonators with Low Thermo-
elastic Damping 
Journal of Microelectromechanical Systems, IEEE, Vol. 
15, No. 6, December 2006, pp. 1437-1445 

Fucetola, C.; Carter, D.J. 
Process Latitude of Deep-Ultraviolet Conformable 
Contact Photolithography 
50th International Conference on Electron, Ion, and 
Photon Beam Technology and Nanofabrication, Balti-
more, MD, May 30-June 2, 2006  

Fuhrman, L.R. 
Future of Lunar Landing Systems 
29th Rocky Mountain Guidance and Control Confer-
ence, Breckenridge, CO, February 4-8, 2006, Advances 
in the Astronautical Sciences, Vol. 125, 2006, pp. 
213-223. Sponsored by: American Astronautical Society 
(AAS)  

Gustafson, D.E.; Elwell Jr., J.M.; Soltz, J.A.
Innovative Indoor Geolocation Using RF Multipath 
Diversity 
Position Location and Navigation Symposium (PLANS), 
San Diego, CA, April 25-27, 2006. Sponsored by 
IEEE/ION

Harjes, D.I.; Clark, H.A.
Novel Optical Biosensor Arrays for Toxicity Screen-
ing in Drug Discovery 
57th Pittsburgh Conference on Analytical Chemistry and 
Applied Spectroscopy (PITTCON), Orlando, FL, March 
12-17, 2006 

Hattis, P.D.; Campbell, D.P.; Carter, D.W.;
McConley, M.; Tavan, S.
Providing Means for Precision Airdrop Delivery from 
High Altitude 
AIAA Guidance, Navigation, and Control Conference, 
Keystone, CO, August 21-24, 2006

Hawkins, A.M.; Fill, T.J.; Proulx, R.J.; Feron, E.M.J. 
Constrained Trajectory Optimization for Lunar 
Landing 
Spaceflight Mechanics 2006, Tampa, FL, January 22-26, 
2006, Advances in the Astronautical Sciences, Part I, Vol. 
124, 2006, pp. 815-836

Heinrich, N.; Case, A.; Stein, R.L.; Clark, H.A. 
Optical Sensors for the Monitoring of Enzymatic 
Reaction for Drug Screening in Neurodegenerative 
Disease 
57th Pittsburgh Conference on Analytical Chemistry and 
Applied Spectroscopy (PITTCON), Orlando, FL, March 
12-17, 2006  

Hildebrant, R. 
Framework for Autonomy 
Optics East, International Symposium, Boston, MA, 
October 1-4, 2006. Sponsored by: SPIE  
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Hopkins III, R.E. 
MEMS Inertial Technology. A Short Course 
PLANS, San Diego, CA, April 25-27, 2006. Sponsored 
by: IEEE/ION; Joint Navigation Conference (JNC), Las 
Vegas, NV, May 1-4, 2006. Sponsored by: Joint Service 
Data Exchange (JSDE) 

Huntington, G.T.; Rao, A.V. 
Optimal Reconfiguration of a Tetrahedral Formation 
Via a Gauss Pseudospectral Method 
Advances in the Astronautical Sciences, AAS, Vol. 123, 
Part II, 2006, pp. 1337-1358 

Huntington, G.T.; Benson, D.A.; Rao, A.V. 
Post-Optimality Evaluation and Analysis of a Forma-
tion Flying Problem Via a Gauss Pseudospectral 
Method 
Advances in the Astronautical Sciences - Proceedings of 
the AAS/AIAA Astrodynamics Conference, Vol. 123, No. 
2, 2006 

Jang, J-W.; Fitz-Coy, N.G. 
Differential Games: A Pole Placement Approach 
Proceedings of the University at Buffalo, State Univer-
sity of New York/AAS Malcolm D. Shuster Astronautics 
Symposium, Grand Island, NY, Vol. 122, 2006

Johnson, M.C. 
Parameterized Approach to the Design of Lunar 
Lander Attitude Controllers 
Guidance, Navigation, and Control Conference, 
Keystone, CO, August 21-24, 2006. Sponsored by: 
AIAA  

Keegan, M.E.; Saltzman, W.M.
Surface-Modified Biodegradable Microspheres for 
DNA Vaccine Delivery
Methods in Molecular Medicine, Vol. 127; DNA 
Vaccines: Methods and Protocols, 2nd ed., Humana Press, 
2006 

Key, R.; Kahn, A.C., Deutsch, O.L. 
Midcourse Phase Inventory Management with 
Uncertain Threats  
Missile Defense Conference & Exhibit, Washington, DC, 
March 20-24, 2006. Sponsored by: AIAA 

Khademhossini, A.; Bettinger, C.J.; Karp, J.M.;
Yeh, J.; Ling, Y.; Borenstein, J.T.; Fukuda, J.;
Langer, R.
Interplay of Biomaterials and Micro-scale Technolo-
gies for Advancing Biomedical Applications 
Journal of Biomaterials Science, Polymer Edition, Vol. 
17, No. 11, November 2006

Khademhossini, A.; Langer, R.; Borenstein, J.T.; 
Vacanti, J.P. 
Microscale Technologies for Tissue Engineering and 
Biology  
Proceedings of the National Academy of Sciences of the 
USA, Vol. 103, No. 8, February 2006 

Kondoleon, C.A.; Marinis, T.F. 
Package Design for a Miniaturized Capacitive-Based 
Chemical Sensor 
39th International Symposium on Microelectronics, San 
Diego, CA, October 8-12, 2006. Sponsored by: Interna-
tional Microelectronics and Packaging Society (IMAPS) 

Kourepenis, A.S.; Barbour, N.M.; Hopkins III, R.E.; 
Serna, F.J.; Varghese, M. 
MEMS Technologies and Applications 
International Test and Evaluation Association (ITEA) 
Annual Technology Review Conference, Cambridge, 
MA, August 8-10, 2006. Sponsored by: ITEA  

