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 2 Letter from the President and CEO, James D. Shields

As Draper’s new president, it is my 
pleasure to introduce this year’s 
edition of The Draper Technology 
Digest. An important element of our 

strategy is to focus on a limited set of critical 
technical capabilities and to maintain our skills 
in these areas at a world-class level. These capa-
bilities are:

•	 Guidance,	navigation,	and	control.

•	 Autonomous	air,	land,	sea,	and	space	
systems.

•	 Reliable,	fault-tolerant	embedded	systems.

•	 Miniature,	low-power	electronic	and	
mechanical systems.

•	 Large-scale	networked	systems	integration.

•	 Biomedical	engineering.

In each of these areas, we strive to be recognized 
as technology leaders through innovative appli-
cation of technology to solve sponsors’ prob-
lems. Technology leadership also requires that 
our staff share their accomplishments with the 
broader community by publishing, presenting 
at conferences, and serving on advisory boards 
and panels.

James D. Shields,
President and CEO

The Digest supports our efforts to encourage 
publishing by recognizing the authors of the best 
papers that were produced in the previous year. 
It also provides a forum to consolidate in a single 
volume a sampling of the technical accomplish-
ments across the range of our critical capabilities. 
The six papers this year cover topics in guidance, 
navigation and control, microelectromechanical 
systems	 (MEMS),	 and	 biomedical	 engineering.	
All were either published in a refereed journal or 
presented at a prestigious technical conference. 

Each	year,	during	National	Engineers	Week,	Eli	
Gai,	 our	 Vice	 President	 of	 Engineering,	 pres-
ents an award to the authors of the best techni-
cal paper published in the prior calendar year. 
Eli	also	gives	awards	recognizing	the	best	patent,	
the most effective task leader, and an outstanding 
mentor	to	students	who	work	at	the	Laboratory.		
I congratulate the winners of these awards, whose 
accomplishments are described in this issue.

Draper’s commitment to advanced technical educa-
tion through the Draper Fellows program, where 
Masters	and	PhD	candidates	are	supported	finan-
cially and academically by allowing them to do their 
thesis research on a Draper project, continued for 
the 34th	consecutive	year.	We	recognize	this	year’s	
graduates by listing them and their thesis titles. 



This issue marks the beginning of the second 
decade of the Draper Technology Digest. 
The fundamental purpose of the Digest is 
to recognize the outstanding achievements 

of Draper’s technical staff, as reflected in the papers 
published and patents awarded during the most recent 
calendar year. The Digest also recognizes the impor-
tant mentoring work performed by Draper’s technical 
staff	by	honoring	the	recipient	of	the	Howard	Musoff	
Student	Mentoring	Award.	This	year’s	Digest	features	
six excellent technical papers highlighting important 
hardware, software, and systems engineering achieve-
ments	 in	 support	 of	 our	 business	 areas	 of	 Space,	
Tactical,	 and	 Biomedical	 Systems.	 Also	 featured	 in	
this	year’s	Digest	are	the	recipients	of	the	Best	Patent	
issued	in	2006	and	the	winner	of	the	Howard	Musoff	
Student	Mentoring	Award	for	2006.	

The	first	paper	in	this	issue	by	Donald	Gustafson,	John	
Elwell,	 and	 J.	 Arnold	 Soltz	 was	 selected	 to	 receive	
the	 Vice	 President’s	 Award	 for	 Best	 Paper	 for	 2006.	
In this paper, a new approach to indoor geolocation 
in multipath environments based on geometry-based 
modeling	 is	described.	Simulation	 results	 show	 that	
this	approach	significantly	improves	indoor	geoloca-
tion accuracy.

The	second	paper	by	Amy	E.	Duwel,	Rob	N.	Chan-
dler,	 Thomas	 W.	 Kenny,	 and	 Mathew	 Varghese	
describes new tools to evaluate and optimize micro-
electromechanical	system	(MEMS)	structures	for	low	
thermoplastic damping. It includes an example that 
illustrates the use of the tools to design devices with 
higher	quality	(Q)	factors,	which	results	in	improved	
sensor performance.

The	third	paper	by	Zach	Putnam,	Robert	Braun,	Sarah	
Bairstow,	and	Greg	Barton	describes	modifications	of	
the skip trajectory entry guidance used in the Apollo 
Program	 for	 use	 in	 the	 planned	 Crew	 Exploration	
Vehicle	(CEV).	A	simulation	shows	that	the	modified	
guidance	significantly	improves	the	entry	footprint	of	
the	CEV	for	the	lunar	return	mission.

The	 fourth	 paper	 by	 Dale	 Landis,	 Tom	 Thorvald-
sen,	Barry	Fink,	Peter	Sherman,	and	Steven	Holmes	
describes optimal estimation techniques used to 
combine	 a	 Global	 Positioning	 System	 (GPS)/inertial	
Deep Integration algorithm with measurements from 

other sensors to provide accurate position informa-
tion over extended missions for a personal, wearable 
navigation	system.	A	field	test	of	the	system	conducted	
under	 realistic	 GPS-stressed	 conditions	 demonstrates	
the practicality of the design.

The	fifth	paper	by	Marc	Weinberg	and	Tony	Kourepe-
nis describes the error sources limiting the performance 
of	silicon	tuning-fork	gyroscopes	(TFGs)	and	the	tech-
niques that can be used to minimize them. The study 
includes	three	different	sensors:	the	Honeywell/Draper	
TFG,	 the	 Systron	Donner/BEI	 quartz	 sensor,	 and	 the	
Analog	Device/ADXRS.

The	last	paper	by	Mukund	N.	Desai,	David	N.	Kennedy,	
Rami	 S.	Mangoubi,	 Jayant	 Shah,	 Clem	 Karl,	 Andrew	
Worth,	Nikos	Makris,	 and	Homer	 Pien	 describes	 the	
application	 of	 a	 unified	 algorithm	 to	 smoothing	 and	
segmentation of diffusion tensor imaging in the brain. 
Results	show	improvement	in	brain	image	quality	both	
qualitatively and quantitatively, as well as the robust-
ness of the algorithm in the presence of added noise.

This	year,	two	patents	were	selected	for	the	Vice	Presi-
dent	 of	 Engineering’s	 Award	 for	 Best	 Patent:	 Multi-
Gimbaled	 Borehole	 Navigation	 System	 authored	 by	
Mitchell	 Hansberry,	 Richard	 Martorana,	 and	 the	 late	
Michael	Ash,	and	Flexural	Plate	Wave	Sensor	authored	
by	 Marc	 Weinberg,	 Brian	 Cunningham,	 and	 Eric	
Hildebrant.

Nine	 staff	members	 were	 nominated	 for	 the	Howard	
Musoff	 Student	 Mentoring	 Award,	 and	 the	 winner	
for	2006	was	Laura	Forrest.	Details	on	the	award	and	
Laura’s	accomplishments	can	be	found	on	page	86.
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Introduction 
A number of approaches have been suggested for locat-
ing and tracking people and objects inside buildings where 
Global	 Positioning	 System	 (GPS)	 operation	 is	 denied.	
Most	 of	 these	 use	 radio	 frequency	 (RF)	 phenomena	 and	
are	 limited	 in	performance	by	 a	 single	phenomenon:	RF	
multipath.	Performance	has	relied	on	the	ability	to	deter-
mine the direct path distance from a number of reference 
sources	to	the	person	or	object	of	interest.	Within	indoor	
environments, the received signal strength of indirect paths 
is often greater than the direct paths, sometimes resulting 
in undetected direct paths and detected indirect paths.[1] 
In these situations, methods based on direct paths cannot 
maintain accurate tracking over a period of time, particu-
larly when the object being tracked moves in an unpre-
dictable fashion. This limitation can be overcome in some 
cases by exploiting the geolocation information contained 
in the indirect path measurements.

Innovative Indoor Geolocation 
Using RF Multipath Diversity
Donald E. Gustafson, John M. Elwell, J. Arnold Soltz
Copyright © 2006, The Charles Stark Draper Laboratory, Inc. Presented at IEEE PLANS 2006, San Diego, CA, April 25-27, 2006

A new concept is presented for indoor geolocation in 
multipath environments where direct paths are sometimes 
undetectable. In contrast to previous statistically-based 
approaches, the multipath delays are modeled using a 
geometry-based argument. Assuming a series of specular 
reflections off planar surfaces, the model contains a maxi-
mum of three unknown multipath parameters per path that 
may	be	estimated	when	geolocation	accuracy	is	sufficiently	
high. If some of the direct paths subsequently become 
undetectable, it is possible under certain conditions to 
maintain geolocation accuracy using only the indirect path 
length measurements. The new concept is illustrated via 
simulation using a relatively simple representative scenario. 
Performance	is	compared	to	a	traditional	method	that	uses	
only direct path measurements, indicating the potential 
for	 significantly	 improved	 indoor	 geolocation	 accuracy	
in	environments	dominated	by	multipath.	Since	 the	esti-
mated multipath parameters are geometry-dependent, this 
approach allows the possibility of building up indoor map 
information as the geolocation process commences. 

abstractBest PaPer

2006
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This	paper	presents	a	new	solution	to	this	problem.	Rather	
than treating multipath signals as noise and attempting to 
mitigate multipath-induced errors, this technique exploits 
the multipath signals by using them as additional measure-
ments	within	 a	nonlinear	filter.	The	nonlinear	filter	uses	
simultaneous indirect and direct path measurements to 
build up parametric models of all detected indirect paths.
If one or more direct paths are subsequently lost, the 
nonlinear	filter	is	able	to	maintain	tracking	by	navigating	
off	 the	 indirect	path	measurements.	Previous	 approaches	
to indirect path length modeling have relied on statisti-
cal	models	(e.g.,	direct-path	length	plus	bias).	In	contrast,	
our approach is geometry-based. Of importance is the fact 
that the indirect path distance after a sequence of specu-
lar reflections off planar surfaces can be modeled exactly 
using only two parameters in two dimensions and three 
parameters in three dimensions, for any number of reflec-
tions. These parameters are estimated in real time in the 
nonlinear	filter.	

Problem Formulation 
A	typical	indoor	multipath	RF	signature	is	shown	in	Figure	
1,	assuming	a	bandwidth	of	200	MHz.[2]	Received	signal	
amplitude is plotted vs. time delay. The direct path ampli-
tude is below the detection threshold, while the amplitude 
of several indirect paths is higher than threshold. In partic-
ular,	 the	 strongest	 path	 is	 the	 first	 indirect	 path,	 which	
results in an error of 5.3 m for a geolocation system based 
on direct path measurements. 

 

Figure	1.	Typical	indoor	multipath	RF	signature.	

Indoor Geolocation System Architecture 
The architecture for the indoor geolocation system under 
consideration	is	shown	in	Figure	2.	Without	loss	of	gener-
ality, we consider the problem of tracking a single tran-
sponding	tag.	The	space	is	instrumented	with	multiple	RF	
sources	at	known	and	fixed	locations	(nodes).	Means	are	
available	to	identify	the	RF	source	without	error.	The	signal	
received at a node after reception and retransmission from 
the tag is modeled as 

,

where	z(t)	is	the	transmitted	signal,	subscript	i	refers	to	the	ith 
path,	(i	=	0	is	the	direct	path,	and	i	>	0	is	an	indirect	path),	
ai(t)	 is	 the	 complex	 attenuation	 factor,	 ti(t)	 is	 the	 path	
delay,	n(t)	is	noise,	m	is	the	number	of	indirect	paths,	and	
td is the processing delay within the tag, which is assumed 
to be known. The direct path delay is t0(t)	 =	 ||r(t)-s||/c,	
where	r(t)	is	the	tag	location,	s	is	the	node	location,	and	c	
is the signal propagation speed.

 

Figure	2.	Geolocation	system	architecture.

The differential delay is the excess delay of the indirect 
path relative to the direct path:

dti(t)	=	ti(t)	−	t0(t)	>	0	;	i	=	1,2,...,m.

A preprocessor is used to estimate all detected path delays. A 
number of methods have been developed for this purpose. 
In	Reference	 [3],	 the	 received	signal	was	modeled	as	 the	
sum of the direct-path signal and a delayed version (one 
indirect	path),	with	the	indirect	path	amplitude	less	than	
the	direct	path	amplitude.	Using	a	first-order	finite	impulse	
response	 filter	model,	 the	 differential	 delay	 and	 indirect	
path amplitude were estimated using the autocorrelation 
of the received signal. Another approach[4] used maximum 
likelihood to estimate the direct path delay in a multipath 
environment.	 In	 Reference	 [5],	 multipath	measurements	
were used to increase the accuracy of the direct path delay 
estimate. This method required an a priori statistical model 
of indirect path delay statistics. Differential delays were 
modeled	as	biases	 in	Reference	 [6],	 and	algorithms	were	
developed for multipath detection and bias estimation. In 
Reference	[7],	the	known	autocorrelation	function	within	
a	GPS	receiver	was	used	for	multipath	mitigation.	In	Refer-
ence	 [8],	 GPS	 differential	 delays	 were	 estimated	 using	 a	
multiple-hypothesis	Kalman	filter.	Differential	delays	were	
modeled	 as	 biases	 in	 Reference	 [9],	 and	 a	 particle	 filter	
was used for joint estimation of bias and tag location in an 
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 6 Innovative Indoor Geolocation Using RF Multipath Diversity

indoor environment. The statistical bias model was gener-
ated using ultra-wideband measurements. 

In practice, it is important to correctly associate each calcu-
lated	delay	with	the	direct	path	or	a	specific	indirect	path	
(i.e.,	a	specific	sequence	of	reflections	off	the	same	set	of	
reflecting	planes).	This	is	not	a	straightforward	process	in	
some scenarios with multiple nodes and complex envi-
ronments containing many reflecting surfaces of various 
orientations and size. The problem is made challenging by 
the presence of crossovers between pairs of time delays, 
appearance of new paths, disappearance and reappearance 
of existing paths, and the presence of noise. In order to be 
effective, the data association algorithm should be capable 
of detecting path persistence, so that the largest possible 
number	of	measurements	for	each	path	are	obtained;	this	
enhances the accuracy of multipath parameter estimation. 

All the methods mentioned above rely on a single param-
eter, the differential delay, for the multipath model. 
Multipath	estimation	is	based	on	a	priori	statistical	models	
of differential delay, typically as a bias (including means to 
detect	sudden	bias	changes)	or	output	of	a	low-order	linear	
filter.	In	contrast,	the	approach	suggested	here	is	based	on	
a geometrical model and the assumption that the indirect 
path length is the result of a series of specular reflections 
off planar surfaces. This model contains several geometry-
based parameters and does not depend on a priori statistical 
models of multipath delay. Thus, use of this model allows 
the possibility of inferring geometrical structure within the 
indoor	 environment.	We	 now	 develop	 the	measurement	
model	that	is	appropriate	for	use	in	a	nonlinear	filter	that	
is capable of joint estimation of tag location and the geom-
etry-based multipath parameters.

Geometry-Based Measurement Model
In the following, time delays have been converted into 
distances using the known signal propagation velocity in 
air. The indirect path distance after a sequence of m spec-
ular reflections off planar surfaces is derived as follows. 
Referring	 to	 Figure	 3,	 the	 relevant	 equations	 are,	 for	 i	 =	
1,2,...,m 

  
(1)

  (2)

  (3)

  (4)

and

  (5)

  
(6)

where pi is the specular point on the ith plane, d1 is the 
distance from the source to p1, {di	 ;	 i	 =	2,3...,	m}	 is	 the	

distance from pi−1 to pi, dm+1 is the distance from pm to r, wi 
is the unit vector along the incident ray, bi is the distance of 
the plane to the origin of the navigation frame, ui is the unit 
vector normal to the plane, and d is indirect path length. 
From	(1),	(5),	and	(6),

  
(7)

Thus,

 (8)

From	(3)	and	(4),

  (9)

Thus,

 (10)

But,	from	(1)	and	(2),

  
(11)

Figure	3.	Geometry	for	m	specular	reflections.
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Thus

 	(12)

Continuing,	we	find	that

  (13)

By	 induction,	 we	 see	 from	 (8),	 (12)	 and	 (13)	 that	 for	
k=1,2,…,m+1 

  (14)

The case of most interest is k = 1, which gives 

  
(15)

which can be written in the form

  (16)

where

  
(17)

is a scalar offset distance that contains contributions from 
all	m	reflections.		In	(16),	wm+1 is the unit vector from the 
last specular point to the tag and contains potentially useful 
information regarding the geometry of the indoor space.