Krebs, M.D.; Mansfield, B.; Yip, P.; Cohen, S.;
Sonenshein, A.L.; Hitt, B.A..; Davis, C.E.
Novel Technology for Rapid Species-Specific 
Detection of Bacillus Spores 
Biomolecular Engineering, Vol. 23, February 2006, pp. 
119-127  

Krebs, M.D.; Kang, J.J.; Cohen, S.; Lozow, J.B.; 
Tingley, R.D.; Davis, C.E. 
Two-Dimensional Alignment of Differential Mobility 
Spectrometer Data 
Sensors and Actuators B (Chemical), Vol. 119, No. 2, 
December 2006, pp. 475-482 

Landis, D.L.; Thorvaldsen, T.P.; Fink, B.J.;
Sherman, P.G.; Holmes, S.M. 
Deep Integration Estimator for Urban Ground 
Navigation 
PLANS, San Diego, CA, April 25-27, 2006. Sponsored 
by: IEEE/ION

Lento, C.; McCarragher, B.; Magee, R.
The CERAS Pod Test Cell for Simultaneous Environ-
ment Testing 
AIAA Missile Sciences Conference, Monterey, CA, 
November 14-16, 2006

Lim, S.Y.; Miotto, P. 
Actuator Allocation Algorithm Using Interior Linear 
Programming 
Guidance, Navigation, and Control Conference, 
Keystone, CO, August 21-24, 2006. Sponsored by: 
AIAA  
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Lim, S.Y. 
Complementary Roll/Yaw Attitude Controller for 
Three-Axis Authority Momentum Spacecraft 
Guidance, Navigation, and Control Conference, 
Keystone, CO, August 21-24, 2006. Sponsored by: 
AIAA 

Lymar, D.S.; Neugebauer, T.C.; Perreault, D.J. 
Coupled-Magnetic Filters with Adaptive Inductance 
Cancellation 
IEEE Transactions on Power Electronics, Vol. 21, No. 6, 
November 2006, pp. 1529-1540 

Marinis, T.F.; Soucy, J.W.; Hanson, D.S.;
Pryputniewicz, R.J.; Marinis, R.T.; Klempner, A.R. 
Isolation of MEMS Devices from Package Stresses by 
Use of Compliant Metal Interposers 
56th Electronic Components and Technology Confer-
ence (ECTC), San Diego, CA, May 30-June 2, 2006. 
Sponsored by: IEEE, Components, Packaging, and 
Manufacturing Technology (CPMT) Society 

Masterson, R.A.; Miller, D.
Dynamic Tailoring and Tuning of Structurally-
Connected TPF Interferometer 
Proceedings of the SPIE, Vol. 6271, July 2006

Masterson, R.A.; Miller, D.
Hardware Tuning for Dynamic Performance Through 
Isoperformance Updating 
47th Structures, Structural Dynamics, and Materials 
Conference, Newport, RI, May 1-4, 2006. Sponsored 
by: AIAA, ASME, American Society of Computer Engi-
neers (ASCE), American Helicopter Society (AHS), ASC

Mather, R.A.; Matlis, J. 
Alternative Approach to Testing Embedded Real-
Time Software 
America’s Virtual Product Development (VPD) Confer-
ence: Evolution to Enterprise Simulation, Huntington 
Beach, CA, July 17-19, 2006. Sponsored by: MSC 
Software 

McAlpine, J.; Najjar, R.C.; Thompson, J.
Hazmat Response: Victim Extrication, Trauma 
Control, and Decontamination in a Laboratory 
Setting
Proceedings of the 24th College and University Hazard-
ous Waste Conference, August 6-9, 2006

McCarragher, B.; Chen, B.; Chamberlin, S.;
Magee, R.
The Simultaneous Application of Vibration, Shock, 
and Thermal Missile Environments 
AIAA Missile Sciences Conference, Monterey, CA, 
November 14-16, 2006

Mettler, B.; Feron, E.; Popovic, J.; McConley, M.
Nonlinear Trajectory Generation for Autonomous 
Vehicles via Parameterized Maneuver Classes
Journal of Guidance Control and Dynamics, AIAA, Vol. 
29, No. 2, March-April, 2006

Miller, J.W.; Lommel, P.H. 
Biomimetic Sensory Abstraction Using Hierarchical 
Quilted Self-Organizing Maps 
Intelligent Robots and Computer Vision XXIV: Algo-
rithms, Techniques, and Active Vision, Boston, MA, 
October 1-4, 2006. Sponsored by: SPIE  

Mitchell, I.T.; Gorton, T.B.; Taskov, K.;
Drews, M.E.; Luckey, D.; Osborne, M.L.;
Page, L.A.; Norris, H.L., III; Shepperd, S.W. 
GN&C Development of the XSS-11 Micro-
Satellite for Autonomous Rendezvous and Proximity 
Operations 
29th Guidance and Control Conference, Breckenridge, 
CO, February 4-8, 2006. Sponsored by: AAS

Neugebauer, T.C.; Perreault, D.J. 
Parasitic Capacitance Cancellation in Filter 
Inductors
Transactions on Power Electronics, IEEE, Vol. 21, No. 1, 
January 2006

Pahlavan, K.; Akgul, F.O.; Heidari, M.;
Hatami, A.; Elwell, J.M.; Tingley, R.D. 
Indoor Geolocation in the Absence of Direct Path 
IEEE Wireless Communications, Vol. 13, No. 6, Decem-
ber 2006, pp. 50-58 

Perry, H.C.; Brady, T.M.; Breton, R.S.; Brodeur, S.J.; 
Brown, R.A.; Buckley, S.; Erikson, E.R.;
Fuhrman, L.R.; Jackson, T.R.; Kochocki, J.A.;
Turney, D.J.; Wyman Jr, W.F. 
Engineering Solutions to Problems of National 
Significance. Embedded Software and Draper IDEAS
Explorations, The Charles Stark Draper Laboratory, Inc., 
Spring 2006