The multipath parameters {wm+1, cm}	vary	as	the	tag	moves	
through the indoor space. If the variations are too large, 
the parameters may be essentially unobservable, resulting 
in	poor	performance.	Generally,	the	variations	decrease	as	
the	node	moves	away	from	the	tag.	To	see	this,	write	(5)	
in the form

  
(18)

where

Then

and

Since	M1 depends only on the orientation of the reflecting 
planes, wm+1 becomes independent of r as .	Similarly,	
from	(17),

  
(19)

so that

Thus, cm also becomes independent of r as . For typi-
cal indoor environments and tag motion, parameter values 
are generally stable enough to allow reasonable tag local-
ization accuracy. A representative example is given in the 
sequel to illustrate this point. An important limiting case 
is	 the	problem	of	navigation	using	GPS	measurements	in	
the	presence	of	multipath.	The	distance	to	the	nodes	(GPS	
satellites)	 is	essentially	 infinite	and	the	multipath	param-
eters are constant	 over	 sufficiently	 short	 periods	 of	 time	
where the effects of satellite motion may be ignored. This 
considerably	 simplifies	 the	 problem	 of	 navigating	 using	
GPS	measurements	in	multipath	environments.	

The indirect path parameter set {wm+1, cm}	contains	three	
unknown parameters in three-dimensional space and two 
unknown parameters in two-dimensional space. Impor-
tantly,	 the	 form	of	 (16)	 is	 independent	of	 the	number	of	
reflections,	 although	 the	 offset	 distance	 is	 significantly	
different. Hence, it does not matter that the number of 
reflections is unknown in practice, and the accuracy of 
estimating {wm+1, cm}	 is	 not	 affected	 by	 the	 number	 of	
reflections. For this reason, the reflection subscript m is 
dropped in the sequel.

Multipath Geolocation system Design
Equation	 (16)	 is	 in	 the	 form	 of	 a	 bilinear	measurement	
equation that can be handled using appropriate recursive 
nonlinear	filtering	methods	in	which	the	goal	is	to	track	the	
tag	location	r	and	estimate	the	multipath	parameters	{w,	c}	
simultaneously by processing a sequence of noisy measure-
ments	of	d	as	the	tag	moves	through	the	indoor	space.	Note	
that this model includes the unknown effects of additional 
path delays associated with attenuation through materials 
in which the signal propagation speed is slower than in 
air. 

If	the	parameters	are	known	exactly,	then	(16)	is	in	the	form	
of	 the	 usual	 linear	 measurement	 equation	 for	 a	 Kalman	
filter.	If	the	parameter	uncertainties	are	small	enough,	then	
tag position can be estimated with reasonable accuracy 
using	an	extended	Kalman	filter.	 In	some	practical	situa-
tions, the uncertainty associated with the initial parameter 
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estimates may be large enough to preclude the initial use of 
an	extended	Kalman	filter,	and	other	means	(e.g.,	particle	
filters,	multiple-hypothesis	filters,	information	filters)	must	
be used at least initially to get within the linear range of an 
extended	Kalman	filter.	

The	form	of	(16)	indicates	that	accurate	estimation	of	the	
multipath	 parameters	 {w,	 c}	 depends	 on	meeting	 several	
conditions:	 1)	 relatively	 accurate	 tag	 location	 estimates	
over	a	sufficient	length	of	time,	2)	tag	motion	sufficient	to	
ensure	observability	of	the	parameters,	3)	relatively	small	
variation of the of multipath parameters as the tag moves 
through	 the	 indoor	 environment,	 and	 4)	 persistence	 of	
the sequence of reflections. In the sequel, it is shown for a 
representative indoor scenario that the parameter variations 
tend to be relatively small as the tag moves through space, 
allowing reasonably accurate estimates of the multipath 
parameters to be obtained.

Data Association
A generic measurement data association algorithm is 
depicted in Figure 4. At any time, data for all current and 
past detected indirect paths are stored, both as all past raw 
measurement	associated	with	that	path	and	the	coefficients	
of low-order ordinary least squares regression models of 
the	 path	 delays.	When	 a	 new	measurement	 is	 obtained,	
the distance to all current paths is calculated by compar-
ing the predicted values in the current database with the 
new value. If the minimum distance is less than a prespeci-
fied	 threshold,	 then	 the	 closest	 current	 path	 is	 updated,	
including the regression model. If the distance exceeds the 
threshold,	 a	 new	 indirect	 path	 is	 started.	Note	 that	 new	
indirect paths may be started if a new path appears, an old 
path reappears, or a current path changes by a relatively 
large amount due to tag motion since the last measurement 
of that indirect path. The output of the data association 
algorithm is the identity of the path associated with the 
current measurement. 

	 Figure	4.	 Generic	measurement	data	association	
algorithm.

Nonlinear Filter
Tracking the tag position in real time is accomplished 
using	a	nonlinear	filter.	A	 two-step	process	was	used:	1)	
initialization	using	a	particle	filter,	and	2)	tracking	using	an	
extended	Kalman	filter.	The	purpose	of	the	particle	filter	is	
to reduce the initially large tag position uncertainty to an 
error that is within the linearization range of the extended 
Kalman	filter.	A	generic	particle	filter[10] can be used for 
initialization. Assuming no measurement data association 
errors,	 the	first	 few	direct-path	measurements	 from	each	
node	may	be	correctly	identified	and	processed	to	reduce	
the localization error to within the linearization region of 
an	extended	Kalman	filter.

Recursive	estimation	of	the	tag	location	and	the	multipath	
parameters	 is	 carried	 out	 in	 two	 sequential	 steps:	 1)	
propagation	between	measurements	and	2)	updating	at	a	
measurement. The tag position is assumed to propagate 
according to

  (20)

where	u(i	−1)		is	the	control.	In	the	sequel,	we	assume	that	
no	dead	reckoning	sensors	are	available	so	that	u(	i	−1)	is	
unknown.	The	state	vector	employed	in	the	filter	is	xT(i)	=	
[rT(i)	wT(i)	c(i)].	Between	measurements,	estimates	of	the	
conditional mean and error covariance matrix are propa-
gated	in	the	filter	using

  (21)

where	the	prime	(caret)	denotes	an	estimate	just	prior	to	
(just	after)	measurement	updating,

,

,

and	Q(i	−1)	>	0	 is	used	in	the	filter	 to	model	 the	uncer-
tainty	associated	with	the	unknown	control	u(i	−	1).	

From	 (16),	 the	 indirect	 path	 length	 measurements	 are	
modeled as

  (22)

where	n(i)	is	zero-mean	Gaussian	measurement	error.

Updating at a measurement is performed using the extended 
Kalman	filter	update	equations	(cf.,	Reference	[11])	

  (23)

where

is	 the	measurement	residual	and	K(i)	 is	 the	optimal	gain	
matrix:

  (24)

where

Update OLS models
(all  paths)
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d<threshStart new path
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and sn(i)	is	the	rms	measurement	error.

In case the parameters are assumed to be completely 
unknown initially, it is necessary to initialize the param-
eter estimates and the associated error covariance matrix 
using	the	first	several	measurements.	This	is	accomplished	
using	the	information	form	of	the	Kalman	filter.[12]	Let	a 
denote the parameter vector: aT(i)	=	[wT(i)	c(i)]	and	write	
the measurement equation as 

  (25)

Assume	 that	 the	 first	 k	 measurements	 are	 direct	 path	
measurements resulting in accurate estimates of tag posi-
tion and let

.

Then, using the recursion,

  (26)

  (27)

the initialization is:

  (28)

Direct path measurements are processed using the 
extended	Kalman	filter	equations	with	x	=	r,	h(x)	=  

.

Estimates	of	the	multipath	parameters	and	covariances	are	
unchanged.

example 
A relatively simple two-dimensional example is presented 
here to demonstrate the potential effectiveness of the 
proposed	 approach.	 The	 performance	 of	 two	 filters	 was	
compared:	1)	 the	multipath	filter,	 and	2)	 a	 conventional	
extended	 Kalman	 filter,	 which	 operates	 on	 direct	 path	
measurements	only.	A	single	RF	transponding	tag	is	moving	
within a 30 x 30-m area with planar walls. The initial condi-
tions	are	shown	in	Figure	5.	Two	fixed	RF	nodes	at	known	
locations are located at adjacent corners of the space. It 
is assumed that the signal attenuation associated with a 
reflection is large enough to preclude detection of signals 
resulting	from	more	than	one	reflection.	Multipath	signals	
are thus created by a single specular reflection off either a 
side	(East/West)	wall	or	the	South	wall.	A	single	5	x	10-m	
rectangular object is located within the room, which blocks 
all	RF	signals.	The	geometry	in	Figure	5	shows	the	direct	
paths	 (solid	 black	 lines)	 and	 the	 indirect	 paths	 (dotted	
black	lines)	to	the	transponding	tag	from	the	two	nodes.	
The two direct paths are unblocked. The two indirect paths 
resulting	 from	 reflection	 off	 the	 East	 and	West	walls	 are	
also	unblocked;	however,	the	two	indirect	paths	resulting	
from	reflection	off	the	South	wall	are	blocked.

Figure	5.	Example:	initial	conditions.

A	particle	filter	was	used	 initially	 to	 reduce	 the	 geoloca-
tion uncertainty to within the linearization region of 
an	 extended	 Kalman	 filter.	 A	 total	 of	 25	 particles	 was	
assumed, with the particles initially distributed uniformly 
within	the	room	(black	“x”	in	Figure	5).	The	initial	1-sigma	
error ellipse is shown by the dotted red circle. Initialization 
was accomplished by sequential processing of one direct 
path measurement from each of the two nodes (solid black 
lines)	 at	 the	 initial	 time.	 A	 standard	 sequential	 impor-
tance sampling algorithm[10] was used, with the normal-
ized importance weights proportional to the measurement 
likelihood function. The rms measurement error was sn 
=	 1	 ft.	 Since	 there	 were	 relatively	 few	 particles	 and	 the	
measurement error was much smaller than the initial posi-
tion	 uncertainty,	 the	 first	 particle	 filter	 update	 yielded	
only two unique particle locations (population = 10 and 
15),	 an	 example	 of	 the	 well-known	 problem	 of	 particle	
impoverishment. A simple spreading algorithm was used 
to increase particle diversity. The particles at each location 
were	spread	by	sampling	from	a	Gaussian	distribution	with	
an	rms	value	of	1.5	m/axis.	The	same	process	was	followed	
after	updating	using	the	measurement	from	Node	2.

The results of the initialization procedure are shown in 
Figure	6.	Both	filters	were	 initialized	with	 the	 same	esti-
mates. The particle mean was used to initialize the tag posi-
tion estimates to

meters, while the tag position error covariance matrices 
were	 initialized	 to	 P(1)	 =	 0.09	 I2 meter2, in agreement 
with the assumed rms measurement error. The maximum 
dispersion	of	any	particle	from	the	true	tag	location	was	5.7	
m, so that the dispersion of the particles was reduced to 
the	point	where	initialization	of	the	extended	Kalman	filter	
could be performed.
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Figure	6.	Conditions	after	particle	filter	initialization.

Available measurements were processed every 0.5 s. Tag 
speed	was	 held	 constant	 at	 0.5	m/s.	No	dead	 reckoning	
sensors were employed, so that the geolocation estimates 
calculated	 by	 both	 filters	 were	 not	 propagated	 between	
measurements;	 however,	 the	 error	 covariance	 matrices	
were	increased	within	both	filters	using	(21).	The	process	
noise	covariance	matrix	Q(i)	=	v(i)I	was	calculated	using	
sequential differencing of the position estimates to estimate 
the	variance	v(i).

The	 simulation	was	 run	 for	94	 s	 at	 a	 time	 step	of	0.5	 s.	
The	time	delay	(in	meters)	for	the	direct	and	indirect	paths	
are	plotted	in	Figure	7.	The	two	indirect	paths	from	Node	
1 have a single crossover point at 20 s. The two indirect 
paths	from	Node	2	have	a	single	crossover	point	at	70	s,	
with	 a	near-crossover	 at	17	 s.	The	data	 association	 algo-
rithm given in the previous section was employed using 
quadratic regression models and produced no data associa-
tion errors. 

The	 true	 and	 estimated	 paths	 over	 time	 for	 both	 filters	
are	shown	in	Figure	8.	True	tag	location	is	shown	by	the	
solid	black	line.	The	estimated	path	for	the	multipath	filter	
(MP)	 is	 shown	 by	 the	 solid	 colored	 line,	while	 the	 esti-
mated	path	for	the	conventional	filter	(CV)	is	shown	by	the	
dotted	colored	line.	While	both	direct	paths	are	detected	
(for	the	first	55	s),	the	MP	filter	and	the	CV	filter	produce	
identical	geolocation	estimates	(blue	line).	After	the	direct	
path	from	Node	2	is	lost	at	55.5	s,	the	CV	filter	is	able	to	
navigate	off	the	direct	path	from	Node	1	only,	while	the	MP	
filter,	in	addition,	is	able	to	navigate	off	the	indirect	path	
from	Node	1	 reflected	off	 the	bottom	wall	 and	 the	 indi-
rect	path	from	Node	2	reflected	off	the	West	wall.	The	MP	
filter	estimate	(solid	red	line)	produces	very	small	tracking	
errors,	while	the	CV	filter	errors	(dotted	silver	line)	start	to	
grow.	When	both	direct	paths	become	undetected	at	73.5	
s,	 the	CV	filter	can	no	 longer	 track	at	all;	 its	geolocation	
estimate remains constant for the remainder of the simula-
tion.	In	comparison,	the	MP	filter	is	able	to	navigate	off	the 

 

Figure	7.	Measurement	delay	vs.	time.

Figure	8.	Comparison	of	true	and	estimated	paths.	

detected	indirect	paths.	Between	73.5	and	77.5	s,	the	MP	
filter	navigates	off	the	indirect	path	from	Node	1	reflected	
off	the	bottom	wall	and	both	indirect	paths	from	Node	2.	
At	78	s,	the	indirect	path	from	Node	2	reflected	from	the	
West	wall	becomes	undetected,	and	the	MP	filter	is	reduced	
to using both indirect path measurements off the bottom 
wall.	At	84	s,	all	four	indirect	paths	become	detectable	and	
are	used	by	the	MP	filter	until	the	end	of	the	simulation.	
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	 Figure	9.	 North	position	tracking	performance	
comparison.

Figures	 9	 and	 10	 compare	 the	 tracking	 performance	 for	
the	 two	 filters	 along	 North	 and	 East.	 Position	 estimate	
histories	are	shown	in	the	top	panel.	Solid	lines	show	MP	
estimates,	while	dotted	lines	show	CV	estimates;	red	lines	
begin	at	55.5	s,	when	the	direct	path	from	Node	z	is	lost.	
The	middle	panel	displays	the	error	histories	for	MP,	while	
the	bottom	panel	 displays	 the	 error	histories	 for	 the	CV.	
True	errors	are	 indicated	by	solid	 lines	and	filter-derived	
1s error bounds are shown in dotted lines. The red lines 
indicate	the	performance	after	the	direct	path	from	Node	2	
is	lost	at	55.5	s.	The	ability	of	MP	to	recover	over	the	last	10	
s, after all four indirect paths are detected, is clearly shown. 
In	comparison,	CV	cannot	use	the	indirect	path	measure-
ments and its geolocation errors continue to diverge.

Multipath	parameter	estimation	performance	is	shown	in	
Figure	11	for	the	two	indirect	paths	associated	with	Node	1	
and in Figure 12 for the two indirect paths associated with 
Node	2.	 In	 this	 two-dimensional	example,	 the	multipath	
parameters are the angle y(i)	 =	 arctan(x1(i)/x2(i))	 (four	
quadrant)	and	the	offset	parameter	c(i).	In	the	figures,	the	
solid black lines denote the true parameter values. The 
blue lines denote the estimates during periods of time 

 

	 Figure	10.	North	position	tracking	performance	
comparison.

when the multipath parameters are being estimated (direct 
and indirect path measurements are available simultane-
ously),	 while	 the	 red	 lines	 denote	 the	 estimates	 during	
periods when direct path measurements are unavailable.

 

	 Figure	11.	Multipath	parameter	estimation:	Node	1	
measurements.
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	 Figure	12.	Multipath	parameter	estimation:	Node	2	
measurements.