Pierquet, B.J.; Neugebauer, T.C.; Perreault, D.J. 
Inductance Compensation of Multiple Capacitors 
with Application to Common- and Differential-Mode 
Filters 
IEEE Transactions on Power Electronics, Vol. 21, No. 6, 
November 2006, pp. 1815-1824 

Putnam, Z.R.; Braun, R.D.; Bairstow, S.H.;
Barton, G.H. 
Improving Lunar Return Entry Footprints Using 
Enhanced Skip Trajectory Guidance 
Space 2006 Conference, San Jose, CA, September 19-
21, 2006. Sponsored by: AIAA  
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Ricard, M.J.; Nervegna, M.F. 
Risk-Aware Mixed-Initiative Dynamic Replanning 
(RMDR) Program Update 
Unmanned Systems North America, Orlando, FL, 
August 29-31, 2006. Sponsored by: Association for 
Unmanned Vehicle Systems International (AUVSI)  

Roth, K.W.; Llana P.; Westphalen D.; Quartararo, L.; 
Feng M.Y.
Advanced Controls for Commercial Buildings:
Barriers and Energy Savings Potential
Energy Engineering, 2006, Vol. 103, No. 6, pp. 6-36

Rzepniewski, A.K.; Andrews, G.L. 
Legged Robot Motion with Explicit Stability 
Constraints: Theory and Application 
Unmanned Systems North America, Orlando, FL, 
August 29-31, 2006. Sponsored by: AUVSI 

Sawyer, W.D.; Prince, M.S 
Silicon on Insulator Inertial MEMS Device 
Processing 
MOEMS-MEMS Micro & Nanofabrication, Photonics 
West, San Jose, CA, January 21-26, 2006. Sponsored 
by: SPIE

Schmidt, G.T. 
Future Navigation Systems: INS/GPS Technology 
Trends
The Charles Stark Draper Laboratory, Inc., 2006

Schmitt, W.M.; Larsen, D.E.; Brown, D.N.;
Harris, Bernard S.; Zuckerman, H.L. 
Importance of Secondary Scattering in X-Ray
Transport for Shadowing Analysis 
Hardened Electronics and Radiation Technology 
(HEART) Conference, Santa Clara, CA, March 6-10, 
2006. Sponsored by: Department of Defense (DoD)/
Department of Energy (DoE). 

Serklaud, D.K.; Peake, G.M.; Geib, K.M.; Lutwak, R.; 
Garvey, R.M.; Varghese, M.; Mescher, M.
VCSELs for Atomic Clocks
Vertical-Cavity Surface-Emitting Lasers X, Proceedings of 
SPIE, January 25-26, 2006, San Jose, CA

Springmann, P.; Proulx, R.; Fill, T.
Lunar Descent Using Sequential Engine Shutdown 
AIAA/AAS Astrodynamics Specialist Conference and 
Exhibit, Keystone, CO, August 21-24, 2006

Stoner, R.; Walsworth, R. 
Atomic Physics - Collisions Give Sense of Direction 
Nature Physics, Vol. 2 , No. 1, January 2006, pp. 17-18 

Stubbs, A.; Vladimerou, V.; Fulford, A.T.; King, D.; 
Strick, J.; Dullerud, G.E
Multivehicle Systems Control over Networks
IEEE Control Systems, Vol. 26, No. 3, 2006, pp 56-69

Tawney, J.; Hakimi, F.; Willig, R.L.; Alonzo, J.;
Bise, R.T.; DiMarcello, F.; Monberg, E.M.;
Stockert, T.; Trevor, D.J. 
Photonic Crystal Fiber IFOGs 
18th International Conference on Optical Fiber Sensors, 
Cancun, Mexico, October 23-27, 2006. Sponsored by: 
Optical Society of America (OSA) 

Tetewsky, A.; Dow, B.; Bogner, T.; Mitchell, M.; 
Daley, S.; Shearer, J.
Evaluating HYGPSIM’s New GPS/INS HWIL Predic-
tion Capabilities with 2004 Reentry Vehicle Flight 
Data 
AIAA Missile Science Conference (Classified) Monterey, 
CA, November 14-16, 2006

Weinberg, E.J.; Kaazempur-Mofrad, M.R. 
Large-Strain Finite-Element Formulation for Biologi-
cal Tissues with Application to Mitral Valve Leaflet 
Tissue Mechanics 
Journal of Biomechanics, Vol. 39, No. 8, 2006, pp. 
1557-1561 

Weinberg, M.S.; Kourepenis, A.S. 
Error Sources in In-Plane Silicon Tuning-Fork MEMS 
Gyroscopes 
IEEE Journal of Microelectromechanical Systems, Vol. 
15, No. 3, June 2006, pp. 479-491  

Weinberg, M.S.; Wall, C.; Robertsson, J.;
O’Neil, E.W.; Sienko, K.; Fields, R.P. 
Tilt Determination in MEMS Inertial Vestibular 
Prosthesis 
Journal of Biomechanical Engineering, Transactions 
of the ASME, Vol. 128, No. 6, December 2006, pp. 
943-56. 

Weinberg, M.S. 
Tuning Fork MEMS Gyroscopes
Presented at Tufts University, October 12, 2006
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Patents
Introduction

Draper Laboratory is well known for integrat-
ing widely diverse technical capabilities and 
technologies into innovative and creative 
solutions for problems of national impor-

tance. Draper’s scientists and engineers are actively 
encouraged to advance the application of science and 
technology, to expand the functions of existing technol-
ogies, and to create new ones.

Draper has an established patent policy and understands 
the value of patents in directing attention to individual 
accomplishments. Disclosing inventions is an important 
step in documenting these creative efforts and is required 
under Laboratory contracts and by an agreement with 
Draper that all employees sign. Pursuing patent protec-
tion enables the Laboratory to pursue its strategic mission 
and to recognize its employees’ valuable contributions to 
advancing the state-of-the-art in their technical areas. An 
issued patent is also recognition by a critical third party 
(the U.S. Patent Office) of innovative work for which the 
inventor should be justly proud.