For	Node	1,	the	parameters	for	the	first	indirect	path	(off	
the	West	wall)	are	estimated	with	reasonable	accuracy	after	
40	 s.	The	parameters	 for	 the	 second	path	 (off	 the	South	
wall)	cannot	be	estimated	for	the	first	27	s	since	the	indirect	
path	is	blocked	by	the	rectangular	object.	When	estimation	
commences	at	27.5	s,	the	parameters	are	almost	immedi-
ately estimated with high accuracy, and this accuracy level 
continues	until	the	direct	path	is	blocked	at	73.5	s.

For	Node	2,	the	parameters	for	the	first	indirect	path	(off	
the	 East	 wall)	 are	 estimated	 with	 reasonable	 accuracy	
after 45 s. The direct path becomes blocked at 55.5 s, so 
that further updating of the parameter estimates was not 
possible.	 The	 second	 indirect	 path	 (off	 the	 South	 wall)	
was	blocked	for	the	first	34	s.	At	34.5	s,	the	indirect	path	
became unblocked and the indirect path parameters were 
estimated.	 At	 the	 next	 time	 step	 (35	 s),	 the	 direct	 path	
became blocked and remained blocked for the remain-
der of the simulation, precluding further estimation of the 
indirect path parameters. Thus, in this case, the indirect 
parameter estimates are based on a single measurement 
pair.

As discussed previously, the variation in the true multipath 
parameters was relatively small in this representative 
example, so that relatively accurate tag tracking could be 
maintained when it was no longer possible to perform 
parameter estimation.

Conclusion
A new approach is suggested for the problem of indoor 
geolocation in the presence of dominating multipath using 
RF	 time-of-arrival	 measurements.	 Multipath	 delays	 are	
modeled using a geometry-based argument. Assuming a 
series of specular reflections off planar surfaces, the model 
contains a maximum of three unknown multipath param-
eters per path, which may be estimated in a nonlinear 
filter.	 Simulation	 results	 for	 a	 relatively	 simple	 represen-
tative example suggest that multipath parameters can be 
estimated	with	sufficient	accuracy	to	maintain	geolocation	
accuracy when one or more direct paths are undetected. 
This approach allows the possibility of building up indoor 
map information as the geolocation process commences. 
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Nomenclature
Variable  Physical Definition 

E		 Young’s	modulus	
a	 Coefficient	of	thermal	expansion	
To		 Nominal	average	temperature	(300	K)	
r Density of solid 
Csp		 Specific	heat	capacity	of	a	solid	
Cv		 Heat	capacity	of	a	solid,	Cv = rCsp 
k  Thermal conductivity of a solid 
wmech		 Mechanical	resonance	frequency	
tn		 Characteristic	time	constant	for	thermal	mode	n	
s		 Stress		
e		 Strain		
l,	µ		 Elastic	Lamé	parameters	
T  Temperature 
S		 Entropy	
[u		v		w]		 Components	of	displacement	in	x,y,	and	z	directions,	respectively	

 = [u,  v] 2D vector of mechanical displacements 
Um		 Mechanical	mode	amplitude	

m	 Mechanical	eigenmode	shape	function	
wm		 Mechanical	resonant	frequency	for	eigenmode	m	
An  Thermal mode amplitude 
Tn  Thermal eigenmode shape function 
wth		 Characteristic	frequency	of	dominant	thermal	mode	
DW		 Energy	lost	from	mechanical	resonator	system	
W		 Energy	stored	in	mechanical	resonator	
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This paper presents two approaches to analyzing and calculat-
ing thermoelastic damping in micromechanical resonators. The 
first	approach	solves	the	fully	coupled	thermomechanical	equa-
tions that capture the physics of thermoelastic damping in both 
two	and	three	dimensions	(2D	and	3D)	for	arbitrary	structures.	
The second approach uses the eigenvalues and eigenvectors of 
the uncoupled thermal and mechanical dynamics equations to 
calculate	damping.	We	demonstrate	the	use	of	the	latter	approach	
to identify the thermal modes that contribute most to damping, 
and present an example that illustrates how this information 
may	be	used	to	design	devices	with	higher	quality	factors.	Both	
approaches	are	numerically	implemented	using	a	finite-element	
solver	 (Comsol	Multiphysics).	We	calculate	damping	 in	 typical	
micromechanical	resonator	structures	using	Comsol	Multiphys-
ics and compare the results with experimental data reported in 
literature for these devices. 

abstract
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Introduction 
Micromechanical	 resonators	 are	 used	 in	 a	 wide	 variety	
of applications, including inertial sensing, chemical and 
biological sensing, acoustic sensing, and microwave trans-
ceivers. Despite the distinct design requirements for each 
of these applications, a ubiquitous resonator performance 
parameter emerges. This is the resonator’s Quality factor 
(Q),	which	describes	the	mechanical	energy	damping.	In	
all applications, it is important to have design control over 
this parameter, and in most cases, it is invaluable to mini-
mize the damping. Over the past decade, both experimen-
tal and theoretical studies[1]-[6],[9],[22] have highlighted the 
important	role	of	thermoelastic	damping	(TED)	in	micro-
mechanical resonators. However, the tools available to 
analyze	and	design	around	TED	in	typical	micromechani-
cal resonators are limited to analytical calculations that 
can be applied to relatively simple mechanical structures. 
These	 are	based	on	 the	defining	work	done	by	Zener	 in	
References	[7]	and	[8].	

Zener developed general expressions for thermoelastic 
damping	 in	 vibrating	 structures,	 with	 the	 specific	 case	
study	of	a	beam	in	its	fundamental	flexural	mode.	In	Refer-
ence	 [8],	 Zener’s	 calculation	 was	 based	 on	 fundamental	
thermodynamic expressions for stored mechanical energy, 
work, and thermal energy that used coupled thermal-
mechanical constitutive relations for stress, strain, entropy, 
and temperature. However, in order to evaluate these 
energy	expressions	for	a	specific	resonator,	Zener	proposed	
that the strain and temperature solutions from uncoupled 
dynamical equations	 could	 be	 sufficient.	 He	 found	 the	
eigensolutions of the mechanical equation, and, separately, 
the eigensolutions of the uncoupled thermal equation. 
By	 applying	 these	 to	 the	 coupled	 thermodynamic	 ener-
gies, Zener calculated the thermoelastic Q of an isotropic 
homogenous resonator to be:   

 	 (1)	

where	the	physical	constants	are	listed	in	the	Nomenclature,	
wmech is the mechanical resonance frequency, and tn is the 
characteristic time constant of a given thermal mode. This 
takes into account the fact that multiple thermal modes 
may add to the damping of a single mechanical resonance. 
The contribution of a given mode, n, is determined by its 
weighting function, fn. 

Zener explicitly calculated the weighting functions for a 
simple beam resonating in its fundamental flexural mode. 
In order to make the analysis tractable, he assumed that 
only thermal gradients across the beam width (dimension 
in	 the	direction	of	 the	flexing)	were	 significant.	This	 left	
only a 1D thermal equation to solve. Zener found that a 
single thermal mode dominated, giving

 	 (2)

Few	structures	are	amenable	to	the	simplifications	that	led	
to	expression	(2)	for	Q.	However,	Zener’s	expression	(1)	is	
quite	general.	In	the	section	“Weakly	Coupled	Approach	to	
TED	Solutions,”	we	show	how	numerical	solutions	to	the	
uncoupled mechanical and thermal dynamics of a resona-
tor	can	be	used	to	evaluate	(1).	This	adds	a	great	deal	of	
power to Zener’s approach, since arbitrary geometries can 
be considered. 

We	show	how	Zener’s	weighting	function	approach	offers	
an intuition into the details of the energy transfer. At the 
same time, our results highlight the limits of intuition in 
identifying the thermal modes of interest. For example, we 
find	that	the	simplification	Zener	made	in	assuming	only	
thermal gradients in one direction along the beam were 
significant	 does	 not	 capture	 the	most	 important	 thermal	
mode, even for a simple beam. In addition, past efforts 
to estimate Q without explicitly calculating the weighting 
functions have been shown[9] to greatly overestimate the 
damping	behavior	of	 real	 systems.	This	 “modified”	 inter-
pretation of Zener’s method can be misleading. 

In this paper, we describe a method for using full numeri-
cal	solutions	to	evaluate	Q	using	Zener’s	approach.	We	call	
this	 a	 “weakly	 coupled”	 approach.	 We	 also	 present	 our	
numerical method for solving the fully coupled thermo-
elastic dynamics equations to calculate Q for an arbitrary 
structure. Using numerical solutions in the weakly coupled 
approach offers powerful guidance in engineering around 
thermoelastic damping, while fully coupled solutions offer 
the ability to precisely evaluate and optimize the thermo-
elastic Q of a resonator. 

Numerical solution of the Fully Coupled teD
equations 
The coupled equations governing thermoelastic vibrations 
in	 a	 solid	 are	 derived	 in	 Reference	 [19].	 The	 following	
section,	 “Governing	Equations	 in	3D,”	outlines	 the	basic	
principles	of	this	derivation.	“Governing	Equations	in	2D	
with	 Plane	 Stress	 Approximations”	 highlights	 modifica-
tions required for a 2D plane stress formulation. The full 
2D and 3D equations are written explicitly so that they are 
accessible	to	the	user	community.	We	numerically	solve	the	
2D	and	3D	dynamical	equations	using	the	finite-elements	
based	package	Comsol	Multiphysics.[11]	The	Comsol	imple-
mentation	 is	described	 in	References	 [12]	and	[13].	This	
analysis can be applied to the wide variety of microelectro-
mechanical	system	(MEMS)	resonator	structures	reported	
in the literature. It is a useful tool for determining whether 
TED	limits	performance	or	whether	other	damping	mecha-
nisms, such as anchor damping,[23] should be investigated 
instead.	 “Quality	 Factor	 Calculations	 for	 Typical	 MEMS	
Resonators”	demonstrates	the	application	of	TED	simula-
tions	to	a	few	example	MEMS	resonator	structures.	Quality	
factors	are	calculated	and	compared	with	the	analytical	Eq.	
(1)	as	well	as	with	experimental	measurements	reported	in	
the literature. 
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Governing Equations in 3D 
The constitutive relations for an isotropic thermoelastic 
solid, derived from thermodynamic energy functions, are 
in matrix form

 	 (3)

and

 	(4)

where reduced tensor notation has been used, and the vari-
ables	are	defined	in	the	Nomenclature.	

To obtain the coupled dynamics, the constitutive relations 
are applied to the force balance constraints and Fourier’s 
law of heat transfer. Force balance in the x direction gives

 	 (5)

with similar relations for the y and z directions. 

Substituting	 displacement	 for	 strain	 and	 simplifying,	 the	
3D equations of motion become

  
  

(6)

    
  

(7)

    
  

(8)

To obtain the thermal dynamics, we apply Fourier’s law

 	 (9)

The constitutive relations are applied, and the resulting 
equation is linearized around To, the ambient temperature, 
to give, in 3D

  (10)

In	summary,	Eqs.	 (6)-(8)	and	(10)	 form	a	set	of	coupled	
linear	equations	in	3D.	Since	the	equations	are	linear,	we	
can	use	a	finite-elements-based	approach	to	solving	them	
on	an	arbitrary	geometry.	We	solve	for	the	unforced	eigen-
modes. The generalized eigenvectors contain u, v, w, and 
T at every node. The eigenvalues, wi, are complex. The 
imaginary component represents the mechanical vibration 
frequency, while the real part provides the rate of decay for 
an unforced vibration due to the thermal coupling. The 
quality	factor	of	the	resonator	is	defined	as

 	 (11)

Governing Equations in 2D with Plane Stress 
Approximations 
For long beams in flexural vibrations, we can identify one 
axis	 (we	 chose	 to	 be	 z)	 in	which	 all	 strains	 are	 uniform	
and	no	loads	are	applied.	For	clarity,	we	define	the	x	axis	
along the beam length and the y axis in the direction of 
flexing. Along the z direction s3, s4, and s5 must be zero 
throughout the structure. This is essentially a plane stress 
approximation.	When	s3	=	0	is	applied	to	Eq.	(3)	above,	
we	find	that	

 	 (12)

In the plane stress approximation, the force balance rela-
tion	(5)	is

 	 (13)

Expanding	the	stress	terms	using	the	constitutive	relations

 
	 	 (14)

Applying	(12)	to	(14),	the	equations	of	motion	become

    
  

(15)

   
  

(16)

The linearized temperature equation is

 	 (17)

We	apply	Eq.	(12)	and	also	neglect	z-directed	temperature	
gradients to obtain
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 	 (18)

In	summary,	Eqs.	(15)-(16)	and	(18)	form	a	set	of	coupled	
linear	 equations	 in	 2D.	 In	 order	 to	 find	Q,	we	 solve	 for	
the unforced eigenmodes. The generalized eigenvectors 
contain u, v, and T at every node.

Quality Factor Calculations for Typical MEMS 
Resonators 
The	thermoelastic	Q	values	for	several	example	MEMS	reso-
nators have been calculated. Table 1 introduces the resona-
tor structures and the material parameters used. In Table 
2, we summarize the simulated Q values for the various 
structures.	We	 compare	 simulated	 results	 to	 calculations	
based	on	Eq.	(2)	where	applicable.	We	also	compare	to	data	
reported in the literature. In some cases, the experimental 
data appear to have achieved the thermoelastic limit. For 
these	devices,	it	is	clear	that	structural	modifications	that	

can engineer a higher thermoelastic limit are warranted. In 
devices where the measured Q value is less than half the 
thermoelastic limit, investigation into and minimization of 
other damping mechanisms is warranted. 

A polysilicon beam resonating in its fundamental flexural 
mode was simulated and compared to measurements.[9]	In 
the experiments, the beam was actually part of a doubly 
clamped tuning fork to minimize anchor damping. For a 
resonator	operating	at	0.57	MHz,	the	measured	Q	equaled	
10,281.	Zener’s	formula,	Eq.	(2),	predicts	Q	=	10,300,	for	
the	beam	at	0.57	MHz	and	with	t = a2/p2 Dth (a = 12-µm 
beamwidth in the direction of flexural motion, and Dth = 
k/rCsp).	The	simulations	used	only	a	single	clamped	beam	
with dimensions matching the beam of the tuning fork. 
The	simulated	frequency	was	0.63	MHz	and	the	simulated	
TED	 Q	 =	 10,211.	 This	 remarkable	 correlation	 between	
simulation results and experiments suggests that the flex-
ural beam Q is limited by thermoelastic damping. Higher 
thermoelastic	Q	might	be	achieved	by	geometry	modifica-
tions	as	explored	in	Reference	[9]	or	by	fabricating	a	given	
structure	from	different	materials	as	explored	in	Reference	
[6]. 

Resonator Units Flexural 
(2D)

Longitudinal 
(2D)

Longitudinal 
(3D)

Torsional 
(3D)

Flexural with 
Slit (3D)

Material Polysilicon Silicon Si0.35Ge0.65 Silicon Polysilicon

Material	Property	References Ref.	[9] Refs.	[14],	[24] Ref.	[9]

Critical	Dimensions µm 400 x 12 x 20 290 x 10 x 10 32 x 40 x 2.2 5.5 x 2 x 0.2 150 x 3.5 x 35

Young’s	Modulus GPa 157 180 155 180 157

Density kg/m3 2330 2330 4810 2330 2330

Specific	Heat J/kg	•	K 700 700 377 700 700

Thermal	Conductivity W/m	•	K 90 130 59 130 90

Thermal	Expansion	Coeff. ppm/K 2.6 2.6 4.3 2.6 2.6

Table	1.	Summary	of	Parameters	Used	in	Q	Simulation	and	Calculations	for	a	Longitudinal	Resonator.

Table	2.	 Summary	 of	 Simulated	Q	Values	 for	 a	 Selection	 of	MEMS	Resonators.	 Simulation	Results	Are	Compared	with	
Calculations	Based	on	Zener’s	Single-Mode	Approximation	and	Measured	Results	Reported	in	the	Literature.

Resonator Simulated 
Frequency

Measured 
Frequency

Simulated
Q

Analytical
Q

Measured
Q

Experimental 
Reference

Fixed-fixed
beam 2D

0.63	MHz 0.57	MHz 10,300 10,300 10,281 Reference	[9]

Longitudinal
2D

15.3	MHz 14.7	MHz 1,650,000 N/A 170,000 Reference	[20]

Longitudinal
3D

70.5	MHz 74.4	MHz 366,000 N/A 2863 Reference	[15]

Torsional
3D

4.4	MHz 5.6	MHz 2E8 N/A 3300 Reference	[16]

Fixed-fixed
beam 2D

1.27	MHz 1.15	MHz 26,000 N/A 5600 Reference	[21]
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A	Si0.35Ge0.65 capacitively-actuated, longitudinal mode 
resonator was modeled and simulated based on geom-
etry	 information	 provided	 in	 Reference	 [15]	 and	 mate-
rial	properties	 reported	 in	References	 [14],	 [24].	4	µm	×	
4	µm	anchors	were	included	in	the	simulation,	with	fixed	
boundary	conditions	at	the	ends	of	the	anchors.	Quévy	et	
al.	report	the	Q	measurement	of	2863	for	the	fundamental	
longitudinal	mode	of	a	bar	resonator.	Equation	(2)	was	not	
applied to calculate the analytical Q, since the derivation 
was	 for	 flexural	modes	 only.	We	find	 that	 the	TED	Q	 is	
two orders higher than the measured Q. This suggests that 
thermoelastic damping, for the fundamental longitudinal 
mode,	is	not	a	significant	contributor	to	the	overall	energy	
loss in this resonator. Other mechanisms, such as anchor 
damping, are being optimized by this group with tangible 
impact on Q being reported.[25] 

A second longitudinal resonator was also simulated. The 
device	described	in	Reference	[20]	is	single-crystal	silicon,	
and	 its	 resonance	 length	of	290	µm	far	exceeds	 its	other	
dimensions. This resonator is also capacitively actuated 
and	operates	 at	14.7	MHz.	The	measured	Q	 is	170,000,	
while the simulated thermoelastic Q is an order of magni-
tude larger. This device also does not appear to be thermo-
elastically limited. 

A paddle resonator operating in its torsional resonance 
was simulated. The simulation model was based on the 
nonmetalized	 silicon-on-insulator	 (SOI)	device	described	
in	Reference	 [16].	Fixed-fixed	boundary	conditions	were	
applied to the ends of the tethers. The simulated resonant 
frequency was about 20% lower than the measured torsional 
frequency. The value of Young’s modulus used in the simu-
lations	was	on	the	high	end	of	values	reported	in	Reference	
[17],	so	 is	unlikely	 to	explain	the	discrepancy.	Analytical	
calculation	of	the	torsional	frequency	using	Reference	[18]	
given	a	total	torsional	stiffness	of	9.4	×	10-12	N	•	m/rad	for	
the	beams,	and	a	second	moment	of	inertia	of	1.3	×	10-26 
kg	•	m2	 for	 the	plate	 yields	4.3	MHz,	within	3%	of	 the	
simulated result. The discrepancy between the measured 
frequency and the theoretical frequencies may be the result 
of fabrication-induced variations in the sample dimensions. 
Evoy	 et	 al.	 reported	 experimental	Q	 values	 in	 the	 range	
of 3300 for room temperature measurements, while the 
simulations predict thermoelastic Q values of 200 million. 
The simulated result is consistent with the physical under-
standing that torsional deformations produce little or no 
volumetric expansion and should therefore have negligible 
thermoelastic damping.

Finally, the flexural mode polysilicon beam with a center 
opening	described	 in	Reference	 [21]	was	 simulated.	The	
case with a beam length of 150 µm and width of 3.5 µm 
was	considered.	Since	the	material	parameters	of	the	device	
were	not	available,	we	used	the	polysilicon	values	of	Refer-
ence	 [9].	 Although	 the	 center	 opening	 dimensions	were	
not	 provided,	 the	 scanning	 electron	 microscope	 (SEM)	
indicated	that	the	slit	was	extremely	narrow.	Using	Comsol	

Multiphysics,	the	narrowest	slit	we	were	able	to	model	was	
0.1 µm wide, centered in the 3.5-µm beamwidth. The slit 
was also centered in the 35-µm beam height, spaced 2 µm 
from top and bottom. The measured Q was 5600, while 
the	simulated	TED-limited	Q	was	26,000.	This	simulated	
Q dropped to 25,000 for a solid polysilicon beam at the 
same	frequency.	We	also	simulated	a	wider	slit	and	found	
that the Q went up to 26,200 for a slit 0.35 µm wide. This 
suggests that at this frequency, the polysilicon beam has a 
TED-limited	Q	that	starts	at	25,000	and	can	be	increased	
with an increasingly wider slit. The experimental refer-
ence may have had a narrower slit than we were able to 
model, but the simulations were useful in bounding the 
TED-limited	 Q	 between	 approximately	 25,000-26,000	
and	in	identifying	the	trend.	The	TED	Q	is	about	4.5	times	
higher than the experimentally measured Q. Though the 
device	does	not	appear	 to	be	TED	 limited,	 thermoelastic	
damping is clearly important in this device and can still 
be optimized. 

Weakly Coupled approach to teD solutions  
Thermoelastic	damping	 in	MEMS	 resonators	 can	 also	be	
calculated via a weakly coupled approach proposed by 
Zener. This approach uses eigenvalue solutions to the 
uncoupled mechanical and thermal equations.[8]	We	show	
how to numerically implement Zener’s approach so that 
structures more complicated than a solid beam can be stud-
ied.	While	the	fully	coupled	numerical	analysis	presented	
in the previous section is much more accurate, we empha-
size that Zener’s approach can offer design insights that 
might not otherwise be possible. The next four sections 
describe the analysis. For simplicity, the formulas in this 
section are written for the 2D case and use vector nota-
tions, with

where u and v are the displacements in the x and y direc-
tions, respectively. 

In	 the	 next	 section,	 “Modal	 Solutions	 to	 Thermal	 and	
Mechanical	Systems,”	we	introduce	time-harmonic	modal	
expansions for the mechanical and thermal domain solu-
tions.	Both	the	thermal	modes	and	the	mechanical	modes	
of a given structure can be found numerically by eigen-
value analysis, assuming no thermoelastic coupling. This 
section also shows how to calculate the relative thermal 
mode amplitudes that are driven by the one mechanical 
mode. The two sections that follow introduce two expres-
sions	 for	 the	energy	 loss	per	cycle.	 In	 “Energy	Lost	 from	
Mechanical	 Domain,”	 the	 mechanical	 energy	 loss	 as	 a	
function of mechanical and thermal modes is derived. 
By	energy	conservation,	this	is	equal	to	the	energy	trans-
ferred	 to	 the	 thermal	 domain.	 In	 “Energy	 Transferred	 to	
Thermal Domain,” the energy coupled into the thermal 
domain	is	taken	directly	from	Reference	[8],	where	the	net	
heat rise is derived in terms of the entropy generated per 
cycle. The expressions for energy lost per cycle in these 
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two sections can be evaluated directly from the modal solu-
tions obtained numerically. Although it is not obvious on 
inspection that the two expressions are algebraically iden-
tical,	energy	conservation	requires	that	they	are	equal.	We	
have validated this numerically for isotropic solids, and 
Reference	 [8]	provides	 an	algebraic	proof	 for	 solids	with	
cubic symmetry. 

In	“Using	Weighting	Functions	to	Optimize	a	UHF	Beam	
Resonator,”	we	 apply	 the	weakly	 coupled	 formulation	 to	
the cases of a solid beam and two versions of a slotted 
beam.	We	describe	insights	gained	by	studying	the	modes	
obtained in the weakly coupled approach. In each exam-
ple, we compare the Q value found with the Q calculated 
through a fully coupled analysis. A thorough experimen-
tal study of the slotted beam is referenced,[9]	where	TED	
calculations are compared with experimental measure-
ments over a wide range of frequencies. 

Modal Solutions to Thermal and Mechanical Systems 
Zener	 first	 identified	 the	 mechanical	 resonant	 mode	 of	
interest and assumed a sinusoidal steady state of the form

 	 (19)

This is the mth	eigensolution	to	the	vector	version	of	Eqs.	
(15)-(16),	without	the	thermal	coupling	term.	 (x,y)	is	a	
real valued modal shape function, Um is the mode ampli-
tude, and wm	 is	the	mechanical	resonant	frequency.	Note	
that the shape functions and frequencies can be found 
numerically	using	either	Comsol	Multiphysics	or	another	
commercially-available software package. 

Spatial	variations	of	strain	caused	by	the	mechanical	vibra-
tion generate thermal gradients that are captured by the 
driven thermal equation

 	 (20)

where qc captures the combination of constants written 
explicitly	 in	Eq.	 (17),	and	where	 the	 term	of	order	a2 is 
neglected. For simplicity, we also limit our study to one 
mechanical mode at a time, mech and wmech

 	 (21)

This equation is solved as a function of the mechanical 
resonance amplitude, Umech. Applying separation of vari-
ables, the response to a drive at frequency wmech is

 	 (22)

The functions Tn(x,	 y)	 are	 the	 real-valued	 spatial	 eigen-
modes of the undriven thermal equation and An are the 
complex	modal	amplitudes.	To	find	the	modal	amplitudes,	
we apply the orthogonality of the eigenmodes Tn(x,	y).	The	
expansion	(22)	is	substituted	into	(21).	Multiplying	equa-
tion	(21)	by	Tl and integrating over the volume, we obtain

 	 (23)

with

 	 (24)

 	 (25)

The	absolute	magnitude	of	|An/Umech|	from	Eq.	(23)	can	be	
used to assess the effective coupling of mechanical modes 
into the thermal domain. 

To	 calculate	 the	mechanical	 quality	 factor,	 we	 first	 have	
to calculate the energy lost by the mechanical system per 
radian, or equivalently, the energy gained by the thermal 
system per radian. 

Energy Lost from Mechanical Domain 
The energy lost from the mechanical domain per radian is

 	 (26)

in 2D, where s3 = s4 = s5	=	0.	Stress	in	the	above	equa-
tion is expanded as a function of strain and temperature 
using	Eq.	(3).	The	strain	is	expressed	in	terms	of	the	modal	
amplitude and shape function. This expansion is further 
simplified	by	recognizing	that	only	the	temperature-depen-
dent terms produce nonzero integrals over one cycle. Inte-
gration over time yields 

   
  (27)

where each term in this sum, DWn, corresponds to the 
energy dissipated by the nth thermal mode. The thermal 
component of stress that is out of phase with the strain 
damps	the	vibration,	and	this	term	may	be	identified	in	the	
first	bracket	in	Eq.	(27).	The	second	bracket	is	the	strain.	

Energy Transferred to Thermal Domain 
The expression for energy gained by the thermal domain 
per	cycle	is	derived	in	Reference	[8]	to	be	

 	 (28)

The T-1	 term	 is	 replaced	by	 its	 Taylor	 expansion,	 1/T0	 −	
T/To, where it is assumed that the driven modal amplitudes 
are small relative to the ambient temperature. Only the 
latter term in this expansion produces a nonzero integral 
over one cycle, so that 

 	 (29)
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Where	 k	 is	 the	 thermal	 conductivity	 in	 Joules/(Kelvin-
second-meter).	Expanding	T	using	(22)	and	(23),	 it	may	
be	shown	that	Eq.	(29)	reduces	to	

 	 (30)

Weakly Coupled Quality Factor Calculation 
The maximum stored energy in the 2D mechanical system 
is given by 

 	 (31)

where the integral is evaluated at the maximum mechani-
cal amplitude. This integral may be evaluated directly for 
a	given	mode	shape	by	substituting	Eq.	(3)	for	stress	with	
the appropriate 2D approximations (s3 = s4 = s5	=	0).	The	
Q of the device is then calculated by

 	 (32)

where Qn is an effective Q corresponding to the nth ther-
mal	mode.	In	applying	Eq.	(32)	to	calculate	Q,	DW	can	be	
found	from	either	Eq.		(27),	the	expression	for	mechanical	
energy	lost,	or	Eq.	(30),	the	thermal	energy	gained.	These	
expressions can be shown to be equivalent. 

This analysis shows that we can use numerically calculated 
modal solutions of uncoupled thermal and mechanical 
equations to calculate the Q. For simplicity, we restricted 
our	analysis	 to	a	 single	mechanical	mode	of	 interest.	We	
considered that possibly many thermal modes would 
contribute to damping in the system. The individual terms 
in	the	sum	Eq.	(32)	for	Q	can	be	used	to	identify	the	ther-
mal modes that contribute most to damping and evaluate 
their relative weights. 

Using Weighting Functions to Optimize a UHF Beam 
Resonator 
Figure 1 shows the calculated Q values for a range of ther-
mal modes in a beam. The beam is assumed to be in its 
fundamental	 flexural	 resonance	 at	 frequency	 0.63	MHz.	
The frequency and mode shape were found numerically. 
The	first	40	thermal	modes	were	also	 found	numerically.	
Using the approach described in the previous four sections, 
we evaluated the thermoelastic damping associated with 
each	mode.	 The	Comsol	Multiphysics	module	was	 used	
to	evaluate	the	overlap	integrals	in	|An|	(Eq.	(23))	that	are	
needed to evaluate DW	in	Eq.	(27)	or	(30).	The	total	Q,	
based	on	40	modes	in	Eq.	(32),	was	found	to	be	10,400.	
The	Q	calculated	in	a	full	TED	simulation	as	described	in	
“Governing	Equations	in	2D	with	Plane	Stress	Approxima-
tions” was 10,200. The weakly coupled calculations show 
that this damping is dominated by the contribution of a 
single mode, whose thermal eigenfunction is shown in the 
inset.	This	mode	 at	 0.605	MHz	gave	Q	=	11,000.	 Inter-
estingly, the temperature distribution of this mode is not 

uniform along the beam axis. Although Zener’s original 
approximation assumed that dominant thermal mode had 
no	variation	along	the	beam	axis,	we	find	that	the	uniform	
mode, also shown in Figure 1, has a high Q = 6,250,000. 

  

Figure	1.	Q	values	 for	 thermal	modes	 in	 a	fixed-fixed,	
thermally-insulated beam that is 400 µm long 
and 12 µm wide. The mechanical resonance is 
the	 fundamental	flexural	mode	at	0.63	MHz.	
The	 first	 40	 thermal	 modes	 are	 calculated.	
The three most heavily damped modes are: 
at	0.6	MHz	with	a	Q	of	6,250,000,	 at	0.605	
MHz	with	a	Q	of	11,000,	and	at	0.611	MHz	
with	a	Q	of	280,000	(spatial	profile	not	shown	
in	inset).	The	total	device	Q,	including	all	40	
thermal modes is 10,400. 

After observing the thermal distribution of the dominant 
thermal mode, we consider the effect of placing slots in 
the	beam.	The	slots,	proposed	originally	in	Reference	[9],	
are designed to alter the dominant thermal mode with-
out	 significant	 effect	 on	 the	 fundamental	 flexural	 mode	
frequency. Figure 2 shows the Qn values for the solid beam 
from Figure 1 next to the results for a slotted beam. The 
slots had the effect of modifying the thermal eigensolutions 
and characteristic frequencies. In the slotted beam, many 
more thermal modes contribute to the damping of the 
structure. On the other hand, the thermal modes with the 
greatest spatial overlap are moved to much higher frequen-
cies, minimizing their overall effect on damping. In this 
beam, the slots had the effect of raising the total Q value by 
a	significant	factor	of	four.	

If the mechanical mode frequency were already much 
higher than the dominant thermal mode, then moving the 
dominant modes up in frequency could have a detrimental 
effect on Q. This case is shown in Figure 3. Originally, in 
the	solid	beam,	the	mechanical	frequency	is	at	4.327	MHz,	
while	 the	dominant	 thermal	mode	 is	 still	 at	0.605	MHz.	
When	slots	are	added	 to	 this	beam,	 thermal	modes	with	
significant	 spatial	 overlap	 move	 up	 in	 frequency,	 much	
nearer to the mechanical resonance. This lowers the Q to 
20,200	from	38,000	without	slots.	
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Figure	2.	Q	values	 for	 thermal	modes	 in	 a	fixed-fixed,	
thermally-insulated beam that is 400 µm long 
and 12 µm wide. The top plot shows the solid 
beam thermal modes and mechanical resonance, 
while the bottom plot shows the same beam 
with 1-µm wide slits along the beam length. 
The effect of the slits on the thermal modes and 
their Q values indicated. The mechanical reso-
nance shifts slightly, as expected. The total Q 
value is higher in the beam with slits. 