Through December 31, 2006, 1297 Draper patent 
disclosures have been submitted to the Patent Commit-
tee since 1973; 655 of those were approved by Drap-
er’s Patent Committee for further patent action. As of 
December 31, a total of 4804 patents have been granted 
for inventions made by Draper personnel. Twelve patents 
were issued for calendar year 2006.

This year’s competition for Best Patent resulted in a tie. 
The featured patents are:

Multi-gimbaled borehole navigation system

and

Flexural plate wave sensor

The following pages present an overview of the tech-
nology covered in each patent and the official patent 
abstracts issued by the U.S. Patent Office.
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Multi-Gimbaled Borehole 
Navigation System
Mitchell L. Hansberry, Michael E. Ash, Richard T. Martorana

Patent # 7,093,370 B2   Date Issued: August 22, 2006

This invention addresses the need to monitor and guide the direction 
of a drill bit so that a borehole is created where desired. To determine 
the location of a drill bit in a borehole, the position and attitude must 
be known, including the vertical orientation and the north direction. 

Typically, gyroscopes can be used to determine the north direction, and accel-
erometers can be used to determine the vertical orientation. Prior systems have 
used single-orientation gyroscopes and/or single orientation accelerometers due 
to size limitations. However, these systems can suffer from long-term bias stabil-
ity problems.

Many prior systems attempted to determine the drill bit’s location accurately 
and efficiently, but each system had limitations. For example, where the internal 
diameter of a drill pipe is not large enough to fit the optimal number of typical 
navigation sensors, one prior system removed the drill bit from the borehole 
and lowered a monitoring tool down the borehole to determine its location. 
However, it is costly to stop drilling and spend time removing the drill bit to 
take measurements with the monitoring tool. Other systems used single-axis 
accelerometers to determine the vertical orientation of the drill bit. However, 
an accelerometer system cannot determine north, which is necessary to deter-
mine the full location of a borehole. Another prior design used magnetometers 
to determine the magnetic field direction from which the direction of north is 
approximated. However, such systems must correct for magnetic interference 
and magnetic materials used in the drill pipe and can suffer accuracy degrada-
tion due to the Earth’s changing magnetic field. 

This patent describes a novel navigation borehole system that can determine 
position and attitude for any orientation in a borehole using multiple gimbals 
that contain solid-state or other gyros and accelerometers. The navigation system 
includes a housing that can be placed within the smaller diameter drill pipes 
used toward the bottom of a borehole, an outer gimbal connected to the hous-
ing, and at least two or more stacked inner gimbals nested in and connected to 
the outer gimbal. The inner gimbals each have an axis parallel to one another 
and perpendicular to the outer gimbal. The inner gimbals contain electronic 
circuits, gyros, and accelerometers whose input axes span three-dimensional 
space. The system includes outer and inner gimbal drive systems to maintain 
the gyro and accelerometer input axes as substantially orthogonal triads and a 
processor that is responsive to the gyro accelerometer circuits to determine the 
attitude and the position of the housing in the borehole. 

This borehole navigation system can average out navigation errors due to gyro 
and accelerometer bias, gyro scale factor, and input-axis alignment errors, and 
allows gyro and accelerometer bias and gyro scale-factor calibration as well as 
attitude determination during gyrocompassing. This invention also provides 
long-term performance accuracy with only short-term requirements on sensor 
accuracy, can determine position and attitude while drilling, when the drill 
bit is stopped, when the drill bit is inserted or withdrawn, as well as while 
logging, both descending and ascending on a log line after the drill bit has been 
withdrawn. 
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Richard T. Martorana is a Distinguished Member of the Techni-
cal Staff and the Technical Director for the WASP Program. With 
over 39 years of research, design, and development experience, 
he has directed and managed programs for NASA, USAF, DARPA, 
NAVSEA, and others. He was responsible for the thermal design 
of the Trident II inertial measurement unit (IMU). His respon-
sibilities have included:  Section Chief for Fluid Mechanics and 
Thermal Engineering, Division Manager for Mechanical Design 
and Analysis, and Director of Systems Integration, Test, Evalu-
ation, and Quality Management. He holds three U.S. patents in the areas of mechanical and thermal design. Mr. 
Martorana has BS and MS degrees in Mechanical Engineering from Columbia University and MIT, respectively, an 
MBA focused on management of innovation from Northeastern University, and he is a graduate of Harvard Business 
School’s Program for Management Development.  

Mitchell L. Hansberry is a Senior Member of the Technical Staff and a Mechanical Design Engineer with 25 years 
experience at Draper Laboratory. Specializing in the development of hardware configurations to solve system-level 
problems, he has been the Lead Mechanical Designer on many projects involving navigation instruments and 
systems, space hardware, and biomedical mechanisms. He has a BS in Mechanical Engineering from SUNY at Stony 
Brook.

Michael E. Ash was a Principal Member of the Technical Staff in the System Integration, Evaluation, and Test Divi-
sion, where he worked on inertial sensor and system modeling, simulation, and testing. Previously, he worked at 
the MIT Lincoln Laboratory on an interplanetary radar test of general relativity and on-satellite orbit determination. 
He was Chair of the Accelerometer Committee of the IEEE/Aerospace Electronics System Society (AESS) Gyro and 
Accelerometer Panel and an Associate Fellow of the AIAA. He received a BS from MIT and a PhD from Princeton 
University, both in Mathematics.

bios

(l-r) Mitchell L. Hansberry
and Richard T. Martorana
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Flexural Plate Wave Sensor
Marc S. Weinberg, Brian T. Cunningham, Eric M. Hildebrandt

Patent # 7,109,633 B2  Date Issued:  September 19, 2006

This patent describes an improved flexural plate wave (FPW) sensor 
that includes a thin flexural plate with drive teeth disposed across 
its entire length. Further improvements associated with drive combs 
of varying tooth length are described. This improved FPW sensor 

reduces the number of eigenmodes excited in the flexural plate and outputs a 
single pronounced peak or a peak much larger than any of the other peaks and a 
distinct phase. This distinct peak simplifies the operating and designing associ-
ated drive and sense electronics and improves stability by eliminating erroneous 
readings due to interference created by mode hopping between eigemnodes.

The FPW sensor includes a diaphragm or plate that is driven so that it oscillates 
at frequencies determined by a comb pattern and the flexural plate geometry. 
The comb pattern is disposed over the flexural plate and establishes electric 
fields that interact with the plate’s piezoelectric properties to excite motion. 
The eigenmodes describe the diaphragm displacements, which exhibit spatially 
distributed peaks. Each eigenmode consists of n half sine periods along the 
diaphragm’s length. A typical FPW sensor can be excited to eighty or more 
eigenmodes. In a typical FPW eigenmode, the plate deflection consists of many 
sinusoidal (or nearly sinusoidal) peaks.

Previous flexure plate wave sensor designs typically include drive combs at one 
end of the plate and sense combs at the other end. The drive combs of these 
devices typically cover only 25% to 40% of the total plate length. When the 
number of drive teeth is small compared to the number of eigenmodes peaks, 
the small number of drive teeth can align with several eigenmodes. Not only are 
the eigenmodes perfectly aligned with the comb teeth excited, but other eigen-
modes are also excited. In signal processing and spectral analysis, this effect is 
known as leakage. The increased number of eigenmodes excited in the FPW 
sensor produces a series of resonance peaks of similar amplitude and irregular 
phase, increasing design complexity and the operation of such FPW sensors. 
Other previous FPW designs employ drive and sense combs at opposite ends 
of the flexural plate and rely on analysis based on surface acoustic waves (SAW) 
where the waves propagate away from the drive combs and toward the sense 
combs, and back reflections are regarded as interference. A disadvantage is that 
SAW theory does not account for the sensor’s numerous small peaks and the 
electronics’ locking onto different eigenmodes depending on noise or starting 
conditions. 

Bioscale has licensed the FPW technology from Draper and will introduce a 
commercial product.
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Marc S. Weinberg is a Laboratory Technical Staff Member at 
Draper Laboratory. He has been responsible for the design and 
testing of a wide range of traditional micromechanical gyroscopes, 
accelerometers, hydrophones, microphones, angular displacement 
sensors, chemical sensors, and biomedical devices. He served in 
the United States Air Force at the Aeronautical System Division, 
Wright-Patterson Air Force Base during 1974 and 1975, where 
he applied modern and classical control theory to design turbine 
engine controls, and at the Air Force Institute of Technology, where 
he taught gas dynamics and feedback control. He holds 25 patents 
with 12 additional in application. He has been a member of ASME 
since 1971. Dr. Weinberg received BS (1971), MS (1971), and 
PhD (1974) degrees in Mechanical Engineering from MIT where 
he held a National Science Foundation Fellowship.  

Brian T. Cunningham was a Principal Member of the Technical Staff at Draper Laboratory. Currently, he is an Associate Profes-
sor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign, where he is the Director of 
the Nano Sensors Group. His group focuses on the development of photonic crystal-based transducers, plastic-based fabri-
cation methods, and novel instrumentation approaches for label-free biodetection. He is a founder and the Chief Technical 
Officer of SRU Biosystems (Woburn, MA), a life science tools company that provides high sensitivity plastic-based optical 
biosensors, instrumentation, and software to the pharmaceutical, academic research, genomics, and proteomics communi-
ties. Prior to founding SRU Biosystems in June 2000, he was the Manager of Biomedical Technology at Draper Laboratory, 
where he directed R&D projects aimed at utilizing defense-related technical capabilities for medical applications. He also 
served as Group Leader for MEMS sensors at Draper. Concurrently, he was an Associate Director of the Center for Innovative 
Minimally Invasive Therapy (CIMIT), a Boston-area medical technology consortium, where he led the Advanced Technology 
Team on Microsensors. Before joining Draper, he spent 5 years at the Raytheon Electronic Systems Division. Dr. Cunning-
ham earned BS, MS, and PhD degrees in Electrical and Computer Engineering at the University of Illinois.

Eric M. Hildebrant is a Principal Member of the Technical Staff. Initially, he worked on the MK6 CCD stellar sensor system. 
Later work focused on developing electronic integrated circuitry for micromechanical gyros, accelerometers, and chemical 
sensors. He holds four patents in the field of instrumentation. He received SB (1976), SB (1982), and MS (1989) degrees in 
Life Sciences, Electrical Engineering, and Engineering Design from MIT and Tufts University.

bios

(l-r) Eric M. Hildebrant and
Marc S. Weinberg
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2006

Issued

patents

Anderson, J.M.; Kerrebrock, P.A.; McFarland, W.W.; 
Ogrodnik, T.G. 
Crawler Device
Patent Number 7,137,465 B1, November 21, 2006

Antkowiak, B.M.; Carter, D.J.; Duwel, A.E.; Mescher, 
M.J.; Varghese, M.; Weinberg, M.S. 
MEMS Piezoelectric Longitudinal Mode Resonator
Patent Number 7,005,946 B2, February 28, 2006

Coskren, W.D.; Parry, J.R.; Williams, J.R.; Sebelius, 
P.W.
Sensor Apparatus and Method of Using Same
Patent Number 7,100,689 B2, September 5, 2006 

Elliott, R.D.; Ward, P.A. 
Apparatus for and Method of Sensing a Measured 
Input
Patent Number 7,055,387 B2, June 6, 2006

Greenspan, R.L.; Przyjemski, J.M.
Method and System for Implementing a Commu-
nications Transceiver Using Modified GPS User 
Equipment
Patent Number 7,123,895 B2, October 17, 2006

Hansberry, M.L.; Ash, M.E.; Martorana, R.T.
Multi-Gimbaled Borehole Navigation System
Patent Number 7,093,370 B2, August 22, 2006