 

Figure	3.	Q	values	 for	 thermal	modes	 in	 a	fixed-fixed,	
thermally-insulated beam that is 150 µm long 
and 12 µm wide. The top plot shows the solid 
beam thermal modes and mechanical resonance, 
while the bottom plot shows the same beam 
with 1-µm wide slits along the beam length. 
The effect of the slits on the thermal modes and 
their Q values indicated. The mechanical reso-
nance shifts slightly, as expected. The total Q 
value is lower in the beam with slits.

Since	 it	 is	 not	 always	 possible	 to	 predict	 the	most	 rele-
vant thermal mode and its time constant intuitively, the 
numerical	approach	can	be	extremely	helpful.	We	see	that	
simple	modifications	 to	 the	resonator	can	have	 the	effect	
of completely altering the thermal mode structure and 
introducing complicated weightings in the Q calculation. 

Both	the	frequency	and	the	spatial	overlap	of	the	thermal	
modes	are	clearly	important.	When	modes	that	have	high	
spatial overlap are also close to the mechanical resonance 
frequency,	large	thermoelastic	damping	results.	Since	struc-
tural	modifications	that	have	a	beneficial	 impact	 in	some	
frequency regimes can be detrimental in others, engineer-
ing to optimize Q can be greatly enabled through the use 
of the numerical approach described here. 

Conclusion 
This paper presented two new tools to evaluate and opti-
mize	 MEMS	 structures	 for	 low	 thermoelastic	 damping.	
The weakly coupled approach is based on original work 
by	Zener.	We	reviewed	Zener’s	approach	and	showed	how	
numerical	 finite-elements-based	 approaches	 can	 be	 used	
to fully leverage Zener’s theory. In the weakly coupled 
approach, the fundamental thermodynamic energy expres-
sions are coupled. However, the strain and temperature 
solutions used to evaluate these energies are taken from 
solutions to uncoupled, standard mechanical and thermal 
equations.	 This	 allows	 us	 to	 use	 readily	 available	 finite-
element packages and evaluate thermoelastic damping. 
The approach enables a great deal of insight into the energy 
loss	mechanism.	We	find	that	a	spatial	overlap	of	thermal	
modes	with	 the	strain	profile	 in	 the	mechanical	mode	of	
interest is a dominant term in the damping. In addition, 
the frequency separation between relevant thermal modes 
and the mechanical resonance frequency must be consid-
ered.	By	studying	the	damping	contributions	of	individual	
thermal modes, their mode shapes, and their frequencies, 
it	is	possible	to	engineer	MEMS	resonators	for	higher	Q.	In	
addition, by reviewing the fundamental coupled thermo-
dynamic energy expressions, we achieve a greater insight 
into the energy loss mechanism itself. 

Finally, this paper outlines a method for solving the fully 
coupled thermoelastic dynamics to obtain exact expres-
sions for Q in an arbitrary resonator. The fully coupled 
simulations	 enable	 a	 precise	 evaluation	 of	Q.	We	 derive	
both 3D equations, as well as 2D plane stress thermoelas-
tic	equations.	The	simulations	were	conducted	in	Comsol	
Multiphysics.	 This	 software	 can	 parameterize	 the	 mate-
rial parameters and geometry, so that detailed optimiza-
tion	studies	are	enabled.	We	showed	that	the	fully	coupled	
simulations predict thermoelastically limited Q in struc-
tures reported in the literature. 

acknowledgments 
The	 authors	would	 like	 to	 thank	Mark	Mescher	 and	 Ed	
Carlen	 at	 Draper	 Laboratory,	 as	 well	 as	 Saurabh	 Chan-
dorkar	and	Professor	Ken	Goodson	at	Stanford	University	
for	 valuable	 conversations.	 We	 also	 thank	 Neil	 Barbour	
and	 John	McElroy	 for	 support	 at	Draper.	This	work	was	
supported	by	DARPA	HERMIT	(ONR	N66001-03-1-8942).	
The	authors	thank	Dr.	Clark	Nguyen	for	his	support	of	this	
portion of the project. 

1

0.8

0.6

0.4

0.2

3

2

1

0

Q
-1
 (

x1
06

)

0 1 2 3 4 5 6

Q
-1
 (

x1
04

)

2.5

2

1.5

1

0.5

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Q
-1
 (

x1
05

)

0 2 4 6 8 10 12 14 16

Q
-1
 (

x1
05

)

 fmech = 0.5 MHz
 Qtot = 40,000

 fmech = 0.63 MHz
 Qtot = 10,400

400-µm Beam
Solid Silicon

400-µm Beam
Silicon, Slotted

Frequency (MHz)

Frequency (MHz)

 fmech = 3.75 MHz
 Qtot = 20,200

 fmech = 4,327 MHz
 Qtot = 38,000

150-µm Beam
Solid Silicon

150-µm Beam
Silicon, Slotted



 22 Engineering MEMS Resonators with Low Thermoelastic Damping

references 
	 [1]	Lifshitz,	 R.	 and	M.	 Roukes,	 Phys. Rev. B,	 Vol.	 61,	 No.	 8,	

2000, p. 61.

	 [2]	Houston,	B.H.,	D.M.	Photiadis,	M.H.	Marcus,	J.A.	Bucaro,	X.	
Liu,	J.F.	Vignola,	Appl. Phys. Lett,	Vol.	80,	No.	7,	2002,	pp.	
1300. 

	 [3]	Roszhart,	T.V.,	“Micromachined	Silicon	Resonators,”	Electro 
International,	1991.	

	 [4]	Srikar,	V.T.	 and	 S.D.	 Senturia,	 “Thermoelastic	Damping	 in	
Fine-Grained	 Polysilicon	 Flexural	 Beam	 Resonators,”	 J. 
Microelectromechanical Systems,	Vol.	11,	No.	5,	2002,	pp.	
499-504.	

	 [5]	Abdolvand,	R.	et	al.,	“Thermoelastic	Damping	in	Trench-Re-
filled	Polysilicon	Resonators,”	Proc. Transducers, Solid-State 
Sensors, Actuators and Microsystems, 12th International 
Conference,	2003.	

	 [6]	Duwel,	A.,	J.	Gorman,	M.	Weinstein,	J.	Borenstein,	P.	Ward,	
Sens and Actuators A,	Vol.	103,	2003,	pp.	70-75.	

	 [7]	Zener,	C.,	“Internal	Friction	in	Solids:		I.	Theory	of	Internal	
Friction	in	Reeds,”	Physical Review,	Vol.	52,	1937,	p.	230.	

	 [8]	Zener,	C.,	“Internal	Friction	in	Solids:	II.	General	Theory	of	
Thermoelastic Internal Friction,” Physical Review,	Vol.	53,	
1938,	p.	90.

	 [9]	Candler,	R.N.,	M.	Hopcroft,	W.-T.	Park,	S.A.	Chandorkar,	G.	
Yama,	K.E.	Goodson,	M.	Varghese,	A.	Duwel,	A.	Partridge,	
M.	Lutz,	and	T.	W.	Kenny,	“Reduction	in	Thermoelastic	Dis-
sipation	 in	 Micromechanical	 Resonators	 by	 Disruption	 of	
Heat Transport,” Proceedings of Solid State Sensors and Ac-
tuators,	2004,	pp.	45-48.

	[10]	Nowick,	A.S.	and	B.S.	Berry,	Analastic Relaxation in Crystal-
line Solids,	Chapter	17,	Academic	Press,	New	York,	1972.	

	[11]	Comsol	Multiphysics	is	a	product	of	Comsol,	Inc.
	 	http://www.comsol.com.

	[12]	Gorman,	J.,	Finite Element Model of Thermoelastic Damping 
in MEMS,	Master	of	Science	Thesis,	Department	of	Materials	
Science,	Massachusetts	Institute	of	Technology,	2002.	

	[13]	Antkowiak,	B.,	 J.P.	Gorman,	M.	Varghese,	D.J.D	Carter,	A.	
Duwel,	 “Design	 of	 a	High	Q	Low	 Impedance,	GHz-Range	
Piezoelectric	Resonator,”	Proc. Transducers, Solid-State Sen-
sors, Actuators and Microsystems, 12th	International	Confer-
ence, 2003.

	[14]	Schaffler	F.,	Properties of Advanced Semiconductor Materials 
GaN, AlN, InN, BN, SiC, SiGe,	M.E.	Levinshtein,	S.L.	Rumy-
antsev,	M.S.	Shur,	Eds.,	John	Wiley	&	Sons,	Inc.,	New	York,	
2001,	pp.	149-188.	

	[15]	Quévy,	E.P.,	S.A.	Bhave,	H.	Takeuchi,	T-J.	King,	R.T.	Howe,	
“Poly-SiGe	High	Frequency	Resonators	Based	on	Lithograph-
ic	Definition	of	Nano-Gap	Lateral	Transducers,”	Proceedings 
of Solid State Sensors and Actuators, 2004, pp. 360-363. 

	[16]	Evoy,	S.,	A.	Olkhovets,	L.	Sekaric,	J.M.	Parpia,	H.G.	Craig-
head,	D.W.	Carr,	“Temperature-Dependent	Internal	Friction	
in	Silicon	Nanoelectromechanical	Systems,”	Applied Physics 
Letters,	Vol.	77,	No.	15,	2000,	pp.	2397-2399.	

	[17]	http://www.memsnet.org	

	[18]	Roark,	Y.,	Formulas for Stress and Strain,	McGraw-Hill,	New	
York,	1975.	

	[19]	Nowacki,	Thermoelasticity,	Pergamon	Press,	Elmsford,	New	
York,	1962.	

	[20]	Mattilia,	T.,	A.	Oja,	H.	Seppä,	O.	Jaakkola,	J.	Kiihamäki,	H.	
Kattelus,	M.	Koskenvuori,	P.	Rantakari,	J.	Tittonen,	“Micro-
mechanical	Bulk	Acoustic	Wave	Resonator,”	IEEE	Ultrason-
ics	Symposium,	2002,	p.	945.	

	[21]	Abdolvand,	 R.,	 G.	 Ho,	 A.	 Erbil,	 F.	 Ayazi,	 “Thermoelastic	
Damping	 in	 Trench-Refilled	 Polysilicon	 Resonators,”	Proc. 
Transducers, Solid-State Sensors, Actuators and Microsys-
tems, 12th	International	Conference,	2003.	

	[22]	Ayazi,	H.,	 “Thermoelastic	Damping	 in	Flexural	Mode	Ring	
Gyroscopes,”	2005	ASME,	November	5-11,	2005,	Orlando,	
FL.	

	[23]	Bindel,	D.S.	and	S.	Govindjee,	“Elastic	PMLs	for	Resonator	
Anchor	Loss	Simulation,”	Int. Journal for Numerical Meth-
ods in Engineering,	Vol.	64,	No.	6,	October	2005,	pp.	789-
818.	

	[24.	Bhave,	 S.A.,	 B.L.	 Bircumshaw,	 W-Z.	 Low,	 Y-S.	 Kim,	 A.P.	
Pisano,T-J.	King,	and	R.T.	Howe,	“Poly-Sige:	a	High-Q	Struc-
tural	Material	for	Integrated	RF	MEMS,”	Solid-State	Sensor,	
Actuator	and	Microsystems	Workshop,	Hilton	Head	Island,	
South	Carolina,	June	2-6,	2002.	

	[25]	Bindel,	D.S.,	E.	Quévy,	T.	Koyama,	S.	Govindjee,	J.W.	Dem-
mel,	 and	R.T.	Howe,	 “Anchor	 Loss	 Simulation	 in	 Resona-
tors,”	 18th	 IEEE	 Microelectromechanical	 Systems	 Confer-
ence	(MEMS-05),	Miami,	Florida,	January	30	-	February	3,	
2005.



 Engineering MEMS Resonators with Low Thermoelastic Damping 23

Amy E. Duwel is currently the 
MEMS	 Group	 Leader	 at	 Draper	
Laboratory	 and	 a	 Principal	
Member	 of	 the	 Technical	 Staff.	
Her technical interests focus on 
microscale energy transport and 
on	the	dynamics	of	MEMS	reso-
nators	in	applications	as	inertial	sensors,	RF	filters,	and	chemical	detectors.	She	received	a	BA	in	Physics	from	the	Johns	
Hopkins	University,	Baltimore,	MD	(1993)	and	MS	and	PhD	degrees	(1995	and	1999,	respectively)	in	Electrical	Engineering	
and	Computer	Science	from	MIT,	Cambridge.		

Rob N. Candler	is	a	Senior	Research	Engineer	at	the	Robert	Bosch	Research	and	Technology	Center.	His	research	has	focused	
on wafer-level packaging of silicon resonators and inertial sensors and energy dissipation in resonators. He is currently work-
ing	on	fundamental	 limitations	of	MEMS	devices	under	the	DARPA	Science	and	Technology	Fundamentals	Program.	He	
received	a	BS	in	Electrical	Engineering	from	Auburn	(2000)	and	MS	and	PhD	degrees	in	Electrical	Engineering	from	Stanford	
University	(2004	and	2006,	respectively).

Thomas W. Kenny	was	with	the	NASA	Jet	Propulsion	Laboratory	from	1989	to	1993,	where	his	research	focused	on	the	
development	of	electron-tunneling	high-resolution	microsensors.	In	1994,	he	joined	the	Mechanical	Engineering	Depart-
ment	at	Stanford	University,	Stanford,	CA,	where	he	directs	MEMS-based	research	in	a	variety	of	areas	including	resonators,	
wafer-scale packaging, cantilever beam force sensors, microfluidics, and novel fabrication techniques for micromechanical 
structures.	He	is	a	founder	and	CTO	of	Cooligy,	a	microfluidics	chip	cooling	components	manufacturer,	and	founder	and	
board	member	of	SiTime,	a	developer	of	CMOS	timing	references	using	MEMS	resonators.	He	has	authored	and	coauthored	
more	than	200	scientific	papers	and	holds	40	patents.	He	is	currently	the	Stanford	Bosch	Faculty	Development	Scholar	and	
the	General	Chairman	of	the	2006	Hilton	Head	Solid-State	Sensor,	Actuator,	and	Microsystems	Workshop.	He	received	a	BS	
in	Physics	from	the	University	of	Minnesota	(1983)	and	MS	and	PhD	degrees	in	Physics	from	the	University	of	California,	
Berkeley	(1987	and	1989,	respectively).

Mathew Varghese	was	head	of	the	Microsystems	Integration	Group	and	was	a	Principal	Member	of	Technical	Staff	at	Draper	
Laboratory.	His	research	interests	focused	on	the	fabrication,	design,	and	analysis	of	microsystems.	He	led	projects	to	build	
microphones,	drug	delivery	devices,	MEMS	RF	filters,	and	Chip	Scale	Atomic	Clocks	(CSAC).	Dr.	Varghese	won	a	Distin-
guished	Performance	award	for	leading	the	CSAC	development	effort	at	Draper.	He	received	a	BS	in	Electrical	Engineering	
and	Computer	Science	with	a	minor	 in	Physics	 from	the	University	of	California,	Berkeley,	and	SM	and	PhD	degrees	 in	
Electrical	Engineering	and	Computer	Science	from	MIT	(1997	and	2001,	respectively).

bios

(l-r) Amy E. Duwel and
Mathew Varghese



 24

Improving Lunar Return Entry 
Footprints Using Enhanced Skip 
Trajectory Guidance
Zachary R. Putnam,1 Robert D. Braun,2 Sarah H. Bairstow,3 and Gregory H. Barton4

Copyright © 2006 The Charles Stark Draper Laboratory, Inc. Presented at Space 2006 Conference, San Jose, CA, 
September 19-21, 2006. Sponsored by AIAA

The	impending	development	of	NASA’s	Crew	Exploration	
Vehicle	(CEV)	will	require	a	new	entry	guidance	algorithm	
that	 provides	 sufficient	 performance	 to	meet	 all	 require-
ments. This study examined the effects on entry footprints 
of enhancing the skip trajectory entry guidance used in the 
Apollo program. The skip trajectory entry guidance was 
modified	to	include	a	numerical	predictor-corrector	phase	
during the atmospheric skip portion of the entry trajectory. 
Four	 degree-of-freedom	 (DOF)	 simulation	 was	 used	 to	
determine the footprint of the entry vehicle for the baseline 
Apollo entry guidance and predictor-corrector enhanced 
guidance with both high and low lofting at several lunar 
return entry conditions. The results show that the predic-
tor-corrector	guidance	modification	significantly	improves	
the	entry	footprint	of	the	CEV	for	the	lunar	return	mission.	
The performance provided by the enhanced algorithm is 
likely	to	meet	the	entry	range	requirements	for	the	CEV.