Miller, R.A.; Nazarov, E.G.; Eiceman, G.A.; Krylov, E. 
Method and Apparatus for Electrospray Augmented 
High Field Asymmetric Ion Mobility Spectrometry
Patent Number 7,075,068 B2, July 11, 2006

Miller, R.A.; Nazarov, E.G.; Zapata, A.M.; Davis, 
C.E.; Eiceman, G.A.; Bashall, A.D. 
Systems for Differential Ion Mobility Analysis
Patent Number 7,057,168 B2, June 6, 2006

Robbins, W.L.; Miller, R.A. 
Spectrometer Chip Assembly
Patent Number 7,098,449 B1, August 29, 2006

Weinberg, M.S.; Cunningham, B.T.; Hildebrant, E.M.
Flexural Plate Wave Sensor
Patent Number 7,109,633 B2, September 19, 2006

Williams, J.R.;  Cunningham, B.T.
Flexural Plate Wave Sensor and Array
Patent Number 7,000,453 B2, February 21, 2006

Williams, J.R.; Dineen Jr., D.A.; Prince J.R. 
Microfluidic Ion-Selective Electrode Sensor System
Patent Number 7,101,472 B2, September 5, 2006
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Chairman of the Board John R. Kreick and then-President Vincent Vitto presented 
the 2006 Draper Distinguished Performance Awards (DPAs) to a team and to an 
individual at the Annual Dinner of the Corporation on October 4, 2006. 

The Next Generation Fastraker 
team members responsible for 
hardware achieved production 
qualification of the first engineer-
ing model, which was the first 
mixed-signal multichip module 
ever qualified for production by 
Draper. Production qualification 
occurred earlier than scheduled 
and in a package so much smaller 
than the sponsor’s specifications 
that the overall system size was 
reduced by nearly a factor of 
three.

The 2006 Draper Distinguished

Awards
performance

Accelerated Delivery of Miniaturized Radio Frequency Communications 
Hardware

Development and Strategic Distribution of a Geospatial Intelligence
Networked System to Middle Eastern Military Force 

Harold A. Bussey led the team 
that adapted the Draper-devel-
oped U.S. Air Force system for 
handling geospatial informa-
tion for use by NATO forces in 
the Middle East. He delivered 
the system to users in the field 
and trained them in its use. The 
system’s usefulness has led other 
military organizations to consider 
adopting it.

DPA Screening Committee 
Members

The DPA was established in 1989 
and is the most prestigious award 
that Draper bestows for extraordi-
nary achievements by individuals 
or teams. These achievements must 
constitute a major technical accom-
plishment, the technical effort must 
entail highly challenging work of 
substantial benefit to the Labora-
tory and the outside community, 
include a recent discrete accom-
plishment that is clearly extraor-
dinary and represents a standard 
of excellence for the Laboratory, 
and the responsible individual or 
core team can be identified as the 
prime participant(s) in achieving 
the significant results. This year’s 
committee was chaired by Scott 
Uhland. Members included Heather 
Clark, Christopher Gibson, Lauren 
Kessler, Edward Lanzilotta, David 
Owen, Dora Ramos, Elliot Ranger, 
and Roger Wilmarth. Administra-
tive support was provided by Noel 
Cassidy.

(clockwise from left) Michael T. Clohecy, Vincent J. Attenasio, 
Jr., Don A. Black, Michael J. Matranga, John R. Burns III,
Donald I. Schwartz, and (inside center) Valerie H. Lowe

(l-r) President James D. Shields, Award Recipient Harold 
A. Bussey, and Chairman of the Board John R. Kreick
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Berners-Lee proposed his concept 
for the Web in 1989 while at the 
European Organization for Nuclear 
Research (CERN), launched it on the 
Internet in 1991, and continued to 
refine its design through 1993. He 
designed the Web with public domain 
scalable software and an open archi-
tecture to allow other inventions to 
be built on it.  

Berners-Lee is currently a senior 
researcher and holder of the 3Com 
Founders Chair at the Computer 
Science and Artificial Intelligence 
Laboratory at MIT and a professor 
of computer science in the School of 
Electronics and Computer Science 
at the University of Southampton, 
UK. He continues to guide the Web’s 
evolution as founder and director 
of the World Wide Web Consor-
tium (W3C), an international forum 
that develops standards for the 
Web. A graduate of Oxford Univer-
sity, England, he became a fellow of 
the Royal Society in 2001. He has 
received several international awards, 
including the Japan Prize, the Prince 
of Asturias Foundation Prize, the 
Millennium Technology Prize, and 
Germany’s Die Quadriga Award. 
Berners-Lee was knighted by Queen 
Elizabeth in 2004. He is the author of 
“Weaving the Web.” 

The 2007 Charles Stark

Prize
draper

The Charles Stark Draper Prize was established in 1988 to 
honor the memory of Dr. Charles Stark Draper, “the father 
of inertial navigation.” Awarded annually, the Prize was 
instituted by the National Academy of Engineering (NAE) 
and endowed by Draper Laboratory. It is recognized as one 
of the world’s preeminent awards for engineering achieve-
ment and honors individuals who, like Dr. Draper, devel-
oped a unique concept that has contributed significantly to 
the advancement of science and technology and the welfare 
and freedom of society.

The 2007 Charles Stark Draper Prize was presented to Sir Timo-
thy Berners-Lee at a ceremony on February 20 in Washing-
ton, D.C. According to the NAE, Berners-Lee “imaginatively 
combined ideas to create the World Wide Web, an extraordi-

nary innovation that is rapidly transforming the way people store, access, 
and share information around the globe. Despite its short existence, 
the Web has contributed greatly to intellectual development and plays 
an important role in health care, environmental protection, commerce, 
banking, education, crime prevention, and the global dissemination of 
information.”  In addition, he “demonstrated a high level of technical 
imagination in inventing this system to organize and display information 
on the Internet.”  His innovations include the uniform resource identifier 
(URI), HyperText Markup Language (HTML), and HyperText Transfer 
Protocol (HTTP).