Introduction 
In	 2004,	 the	 President	 of	 the	 United	 States	 funda-
mentally shifted the priorities of America’s civil space 
program	with	 the	Vision	 for	Space	Exploration	 (VSE),	
calling	 for	 long-term	human	exploration	of	 the	Moon,	
Mars,	 and	beyond.[1] This program focuses on return-
ing	astronauts	to	the	Moon	by	2020	with	the	eventual	
establishment of a permanent manned station there. 
Experience	 gained	 from	 human	 exploration	 of	 the	
Moon	is	then	to	be	used	to	prepare	for	a	human	mission	
to	Mars.	To	complete	these	tasks,	a	new	human	explora-
tion	vehicle,	the	Crew	Exploration	Vehicle	(CEV),	will	
be developed.  

1	 Graduate	Research	Assistant,	School	of	Aerospace	Engineering,	Georgia	Institute	of	Technology,	Atlanta,	GA.
2	 Associate	Professor,	School	of	Aerospace	Engineering,	Georgia	Institute	of	Technology,	Atlanta,	GA.	
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The	 NASA	 Exploration	 Systems	 Architecture	 Study	
(ESAS)	selected	a	CEV	similar	to	the	Apollo	program’s	
Command	 and	 Service	 Module,	 with	 a	 crewed	
command module and uncrewed service module.[2] The 
CEV	command	module	will	be	a	scaled	version	of	 the	
Apollo	Command	Module	(CM),	maintaining	the	same	
outer moldline with a larger radius. In addition, the 
CEV	will	be	required	to	return	safely	to	land	locations	
during normal operations, as opposed to the ocean 
landings	 performed	 in	 the	 Apollo	 program.	 Success-
ful land recovery operations require an entry guidance 
algorithm capable of providing accurate landings over 
a	 large	 capability	 footprint.	 Preliminary	 requirements	
indicate	that	the	CEV	entry	vehicle	must	be	capable	of	
downranges of at least 10000 km.[3]

The Apollo program entry guidance contained a long-
range option to provide an abort mode in the event of 
poor weather conditions at the primary landing site. 
A long-range entry capability also simplifies the phas-
ing and targeting problem by allowing the vehicle to 
perform entry targeting within the atmosphere during 
entry, possibly saving propellant during in-space entry 
targeting.	Long-range	entries	can	be	achieved	easily	by	
moderate	lift-to-drag	ratio	(L/D)	blunt	body	entry	vehi-
cles,	 such	 as	 the	CEV,	by	 employing	 a	 skipping	 entry	
trajectory.	When	performing	a	skipping	entry,	the	vehi-
cle enters the atmosphere and begins to decelerate. The 
vehicle then uses aerodynamic forces to execute a pull-
up maneuver, lofting the vehicle to higher altitudes, 
possibly exiting the atmosphere. However, enough 
energy is dissipated during the first atmospheric flight 
segment to ensure that the vehicle will enter the atmo-
sphere a second time at a point significantly farther 
downrange than the initial entry point. After the second 
entry, the vehicle proceeds to the surface. A longer 
range trajectory is achieved in this manner, as shown 
in Figure 1.

  

Figure	1.	Skipping	and	nonskipping	entry	trajectories	(alti-
tude	vs.	time).

The	Apollo	CM	was	capable	of	a	maximum	entry	down-
range	 without	 dispersions	 of	 4630	 km	 (2500	 nmi)	
when	employing	the	Kepler	(ballistic)	phase	of	its	skip	
trajectory guidance.[4] However, this capability was 
never	 utilized.	 Studies	 for	 the	 First	 Lunar	Outpost	 in	
the	 early	 1990s	 used	 a	 1.05	 scale	 Apollo	 CM.	 These	
studies also employed the Apollo entry guidance algo-
rithm and found a similar maximum downrange with-
out	 dispersions	 of	 4445	 km	 (2400	 nmi).[5] However, 
in	this	study,	trajectories	using	the	Kepler	phase	of	the	
guidance were excluded from nominal trajectory design 
for the following reasons: 

(1)		Desire	to	maintain	aerodynamic	control	of	the	vehi-
cle throughout entry.

(2)		Relative	 difficulty	 of	 accurate	 manual	 control	
to long-range targets in the event of a guidance 
failure.

(3)		Sensitivity	 to	 uncertainty	 at	 atmospheric	 interface	
and within the atmosphere, leading to inaccurate 
landings.

(4)		No	operational	necessity	for	long-range	entries.[5] 

While	 these	 issues	 remain	significant	concerns	 for	 the	
design	 of	 the	 CEV	 entry	 system,	 preliminary	 require-
ments	state	that	the	CEV	must	be	able	to	achieve	a	down-
range	 of	 at	 least	 10,000	 km.	 Recent	 analyses	 indicate	
that	the	moldline	of	the	CEV	is	fully	capable	of	achiev-
ing downranges of this magnitude.[6] However, signifi-
cant enhancements in the Apollo algorithm are required 
to maintain landed accuracy at these downranges.  

Method 
The	entry	footprint	of	the	CEV	entry	vehicle	was	evalu-
ated	 with	 a	 4-DOF	 simulation	 written	 in	 Matlab	 and	
Simulink.	 Entry	 trajectories	 were	 simulated	 over	 a	
range of flight path angles, crossrange and downrange 
commands using the baseline Apollo skip trajectory 
guidance and both high and low lofting predictor-
corrector enhanced entry guidance algorithms. Uncer-
tainty analysis was not included in this feasibility 
study. 

Definitions 
This study utilized the following definitions. Atmo-
spheric interface, the altitude at which the entry vehicle 
enters the sensible atmosphere, was defined to be 122 
km	 (400,000	 ft)	 above	 the	 Earth’s	 reference	 ellipsoid.	
Flight	path	angle	(FPA)	refers	to	the	entry	vehicle’s	iner-
tial flight path angle at atmospheric interface. The iner-
tial flight path angle is the angle between the vehicle’s 
velocity vector and the local horizontal, where nega-
tive values refer to angles below the horizon. Down-
range is defined as the in-plane distance traveled by the 
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vehicle	 from	 atmospheric	 interface	 to	 landing.	 Cross-
range is defined as the out-of-plane distance traveled 
by the vehicle from atmospheric interface to landing. 
Miss	 distance	 is	 defined	 as	 the	 distance	 between	 the	
targeted landing site and the actual landing site. For 
the purposes of this study, an acceptable footprint was 
defined	as	the	region	within	which	the	CM	achieved	a	
miss distance of 3.5 km or less. 

Assumptions 
Several	 assumptions	 were	 made	 for	 the	 analysis	
performed in this study. The atmosphere was assumed 
to	be	 the	1962	U.S.	Standard	Atmosphere	 to	 facilitate	
comparison with original Apollo program data. All 
entries were assumed to be posigrade equatorial. The 
entry state used is given in Table 1. The entry vehi-
cle	 used	 was	 a	 scaled	 Apollo	 CM,	 as	 outlined	 in	 the	
ESAS,[2] with a maximum diameter of 5 m. Hypersonic 
blunt body aerodynamics were used, and the vehicle 
was flown at trim angle of attack, generating a lift-to-
drag	 ratio	 (L/D)	 of	 0.4.	 Entry	 vehicle	 properties	 are	
summarized in Table 2.  

Table	1.	Vehicle	Entry	State.

Parameter Value

					Inertial	Velocity 								11032	m/s

     Altitude         122 km

					Longitude         0 deg

					Latitude         0 deg

     Azimuth 								90	deg

Table	2.	Vehicle	Properties.

Parameter Value

						Mass 									8075	kg

						Reference	Area 									23.758	m2

						L/D          0.4

Parameters Varied 
Crossrange	commands	were	varied	between	0	km	and	
1000	km;	downrange	commands	were	varied	between	
1500 km and 13000 km. This set of commands fully 
captured the capability footprint of the entry vehicle. 
Three flight path angles were selected to examine vehi-
cle footprints over a range of atmospheric interface 
conditions,	as	shown	in	Table	3.	Two	of	the	FPAs	were	
selected	based	on	a	CEV	emergency	ballistic	entry	(EBE)	
study	 conducted	 at	 the	 Charles	 Stark	 Draper	 Labora-
tory	 in	 September	 2005.	 This	 set	 of	 parameters	 was	
used with both the baseline skip trajectory guidance 
and the high and low lofting versions of the enhanced 
skip trajectory guidance. 

Table	3.		Flight	Path	Angle	Selections.

FPA Selection Criteria

 -5.635 deg 	Center	of	aerodynamic	corridor

	-5.900	deg 	Approximate	shallow	boundary	for	EBE

 -6.100 deg 	Approximate	steep	boundary	for	EBE

results: Baseline algorithm 
Baseline Algorithm Description 
The primary function of the entry guidance algorithm 
is to manage energy as the spacecraft descends to the 
parachute deploy interface. The bank-to-steer algorithm 
controls lift in the coupled vertical and lateral channels, 
with guidance cycles occurring at a frequency of 0.5 
Hz.  

Guidance’s	chief	goal	is	to	manage	lift	in	the	vertical	chan-
nel so that the vehicle enters into the wind-corrected para-
chute deploy box at the appropriate downrange position. 
For	a	given	FPA,	full	lift-up	provides	maximum	range	while	
full	lift-down	provides	the	steepest	descent.	Lift-down	may	
be constrained by the maximum allowed g-loads that can 
be experienced by the crew and vehicle. Any bank orien-
tation other than full lift-up or full lift-down will result 
in	 a	 component	of	 lift	 in	 the	 lateral	 channel.	Crossrange	
position is controlled in the lateral channel by reversing 
the lift command into the mirror quadrant (e.g., +30 deg 
from	vertical	to	-30	deg)	once	the	lateral	range	errors	to	the	
target cross a threshold. The vehicle continues this bank 
command reversal strategy as it descends to the target. As 
the energy and velocity decrease, the lateral threshold is 
reduced so that the vehicle maintains control authority to 
minimize the lateral errors prior to chute deploy. 

The baseline Apollo algorithm consists of seven phases 
designed to control the downrange position of the vehicle, 
as shown in Figure 2.

 

Figure	2.	Baseline	algorithm	entry	guidance	phases.
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(1)		Preentry	 Attitude	 Hold:	 maintains	 current	 attitude	
until a sensible atmosphere has been detected. 

(2)		Initial	Roll:	seeks	to	guide	the	vehicle	toward	the	
center of the entry corridor, nominally command-
ing the lift vector upward, otherwise command-
ing the lift vector downward to steepen a shallow 
entry. 

(3)		Huntest	 and	 Constant	 Drag:	 begins	 once	 atmo-
spheric capture is ensured, triggered by an altitude 
rate threshold.  This phase determines whether the 
vehicle will need to perform an upward “skip” in 
order to extend the vehicle’s range, decides which 
of the possible phases to use, and calculates the 
conditions that will trigger those phases.  The 
algorithm transitions to the Downcontrol phase 
once	a	suitable	skip	trajectory	is	calculated;	other-
wise, the algorithm transitions directly to the Final 
(“Second	Entry”)	phase	if	no	skip	is	needed.	

(4)		Downcontrol:	guides	the	vehicle	to	pullout	using	a	
constant drag policy. 

(5)		Upcontrol:	 guides	 the	 vehicle	 along	 a	 reference	
trajectory, previously generated by the Huntest 
phase. This trajectory is not updated during the 
Upcontrol phase. The algorithm transitions into the 
Kepler	phase	if	the	skip	trajectory	is	large	enough	
to	 exit	 the	 atmosphere;	 otherwise,	 the	 algorithm	
transitions	directly	into	the	Final	(“Second	Entry”)	
phase. 

(6)		Kepler	 (“Ballistic”):	 maintains	 current	 attitude	
along the velocity vector from atmospheric exit to 
atmospheric	second	entry.		Exit	and	second	entry	
transitions are defined to occur at an aerodynamic 
acceleration of 0.2 g. 

(7)		Final	 (“Second	 Entry”):	 guides	 the	 vehicle	 along	
a stored nominal reference trajectory, calcu-
lated preflight.  Once the velocity drops below 
a threshold value, the algorithm stops updating 
bank commands and the guidance algorithm is 
disabled.

The guidance phases and phase-transition logic are 
discussed	fully	in	Reference	[7].	

Results Summary 
The results presented below are given in footprint plots. 
These plots show the miss distance associated with a 
particular downrange and crossrange command. Dark 
blue areas indicate accurate landings, while red areas 

indicate	large	miss	distances.	Light	blue	and	dark	blue	
areas provide acceptable accuracy, corresponding to 
miss distances of 3.5 km or less. It should be noted that 
red areas denote miss distance of 10 km or greater, with 
some miss distances in excess of 1000 km. 

Baseline Algorithm Results 
The entry guidance algorithm used for the Apollo 
program was selected as the baseline algorithm for 
the	 CM	 entry	 guidance.	 Figures	 3-5	 show	 the	 landed	
accuracy over a range of downrange and crossrange 
commands	 for	 several	 FPAs	 (see	 Table	 3).	 Figure	 4	
shows	the	footprint	outlines	at	several	FPAs.		

Figure 3 shows the footprint for the baseline algo-
rithm	at	an	FPA	of	-5.635	deg.	Maximum	crossrange	is	
approximately	±700	km.	Minimum	downrange	is	2250	
km;	 maximum	 downrange	 is	 7000	 km.	Within	 these	
ranges, the algorithm performs well. Figure 4 shows the 
footprint	for	the	baseline	algorithm	at	an	FPA	of	-5.900	
deg.	Performance	remains	similar	at	this	FPA.	The	mini-
mum downrange decreases to 2000 km, while the maxi-
mum	downrange	remains	7000	km,	with	the	exception	
of	crossranges	less	than	±50	km.	Some	improvement	is	
made in long-range performance, but accurate regions 
are patchy. Figure 5 shows the footprint for the baseline 
algorithm	at	 an	FPA	of	 -6.100	deg.	Significant	perfor-
mance	improvements	are	visible	at	this	FPA.	Maximum	
downrange	increases	to	7500	km;	minimum	downrange	
is	2000	km.	Maximum	crossrange	increases	to	±750	km	
at	large	downranges.	Long-range	performance	becomes	
accurate in two regions at crossranges greater than 400 
km.

  

Figure	3.	 Baseline	miss	distance	(km)	with	FPA	=	-5.635	deg.
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Figure	4.	 Baseline	miss	distance	(km)	with	FPA	=	-5.900	deg.

  

Figure	5.	 Baseline	miss	distance	(km)	with	FPA	=	-6.100	deg.

Overall, the baseline algorithm provides good performance 
over	downrange	commands	between	2000	km	and	7000	km	
with	crossranges	up	to	700	km,	as	shown	in	Figure	6.	However,	
improvement is required for long-range performance.  

  

Figure	6.	Baseline	range	capability	over	several	FPAs,	miss	
distance <3.5 km.

Rationale for Algorithm Improvement 
Analysis of trajectories for long target ranges showed that 
the degradation of precision landing performance for the 
baseline Apollo algorithm occurred as the result of two 
issues. First, the Upcontrol phase did not guide the vehi-
cle to the desired exit conditions calculated by the Hunt-
est phase. The control gains for the reference-following 
controller were likely designed with shorter target ranges 
in mind, and did not achieve the intended results for the 
longest	target	ranges.	Second,	the	exit	conditions	calculated	
by Huntest were inaccurate due to an outdated assump-
tion.	 Since	 the	 baseline	 Apollo	 algorithm	 was	 designed	
for	target	ranges	of	less	than	4,600	km,	the	Kepler	phase	
would always be short enough to ignore the effects of accu-
mulated	drag	in	the	Kepler	phase	when	calculating	the	exit	
conditions. For the much-longer target ranges intended 
for	the	CEV,	this	assumption	is	no	longer	valid.	These	two	
issues combined to cause severe undershoot in the longest 
target ranges. 

results: enhanced Guidance algorithm 
Enhanced Algorithm Description 
The issues causing degradation in precision landing perfor-
mance for long target ranges using the baseline Apollo 
algorithm were resolved by implementing three enhance-
ments	 to	 the	 algorithm.	 First,	 the	Upcontrol	 and	Kepler	
phases were replaced with a numeric predictor-corrector 
(NPC)	 algorithm,	which	 targets	 the	 second	 entry	 condi-
tions rather than the atmospheric exit conditions. This 
change in the guidance phase logic is reflected in Figure 
7.	The	NPC	algorithm	used	for	this	purpose,	PredGuid,	is	
an	aerocapture	NPC	guidance	algorithm	developed	for	the	
Aero-assist	Flight	Experiment	(AFE).	The	PredGuid	algo-
rithm	is	described	in	Reference	[8].	An	analytic	predictor-
corrector option was investigated but rejected due to the 
lack of a suitable closed-form expression to describe the 
entire skip trajectory.