Sir Timothy Berners-Lee
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2006:	 Willard S. Boyle and George E. Smith for the invention of the charge-coupled device (CCD)

2005:	 Minoru Araki, Francis J. Madden, Don H. Schoessler, Edward A. Miller, and James W. Plummer 
for their invention of the Corona earth-observation satellite technology

2004:	 Alan C. Kay, Butler W. Lampson, Robert W. Taylor, and Charles P. Thacker for the development 
of the world’s first practical networked personal computers

2003:	 Ivan A. Getting and Bradford W. Parkinson for their technological achievements in the develop-
ment of the Global Positioning System

2002: 	 Robert S. Langer for bioengineering revolutionary medical drug delivery systems

2001:	 Vinton Cerf, Robert Kahn, Leonard Kleinrock, and Lawrence Roberts for their individual 
contributions to the development of the Internet

1999:	 Charles K. Kao, Robert D. Maurer, and John B. MacChesney for development of fiber-optic 
technology

1997:	 Vladimir Haensel for the development of the chemical engineering process of “Platforming” 
(short for Platinum Reforming), which was a platinum-based catalyst to efficiently convert 
petroleum into high-performance, cleaner-burning fuel

1995:	 John R. Pierce and Harold A. Rosen for their development of communication satellite 
technology

1993:	 John Backus for his development of FORTRAN, the first widely used, general-purpose, high-
level computer language

1991:	 Sir Frank Whittle and Hans J.P. von Ohain for their independent development of the turbojet 
engine

1989:	 Jack S. Kilby and Robert N. Noyce for their independent development of the monolithic inte-
grated circuit

For information on the nominating process, contact the Awards Office at the National 
Academy of Engineering at (202) 334-1266 or http://www.nae.edu/awards.

Recipients of the Charles Stark Draper Prize
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The 2006 Howard Musoff Student Mentoring Award was presented to 
Laura Forest, a Human-System Collaboration Engineer in the Software 
System Architectures and Human-Computer Interfaces (HCI) Depart-
ment. When asked about the importance of mentoring activities, Laura 

remarked, “It has been very rewarding to mentor and work with Draper Laboratory 
Fellows (DLF) and other student interns. I have especially enjoyed witnessing the 
students’ transformation as they step from undergraduate classroom-based prob-
lem solving to the broader scope of engineering research and subsequent publish-
ing. Seeing the students take the knowledge and experience I share with them and 
use it for their own growth is truly fulfilling.  Mentoring can also establish life-long 
contacts and friendships – I’m planning on attending one of my former DLF’s 
wedding in Reno, NV, this summer.  Additionally, the students contribute to my 
own professional development through the research areas they explore, the lead-
ership opportunities they present, and the associated expansion of my academic 
contacts.  I look forward to continuing mentoring relationships in the future.” 

In addition to her mentoring activities at 
Draper, for the past two years, Laura has 
been a volunteer with Science Club for 
Girls, a weekly after-school program in 
Cambridge. Volunteers perform a variety 
of science experiments with the girls and 
discuss their careers as scientists.

Laura’s primary research interests include 
cognitive engineering, human-guided 
algorithms, human factors, and HCI. She is 
currently working on projects that include 
research on human-guided algorithms, 
spacecraft automation for lunar landing, 
decision support for intelligence analysts, 
and requirements for facial recognition 
systems. A member of the Human Factors 
and Ergonomics Society (HFES), Society of 
Women Engineers (SWE), IEEE, and AIAA, 
Laura has a BS in Industrial and Systems 
Engineering from Georgia Tech and an MS 
in Aeronautics and Astronautics from MIT.

The Howard Musoff Mentoring Award 
was established in his memory in 2005. 
A Draper employee for more than 40 
years, Musoff advised and mentored 
many Draper Fellows. This award is given 
each February during National Engineers 
Week and recognizes staff members who, 
as Musoff did, share their expertise and 
supervise the professional development 
and research activities of Draper Fellows. 
The award, endowed by the Howard 
Musoff Charitable Foundation, includes 
a $1,000 honorarium and a plaque. Each 
Engineering Division Leader may submit 
one nomination of a staff person from his 
Division. The Education Office assists in 
the process by soliciting comments from 
students who were residents during that 
time period. The Selection Committee 
consists of the Vice President of Engineer-
ing, the Principal Director of Engineering, 
and the Director of Education.

The 2006 Howard Musoff Student

Award

mentoring

Laura Forest
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Anderson, A.D.; Supervisors: Gustafson, D.E.; Deyst, J. 
Recovering Sample Diversity in Rao-Blackwellized 
Particle Filters for Simultaneous Localization and 
Mapping
Master of Science Thesis, MIT, June 2006 

Bairstow, S.H.; Supervisors: Barton, G.H.; Deyst, J.J.
Reentry Guidance with Extended Range Capability for 
Low L/D Spacecraft
Master of Science Thesis, MIT, February 2006

Barker, D.R.; Supervisors: Singh, L.; How, J. 
Robust Randomized Trajectory Planning for Satellite 
Attitude Tracking Control
Master of Science Thesis, MIT, June 2006 

Beaton, J.S.; Supervisors: Dever, C.W.; Appleby, B.D. 
Human Inspiration for Autonomous Vehicle Tactics
Master of Science Thesis, MIT, May 2006

Bryant, C.H.; Supervisors: Armacost, A.P.; Abramson, 
M.R.; Kolitz, S.E.; Barnhart, C. 
Robust Planning for Effects-Based Operations
Master of Science Thesis, MIT, June 2006 

Chau, D.; Supervisors: Racine, R.J.; Liskov, B. 
Authenticated Messages for a Real-Time Fault-Tolerant 
Computer System
Master of Engineering Thesis, MIT, September 2006 

Earnest, C.A.; Supervisors: Dai, L.; Page, L.A.; Roy, N.; 
Barnhart, C. 
Dynamic Action Spaces for Autonomous Search 
Operations
Master of Science Thesis, MIT, March 2006

Harjes, D.I.; Supervisors: Clark, H.A.; Kamm, R.D. 
High Throughput Optical Sensor Arrays for Drug 
Screening
Master of Science Thesis, MIT, September 2006

Jimenez, A.R.; Supervisors: Kaelbling, L.P.; DeBitetto, P.A. 
Policy Search Approaches to Reinforcement Learning 
for Quadruped Locomotion
Master of Engineering Thesis, MIT, May 2006 

Krenzke, T.P.; Supervisors: McConley, M.W.; Appleby, B.D. 
Ant Colony Optimization for Agile Motion Planning
Master of Science Thesis, MIT, June 2006 

McAllister, D.B.; Supervisors: Kahn, A.C.; Kaelbling, L.P.; 
Jaillet, P. 
Planning with Imperfect Information: Interceptor 
Assignment
Master of Science Thesis, MIT, June 2006 

Mihok, B.E.; Supervisors: Miller, J.W.; Appleby, B.D. 
Property-Based System Design Method with Applica-
tion to a Targeting System for Small UAVs
Master of Science Thesis, MIT, June 2006 

Parikh, K.M.; Supervisors: Weinberg, M.S.; Freeman, D.M. 
Modeling the Electrical Stimulation of Peripheral 
Vestibular Nerves
Master of Engineering Thesis, MIT, September 2006

Ren, B.B.; Supervisors: Keshava, N.; Freeman, D.
Calibration, Feature Extraction and Classification of 
Water Contaminants Using a Differential Mobility 
Spectrometer
Master of Engineering Thesis, MIT, May 2006

Sakamoto, P.; Supervisors: Armacost, A.P.; Kolitz, S.E.; 
Barnhart, C. 
UAV Mission Planning Under Uncertainty
Master of Science Thesis, MIT, June 2006

Schaaf, B.T.; Supervisors: Andrews, G.L.; Appleby, B.D. 
Using Learning Algorithms to Develop Dynamic Gaits 
for Legged Robots
Master of Science Thesis, MIT, June 2006 

Smith, C.A.; Supervisors: Cummings, M.L.; Forest, L.M. 
Ecological Perceptual Aid for Precision Vertical 
Landings
Master of Science Thesis, MIT, June 2006 

Smith, T.B.; Supervisors: Nervegna, M.F.; Barnhart, C. 
Decision Algorithms for Unmanned Underwater 
Vehicles During Offensive Operations
Master of Science Thesis, MIT, June 2006 

Springmann, P.N.; Supervisors: Proulx, R.J.; Deyst, J.J. 
Lunar Descent Using Sequential Engine Shutdown
Master of Science Thesis, MIT, January 2006

Sterling, R.M.; Supervisors: Racine, R.J.; Liskov, B.H. 
Synchronous Communication System for a Software-
Based Byzantine Fault-Tolerant Computer
Master of Science Thesis, MIT, August 2006 

Swanton, D.R.; Supervisors: Brown, R.A.; Kaelbling, L.P. 
Integrating Timeliner and Autonomous Planning
Master of Science Thesis, MIT, August 2006 

Teahan, G.O.; Supervisors: Paschall II, S.C.; Battin, R.H.
Analysis and Design of Propulsive Guidance for Atmo-
spheric Skip Entry Trajectories
Master of Science Thesis, MIT, June 2006

Thrasher, S.W.; Supervisors: Dever, C.W.; Deyst, J.J. 
Reactive/Deliberative Planner Using Genetic Algo-
rithms on Tactical Primitives
Master of Science Thesis, MIT, June 2006
 
Varsanik, J.S.; Supervisors: Duwel, A.E.; Kong, J-A 
Design and Analysis of MEMS-Based Metamaterials
Master of Engineering Thesis, MIT, June 2006

During 2006, the Draper Fellow Program served 65 students from MIT and several other universities. Abstracts of theses 
completed this year are available on the Laboratory’s web site at www.draper.com. The list of completed theses follows:

2006 Graduate

Theses
research
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2006

Exposition

technology

Each year, Draper hosts a Technology Exposition (Tech 
Expo) to showcase recent projects and highlight the 
Laboratory’s core competencies. Held on October 
4-5 to coincide with the fall meeting of Draper’s 

Board of Directors and the Annual Meeting of the Corpora-
tion, guests included employees and Corporation members, 
students from local universities and Cambridge public schools, 
and sponsors. 

The exhibits featured developing technologies in the Labora-
tory’s program areas: strategic, tactical, space systems, special 
operations, biomedical engineering, and independent research 
and development. The exhibits also reflected the Laboratory’s 
core competencies: guidance, navigation, and control; embed-
ded, real-time software; microelectronics and packaging; 
autonomous systems; distributed systems; microelectrome-
chanical systems; biomedical engineering; and prototyping 
system solutions. In coordination with Draper’s Education 
Office, many projects also included graduate or undergraduate 
students on their teams. 

Draper’s subsidiary venture capital fund, Navigator Technology 
Ventures, LLC (NTV), displayed information about a number 
of its portfolio companies. These companies include Actuality 
Systems, Aircuity, Assertive Design, Food Quality Sensor (FQS) 
International, HistoRx, Polnox Corp., Polychromix, Renal-
works Medical Corp., Sionex Corp., and Tizor Systems.

Ray Barrington (left) and Stephen Smith 
(center) discuss Draper’s Space Programs 
with an interested visitor.

Malinda Tupper demonstrates one of several 
biological/chemical sensors under develop-
ment as Draper continues to pursue the 
smallest, most robust, and selective electronic 
detection platforms.

Linda Fuhrman shares her enthusiasm for space 
exploration and Draper’s role with Cambridge 
public school students.

Roger Wilmarth (left) and a Draper Fellow 
discuss innovations in small robotics systems 
for surveillance and rescue operations, includ-
ing precision airdrop systems, small undersea 
vehicles, and systems designed to overcome 
difficult mobility challenges.
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