    

Figure	7.	Enhanced	PredGuid	algorithm.

1000

800

600

400

200

0

-200

-400

-600

-800

-1000

C
ro

ss
ra

n
g

e
 C

o
m

m
a

n
d

 (
km

)

 2000 4000 6000 8000 10000 12000

Downrange Command (km)

10+

9

8

7

6

5

4

3

2

1

0

1000

800

600

400

200

0

-200

-400

-600

-800

-1000

C
ro

ss
ra

n
g

e
 C

o
m

m
a

n
d

 (
km

)

 2000 4000 6000 8000 10000 12000

Downrange Command (km)

10+

9

8

7

6

5

4

3

2

1

0

FPA = -5.653 deg
FPA = -5.900 deg
FPA = -6.100 deg

1000

800

600

400

200

0

-200

-400

-600

-800

-1000

C
ro

ss
ra

n
g

e
 C

o
m

m
a

n
d

 (
km

)

 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

Downrange Command (km)

140

120

100

80

60

40

20

0

A
lti

tu
d

e
 (

km
)

0 2000 4000 6000 8000
Downrange Travelled (km)

Initial Roll & Constant Drag
Huntest & Constant Drag

Down Control
PredGuid

2nd Entry
Starts at Up Control

Targets
Reentry

Conditions



 Improving Lunar Return Entry Footprints Using Enhanced Skip Trajectory Guidance 29

Next,	the	Final	phase	reference	trajectory	was	redefined	
and	 extended	 to	 recenter	 it	with	 respect	 to	 the	CEV’s	
range	 capability,	 since	 the	 CEV	 has	 different	 vehicle	
characteristics	 from	 the	 Apollo	 CM.	 Finally,	 the	 Final	
phase range estimation method used by the Huntest and 
PredGuid	phases	was	updated	to	enable	the	new	Final	
phase reference trajectory to support a wider spread 
of	 target	 ranges.	More	 detail	 about	 the	 enhancements	
made	to	the	algorithm	is	available	in	Reference	[9].	

The	affects	of	modulating	the	start	time	of	the	PredGuid	
phase was also investigated. A comparison was made 
between	starting	 the	PredGuid	phase	at	 the	beginning	
of	the	Upcontrol	Phase	(as	described	above)	and	start-
ing	the	PredGuid	phase	at	the	beginning	of	the	Down-
control phase. The difference in these two approaches 
resulted	 in	 different	 trajectory	 shaping.	 Starting	 the	
PredGuid	 phase	 at	 the	 nominal	 time	 by	 replacing	 the	
Upcontrol	 and	Kepler	 phases	 resulted	 in	 a	 lower-alti-
tude,	 shallower	 skip	 trajectory.	 Starting	 the	 PredGuid	
phase earlier by also replacing the Downcontrol phase 
resulted in a higher-altitude, steeper lofting.  

Enhanced Algorithm Results 
The results presented below detail the entry footprint of 
the	CM	using	the	enhanced	numerical	predictor-correc-
tor guidance algorithm with both high and low loft-
ing.	 Figures	 8-13	 show	 the	 landed	 accuracy,	 in	 terms	
of	miss	distance,	of	the	CM	at	various	downrange	and	
crossrange	commands	for	a	given	FPA.	Figures	11	and	
12 show the footprint outlines for high and low lofts 
for	several	FPAs.	

Figure	8	shows	the	footprint	for	a	low	loft	at	an	FPA	of	
-5.635	 deg.	 The	 CM	 achieves	 a	maximum	 crossrange	
of	approximately	±750	km.	The	minimum	downrange	
is 2250 km and significant accuracy is lost when 
downranges greater than 10000 km are targeted. The 
footprint	for	a	low	loft	at	an	FPA	of	-5.900	deg	is	shown	
in	Figure	9.	The	CM	achieves	a	maximum	crossrange	of	
±850	km,	an	increase	of	100	km	over	the	-5.635	deg	case.	
The minimum downrange decreases to 2000 km from 
2500	km	 in	 the	 -5.635	deg	 case.	 Significant	 accuracy	
is still lost when downranges greater than 10000 km 
are	 targeted.	The	 footprint	 for	 a	 low	 loft	 at	 an	FPA	of	
-6.100	deg	is	nearly	identical	to	that	of	the	-5.900	deg	
case	(Figure	10).	Of	note	is	the	much	larger	red	region	
starting at 11000 km, indicating a deterioration of long-
range	performance	with	steepening	FPA.

  

Figure	8.	 Low	loft	miss	distance	(km)	with	FPA	=	-5.635	deg.

  

Figure	9.	 Low	loft	miss	distance	(km)	with	FPA	=	-5.900	deg.

  

Figure	10.	 Low	loft	miss	distance	(km)	with	FPA	=	-6.100	deg.
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Figure	11	shows	the	footprint	for	a	high	loft	at	an	FPA	
of	-5.635	deg.	The	CM	achieves	a	maximum	crossrange	
of	approximately	±900	km,	a	150-km	increase	over	the	
low loft case. The minimum downrange is 2250 km and 
the	maximum	downrange	is	11250	km.	No	accuracy	is	
lost between 10000 km and 11250 km as in the low loft 
case.	The	footprint	for	a	high	loft	at	an	FPA	of	-5.900	deg	
is	slightly	better	(Figure	12).	The	CM	achieves	a	maxi-
mum	crossrange	of	±950	km.	The	minimum	downrange	
is 2000 km and the maximum downrange is 11000 km, 
slightly less than the -5.635 deg case. Of particular note 
are two regions of inaccuracy near 3000 km downrange. 
Figure	13	shows	the	footprint	for	a	high	loft	at	an	FPA	
of	-6.100	deg.	The	CM	achieves	a	maximum	crossrange	
of	±900	km.	Downrange	performance	is	similar	to	the	
-5.900	deg	case.	The	two	inaccurate	regions	near	3000	
km	downrange	have	disappeared	at	this	FPA.

  

Figure	11.	High	loft	miss	distance	(km)	with	FPA	=	-5.635	
deg.

  

Figure	12.	High	loft	miss	distance	(km)	with	FPA	=	-5.900	
deg.

  

  

Figure	13.	High	loft	miss	distance	(km)	with	FPA	=	-6.100	
deg.

Figures 14 and 15 show the footprints for low and 
high	 loft	 trajectories,	 respectively,	 at	 three	 FPAs.	 The	
footprint outlines correspond to miss distances of 3.5 
km	 or	 less.	 As	 shown	 before,	 -5.900	 deg	 and	 -6.100	
deg provide similar performance, while -5.635 deg is 
slightly less capable. All trajectories begin to lose accu-
racy beyond 10000 km. As in the low loft cases, the 
performance	 of	 the	 high	 loft	 -5.900	 deg	 and	 -6.100	
deg cases is similar, with the exception of the two inac-
curate	 regions	 in	 the	 -5.900	 deg	 case	 near	 3000	 km	
downrange. The -5.635 deg case is slightly less capable 
in minimum downrange and maximum crossrange, but 
slightly more capable in maximum downrange, provid-
ing capability to 11250 km. 

  

Figure	14.	Low	 loft	 footprints	 for	 several	 FPAs,	 miss	
distance <3.5 km.
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Figure	15.	High	 loft	 footprints	 for	 several	 FPAs,	 miss	
distance <3.5 km.

These data show that with the inclusion of the enhanced 
guidance algorithm, range performance is consis-
tent over a large downrange and crossrange area. The 
shapes of the footprints are consistent with previous 
work	performed	with	 the	Apollo	CM.	Over	a	 range	of	
FPAs,	a	crossrange	of	±900	km	is	easily	achievable	with	
reasonable accuracy, while a downrange of 11000+ km 
is easily within the vehicle’s capability. Table 4 provides 
a summary of the range performance data. 

As shown in Table 4, there is no significant change in 
landing	 accuracy	within	 the	 range	 of	 FPAs	 examined.	
Miss	distances	of	the	CM	remain	within	3.5	km	for	low	
loft trajectories with downranges less than 10000 km. 
Miss	distances	of	the	CM	remain	within	3.5	km	for	high	
loft trajectories with downranges less than 11000 km, 

with the exception of two regions near 3000 km down-
range	at	an	FPA	of	-5.900	deg.	It	should	be	noted	that	
these analyses include no uncertainty.  

At	 steeper	 FPAs	 with	 a	 low	 loft	 trajectory,	 the	 maxi-
mum crossrange capability is increased slightly and 
the minimum downrange is decreased, both desirable 
effects. High loft trajectories exhibit similar minimum 
downrange performance with increased maximum 
crossranges.	While	 the	minimum	 downrange	 capabil-
ity	is	better	for	steeper	FPAs	with	high	lofting,	no	clear	
advantage exists in crossrange performance for steep or 
shallow	 FPAs.	 It	 should	 be	 noted	 that	 a	 compromise	
between the high and low loft guidance algorithms 
could be implemented and that such an implementa-
tion would further decrease footprint dependence on 
FPA.	

Conclusion 
The	 CEV	 CM	 achieves	 significant	 capability	 footprint	
improvements over the baseline algorithm with use of 
the enhanced predictor-corrector entry guidance algo-
rithm.	With	this	algorithm,	the	CM	can	robustly	achieve	
a	maximum	crossrange	of	±900	km,	a	maximum	down-
range of 10000 km, and a minimum downrange of 
2000 km while maintaining a landed accuracy within 
3.5	km	of	 the	 target.	 In	 addition,	 the	CM	 footprint	 is	
largely independent of flight path angle at atmospheric 
interface. 
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Table	4.		Guided	Range	Performance	Summary.
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 Baseline Algorithm

	 -5.635	deg	 2250	km	 7000	km	 ±700	km

	 -5.900	deg	 2000	km	 7000	km	 ±700	km

	 -6.100	deg	 2000	km	 7500	km	 ±750	km

 Low Loft Enhanced Algorithm

	 -5.635	deg	 2250	km	 10000	km	 ±750	km

	 -5.900	deg	 2000	km	 10000	km	 ±850	km

	 -6.100	deg	 2000	km	 10000	km	 ±850	km

 High Loft Enhanced Algorithm

	 -5.635	deg	 2250	km	 11000	km	 ±900	km

	 -5.900	deg	 2000	km	 11000	km	 ±950	km

	 -6.100	deg	 2000	km	 11000	km	 ±900	km
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The	objective	of	the	Personal	Navigator	System	(PNS)	is	to	
construct a wearable navigation system that provides accu-
rate	position	over	extended	missions	in	a	deprived	Global	
Positioning	 System	 (GPS)	 environment.	 The	 prototype	
multisensor navigator included a set of micromechanical 
inertial sensors, a three-axis miniature radar, a selective 
availability	 antispoofing	 module	 (SAASM)	 GPS	 receiver,	
and	a	barometric	altimeter.	Real-time	embedded	software	
sampled	 sensor	 data,	 controlled	 GPS	 receiver	 tracking	
loops, and hosted a multisensor optimal estimator whose 
output position was transmitted via wireless link to a high-
resolution	personal	data	accessory	(PDA)	tracking	display.	
The	fully	packaged	system	was	field	tested	in	Cambridge,	
Massachusetts	under	realistic,	GPS-stressed	conditions.

This	paper	focuses	on	the	deep	integration	(DI)	algorithm	
design used for the optimal estimation of both position 
and receiver tracking control. The algorithm was tailored 
here	for	 intermittent	GPS	visibility	on	the	ground	and	in	
outdoor-indoor-outdoor maneuvers. DI has been used 
previously for missile guidance, navigation, and control 
with clear sky view. 

The	 PNS	 required	 an	 optimal	 estimator	 that	 combined	
the	 nonlinear	 GPS/inertial	 DI	 algorithm	with	measure-
ments from other sensors. The mission duration here 
was much longer, and the satellite environment over the 
ground track was highly variable compared with earlier 
DI applications. This required the development of strate-
gies for dropping satellites from track after long blockage 
times and for taking control of newly visible satellites 
under DI tracking. Here, the advantage of DI tracking 
is	 the	 ability	 to	 extract	 GPS	 pseudorange	 information	
almost instantly if a satellite reappears momentarily from 
a blockage. 

This paper reviews the DI approach with stress on the 
receiver	 correlator	 power	measurements,	 nonlinear	 filter	
equations, and the calculation of numerically-controlled 
oscillator	 (NCO)	 commands.	 Specific	 problems	 encoun-
tered, such as clock error recalculation and numerical 
issues, will be mentioned. Urban canyon performance data 
demonstrating	accurate	navigation	under	sparse	GPS	avail-
ability are also described.

Dale Landis, Tom Thorvaldsen, Barry Fink, Peter Sherman, Steven Holmes

abstract
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Introduction 
The	PNS	is	a	small	package	containing	a	Draper	Laboratory	
micromechanical	inertial	measurement	unit	(IMU),	a	Rock-
well	Collins	GPS	receiver,	a	triad	of	Doppler	radar	velocity	
sensors,	a	barometric	altimeter,	a	PDA	that	allows	human	
user interface, and a processor that contains Draper-devel-
oped, real-time navigation software. This package is wear-
able	in	a	front-mounted	configuration	by	a	foot	soldier,	and	
its objective is to provide long-term accurate coordinates in 
both	outdoor	and	indoor	environments,	including	signifi-
cant	periods	of	GPS	signal	deprivation.	

The software comprises strapped-down navigation algorithms 
combined	with	Draper’s	deep	integration	(DI)	nonlinear	filter	
for	 processing	 GPS	 correlator	 outputs,	 based	 on	 previous	
Draper munitions shell applications. Doppler updates, naviga-
tion	initialization,	and	satellite	line-of-sight	(LOS)	error	estima-
tion were among the many features added for the application.

Demonstration	in	a	full	hardware	mode	was	done	in	Spring	
2005. An example is shown in Figure1.

 

Figure	1.	Real-time	PNS	test	results	in	Technology	Square,	
Cambridge.

The test illustrated involved an outdoor phase followed 
by	 an	 indoor	GPS-deprived	 period.	 Figure	 1	 shows	 that	
position accuracy was maintained, even during the indoor 
phase. An overlay of the recorded track onto geolocated 
floor plans showed very good registration with hallways. 
In the vertical direction, stairwell landings are clearly seen. 
The	 PNS	 effectively	 locates	 the	 user	 to	 the	 correct	 floor.	
The tests also showed that on return to the outdoor envi-
ronment,	GPS	resumed	almost	immediately.	Results	of	this	
test	program	were	reported	at	JNC’05.[1]

The algorithm that accomplished this performance is 
surveyed in subsequent sections, with emphasis on the 
components that required fresh techniques. 

Navigation algorithm and related Calculations
The inputs to the navigation algorithm are 100-Hz sampled 
specific	 force	 (accelerometers)	 and	 rate	 (gyroscopes)	 in	a	
PNS	orthogonal	body-fixed	frame	that	is	designated	by	b	
in	this	paper.	The	core	of	the	PNS	navigation	algorithm	is	a	
standard strapped-down integration algorithm comprising 

IMU	 compensation,	 quaternion	 third-order	 integration,	
gravity compensation of accelerometer outputs, and veloc-
ity	and	position	integration	in	earth-fixed,	earth-centered	
(ecef	or	e)	coordinates.	For	future	reference,	the	navigation	
major outputs are:

  = position e frame

  = velocity e frame

 q = quaternion b to e

  = direction cosine matrix

Navigation	 initialization,	 omitting	 many	 details,	 is	 as	
follows. The receiver begins with conventional acquisition 
and tracking, downloads ephemeris, and sends a posi-
tion and velocity to navigation. A crude azimuth estimate 
is made by assuming an initial north and level orienta-
tion	 (accuracy	 of	 10	 deg	 in	 azimuth	 is	 sufficient).	Once	
the receiver enters deep integration mode (less than a 
minute),	 the	wearer	moves	 horizontally,	 and	 the	 filter	 is	
able	to	refine	the	attitude	estimates	sufficiently	for	contin-
ued	operation	using	the	difference	between	IMU-	and	GPS-
determined	accelerations.	Current	work	at	Draper	includes	
more advanced forms of attitude initialization that impose 
less	artificial	restraints	on	the	PNS	wearer.

In addition to navigation proper, there are calculations that 
keep track of optimal estimates of other quantities, primar-
ily the following:

 dtR	 =	 user	(receiver)	clock	bias

 d  = user clock frequency error

 dbk	 =	 LOS	delay	error	satellite	k

An	error	filter	based	on	perturbation	of	the	navigation	algo-
rithm	is	used	 to	process	all	 the	measurements.	The	filter	
states are listed for future reference in Table 1.

Table	1.	PNS	Filter	States.

Error States Units

 Position	dr 3 chips

Velocity	dv 3 chips/s

Attitude y 3 rad

Gyro	Bias	Shift 3 rad/s

Gyro	Bias	Markov 3 rad/s

Accel.	Bias	Shift 3 chips/s2

Accel.	Bias	Markov 3 chips/s2

User	Clock	Bias 1 chips

User	Clock	Frequency 1 chips/s

Doppler	Misalignment	(6) 6 rad

Satellite	Delay 12 chips

Altimeter	Bias 1 chips

Position NEU

East (ft) North (ft)

Recorded 3-D Track

In-Building
GPS-Denied

Rooftop Start
Sky in Full View

Finish

450
400

350
300

250
200

150
100

50
0

200
150

100
50

0
-50

-100

20
0

-20
-40
-60
-80

U
p

 (
ft
)
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The	chip	units	are	defined	for	P	code	(which	is	used	in	
PNS)	by	96.146	ft/chip	or	9.775	x	10-8	s/chip.	

The	 filter	 performs	 the	 GPS	 DI	 updates	 plus	 Kalman	
updates for the other sensors. A set of corrections for 
the navigation system and clock model are computed 
and then fed back to the navigation algorithm for a 
reset of the full system state.

The algorithm-embedded software is coded in three rate 
groups:	high	(100	Hz),	medium	(50	Hz),	and	low	(10	
Hz).	 High	 rate	 performs	 IMU	 compensation,	 attitude	
integration, and incremental transition matrix calcula-
tions.	 Medium	 rate	 performs	 navigation	 position	 and	
velocity integration, bookkeeping of the receiver clock 
error estimate and satellite atmospheric delay estimates, 
and	 all	 GPS	 receiver	 interfacing	 (described	 below).	
Both	 high	 and	 medium	 rate	 perform	 resets	 based	 on	
corrections	 supplied	 by	 the	 nonlinear	 filter.	 Low	 rate	
performs all filter updates and sends corrections to high 
and medium rate.

Deep Integration GPs
Background of Draper’s Deep Integration

DI	 was	 developed	 to	 extend	 GPS	 tracking	 to	 poor	
GPS	 signal-to-noise	 conditions,	 especially	 intentional	
jamming environments. Deep integration requires 
a custom receiver configured so that the navigation 
software can issue the numerically controlled oscilla-
tor	(NCO)	commands	(overriding	the	internal	tracking	
loops)	 and	 also	 receive	 integrated	 correlator	 outputs.	
For	previous	results	with	DI,	see	Ref.	[2].	

Prior	to	PNS,	Draper	DI	was	used	successfully	in	artillery	
shells with high dynamics and short duration, where 
the instrumentation was limited to inertial sensors and 
the receiver.

For the personal navigator, Draper extended the use 
of DI in significant ways. First, mission duration in 
the tests was stretched from minutes to one half hour. 
There is no inherent mission duration limitation here. 
Second,	 the	 capability	 of	 the	 nonlinear	 algorithm	 was	
extended	to	perform	both	the	nonlinear	GPS	updates	and	
conventional	 Kalman	 updates	 (from	 the	 Doppler	 radar	
and	altimeter).	In	contrast	to	the	fixed	set	of	satellites	in	
view for a short time-of-flight missile, the ground navi-
gation system described here needed to adapt to satel-
lite configuration changes. Finally, of course, this was 
all done with hardware compressed to a point practical 
for use by a foot soldier. 

A key advantage of DI for the ground navigation appli-
cation is the ability to recover satellite track after signal 

is temporarily lost, perhaps due to masking from a 
landscape fixture. A second advantage is that deep inte-
gration, by design, is able to track a satellite when its 
power is weaker, due to factors such as forest canopy or 
indoor attenuation. 

Summary and Technical Overview
In	 conventional	 operation,	 the	 GPS	 receiver	 is	 based	
on internal tracking loops, in which tracking loops are 
maintained	for	GPS	code	and	carrier	signals,	based	on	
correlator	outputs	and	NCO	commands,	both	of	which	
are invisible to the end user. The user is supplied with 
pseudo and delta range information tapped from these 
loops,	or	final	position	and	velocity.	Conventional	GPS	
is	covered	in	numerous	sources,	among	which	Ref.	[3]	
may be cited.

In deep integration, the correlator outputs are issued to 
the navigation processor, along with a code phase (or 
equivalently,	 pseudorange)	 for	 the	 replica	 signal.	 The	
navigation software sends rate commands to the receiver 
NCOs,	which	 the	receiver	uses	 to	generate	 the	replica	
signal. This operation replaces the internal loops.

In practice, there is an alternation between modes in 
PNS.	 Sometimes	 (initially	 and	 during	 extended	 signal	
loss),	 the	receiver	maintains	control	of	 tracking	 loops.	
Whenever	possible,	 internal	 loops	are	 replaced	by	 the	
DI process. These modes are referred to as “receiver 
control”	 (internal	 loops)	 and	 “host	 control”	 (deep	
integration).	

Description of PNs Deep Integration
A compressed technical summary of deep integration 
can	be	given	by	reference	to	the	main	interfaces	in	PNS,	
shown	 in	 Figure	 2.	 First,	 the	 code	 and	 carrier	 NCO	
commands issued to the receiver are discussed in detail. 
Then the receiver outputs sent to navigation and their 
transformation into filter observations are discussed. 
Finally, the filter corrections applied to the navigator 
are discussed.

Figure	2.	Deep	integration	interfaces	in	PNS.
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The 50-Hz rate command that the navigator gives to the 
code	NCO	is	a	code	phase	rate,	which	may	be	given	in	
speed of light units as:

  (1)

where tcorr is a “correction” to bring the code phase to 
the navigation predicted position, and the  reflects 
navigation predicted rate. Dt is the time interval of the 
NCO	command	application	(20	ms).

The	correction	term,	also	referred	to	as	the	NCO	“poke,”	
is represented by:

  (2)

where

  = user time bias estimate 

  = range-to-satellite estimate 

  = atmospheric delay estimate

  = satellite clock bias estimate

 r* = replica code pseudorange

The range term is calculated from navigation position, 
and the clock error is derived from the navigation filter. 
r* is the receiver-supplied pseudorange.

It is instructive to see a derivation of this command. 
Navigation	 information	 may	 be	 used	 to	 calculate	 the	
time	(referenced	to	 the	satellite	clock)	of	 transmission	
of a light pulse currently received, which is the calcu-
lated satellite signal code phase. This is:

  (3)

where tR is receiver user time. The receiver sends a 
measured replica code pseudorange, from which the 
replica code phase may be calculated as:

 t* = tR – r*	 (4)

The goal is to drive the replica code to a phase where, 
according to navigation and clock estimates, it would 
match the incoming code from the satellite. The altera-
tion of code phase that accomplishes this is:

 tcorr = tcalc – t	 (5)

If	Eqs.	(3)	and	(4)	are	substituted	into	Eq.	(5),	the	result	
is	precisely	Eq.	(2).

The	second	term	(also	called	the	“push”)	in	the	command	
is:

 	 (6)

where

  = user time frequency error estimate

 	 =	 range	rate	estimate	(from	navigation	velocity)

  = satellite clock frequency error estimate

In	the	current	DI	configuration,	the	carrier	NCO	is	also	
commanded by the push term derived above. This is 
sufficient	to	maintain	the	accuracy	of	the	P	code	track-
ing, which is the primary information source for the 
PNS.

Note	 that	 these	 commands	 have	 the	 following	 effect:	
replica code is lined up with navigation prediction. As 
a consequence, the correlator information will make the 
navigation	errors	(including	PNS	clock	error	estimates)	
directly observable. This forced observability of naviga-
tion	error	in	I	and	Q	(in	phase	and	quadrature)	output	
is fundamental to deep integration.

Using	the	NCO	commands	to	generate	the	replica	code,	
the receiver produces I and Q integrated correlator 
outputs	in	the	standard	way.	(See	for	example	Ref.	[3].)	
As shown in Figure 2, the receiver sends these I and Q 
data, integrated over 20-ms intervals, to the navigation 
medium rate function. At each time, these are indexed 
over	the	satellite	set	(N)	and	over	the	number	of	corre-
lators,	T	=	2K	+	1	(5	for	PNS).	

The navigation medium rate task compresses these by 
summing their squares over five time samples. Using 
i	 for	 the	 time	 index	 (i	 =	 1,...,5),	 k	 for	 the	 correla-
tion	 index	 (k	 =	 1,...,T),	 and	 suppressing	 the	 satellite	
(receiver	channel)	index,	the	measurement	is:	

  (7)

For each 100-ms interval, this gives a T-element vector 
measurement (in contrast to conventional loops that 
form a scalar measurement, gaining local linearity at the 
cost	of	 information).	The	vector	measurement	 for	one	
satellite for one 10-Hz filter pass is readily derived from 
standard equations for I and Q data giving:
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  (8)

where

	 dt  = 20 ms

	 S		 =	 signal	power

	 R		 =	 pseudorandom	code	correlation	function

	 e		 =	 LOS	delay	error	in	chips

	 D  = correlator spacing = 0.5 chip

 b  = bias

 n  = noise

The bias and noise both derive from squaring the raw I 
and Q noise and equations for their distributions may 
be derived. The ideal correlation function is:

  (9)

Finally,	the	LOS	error	is	modeled	as:

  (10)

where	u	 is	a	unit	vector	 from	the	IMU	to	the	satellite,	
dba is the residual atmospheric delay error, and dtR is 
user clock residual error. 

The DI filter first uses the dz measurements to estimate 
the	 signal-to-noise	 ratio	 (SNR),	 allowing	 for	 smooth	
adaptation to jamming or low signal strength. Then, the 
DI filter performs an update of the filter error state. The 
details	of	this	update	algorithm	are	omitted	here.	Since	
the measurement model is highly nonlinear due to the 
form	 of	 R	 and	 its	 square,	 common	 Kalman	 methods	
must be replaced by algorithms from nonlinear estima-
tion	theory.	Further	discussion	is	in	Ref.	[4].

The remaining arrow in Figure 2 shows the low to 
medium rate transfer of corrections. After all estimates 
are processed for one 10-Hz filter pass (all satellites, 
plus	radar	and	altimeter	measurements),	the	error	state	
is used to calculate these corrections. At the end of the 
next 10-Hz interval, the navigation system incorpo-
rates these corrections in a reset. The following items 
are reset based on filter error states: position, velocity, 
quaternion, gyroscope, and accelerometer compensa-
tors,	 user	 clock	 error	 estimates,	 and	LOS	delay	 errors	
for satellites being tracked.

The two-rate scheme of Figure 2 is critical to the opera-
tion	 of	 DI	 GPS.	 The	 data	 from	 the	 filter	 are	 not	 sent	
directly	 to	 the	 receiver.	 Rather,	 the	 corrections	 go	 to	

medium	rate,	and	then	indirectly	affect	NCO	commands	
via the 10-Hz resets. The 50-Hz receiver control allows 
for tracking high-frequency dynamics in the correla-
tors, while the lower rate filter execution allows for a 
more advanced estimation algorithm with more accu-
rate estimates. 

Clock errors: Initialization and reacquisition
Timing and clock errors are critical to deep 
integration.

The previous section indicated how the navigation filter 
kept up accurate clock error estimates while tracking 
satellites in deep integration. Two closely related prob-
lems are clock initialization and clock recapture after 
satellite signal loss.

Time is determined in navigation on the basis of high-
speed	 interrupts	 from	 the	 Rockwell	 Collins	 receiver,	
referred	 to	 as	 t10	 (10	ms	 apart)	 and	 t1000	 (1	 second	
apart).	 These	 are	 driven	 directly	 by	 the	 receiver	
oscillator. 

Navigation	 time,	 or	 user	 time,	 is	 based	 directly	 on	
a count of t10 interrupts. The user clock bias and 
frequency errors are defined in speed-of-light units as:

	 dtR	 =	 user	time	–	GPS	time

	  = user time frequency – true frequency

For	practical	purposes,	GPS	time	is	considered	perfect.	
True frequency is, in speed-of-light units, 1 + Doppler. 
As seen above, estimates of these enter into navigation-
issued	 NCO	 commands.	 From	 this	 follows	 the	 deep	
integration requirement:  clock estimates must always 
be	within	about	a	chip	(approximately	100	ft)	of	accu-
racy to retain code lock in deep integration. 

Initialization: At initial operation, the receiver is 
in	 control	 of	 its	 NCOs,	 and	 the	 navigation	 software	
receives t1000 interrupts and messages with the match-
ing	GPS	 times.	The	navigation	wrapper	 software	does	
careful bookkeeping of these data over at least three 
low-rate	passes	 (t1000	 interrupts).	From	this,	 a	 linear	
relationship	between	user	and	GPS	 time	can	be	deter-
mined algebraically. The data are then passed to the 
navigation algorithm, which in turn (after navigation 
initialization),	 issues	 a	 command	 to	 the	 receiver	 to	
accept host control.

Reacquisition: After a long period of time without visible 
GPS	satellites,	it	was	found	that	the	receiver	clock	can	
drift nonlinearly to a point well outside the 100-ft accu-
racy requirement. An immediate return to DI updates 
would result in the loss of lock and poor performance 
of	the	PNS	navigator.
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An elementary solution based on a quick coarse clock 
recalibration was developed. The solution assumes that 
the	time	of	GPS	signal	loss	is	sufficiently	short	so	that	
the navigation position error has maintained relative 
accuracy	(about	150	ft).	This	condition	can	be	readily	
checked from filter variances. On return of signal power 
from one satellite, the navigation software calculates a 
candidate tcorr (see	 Eq.(2)),	 but	 instead	 of	 sending	 it	
to	 the	 receiver	 as	 an	 NCO	 command,	 it	 replaces	 the	
current	clock	error	estimate	with	this	value.	Likewise,	a	
difference in two tcorr calculations is assigned as clock 
frequency error. At the same time, filter variances are 
opened to indicate the coarseness of these estimates. 
At this point, the navigator again takes control of the 
NCOs,	 and	 subsequent	 filter	 passes	 allow	 for	 further	
refinement of clock and position errors.

For	the	PNS	tests	conducted	in	2005,	the	position	errors	
were well  under 150 ft, thus supporting the validity 
of the algorithm described above. Draper is currently 
investigating methods to extend the clock correction to 
relax the restriction on small position error.

Doppler radar
The Doppler radar sensors provide a three-dimensional 
velocity vector using short-range, low-power trans-
ceivers.	 The	 Doppler	 measurement	 is	 crucial	 to	 PNS	
in	 situations	where	GPS	 signals	 are	 unavailable,	 since	
it	 is	 the	 primary	means	 (along	 with	 the	 altimeter)	 of	
damping position, velocity, and attitude drift inher-
ent in the strapped-down navigation system. Tests 
have demonstrated that the Doppler allows for excel-
lent	 performance	 indoors	 (with	 no	 GPS	 signals)	 for	
extended	 periods;	 furthermore,	 by	 keeping	 position	
errors	bounded,	it	enables	quick	return	to	the	GPS	deep	
integration mode when satellite signals return.

There are three Doppler sensors nominally in an 
orthogonal	 frame	 (designated	dopp),	with	 the	 sensing	
axes aligned so that in normal walking motion, each 
will	reflect	a	signal	off	the	floor	or	ground.	Each	sensor	
outputs 512 measured amplitudes from the reflected 
signal	over	0.1	s,	providing	2	cm/s	Doppler	resolution.	
The data are sent to the 10-Hz navigation function, 
which shifts the raw signal to baseband, performs a 
fast Fourier transform, then applies the Doppler law to 
derive	LOS	velocity.	This	velocity	is	shifted	to	the	IMU	
center, giving a final processed Doppler measurement 
from the triad of:

  (11)

This	represents	earth-relative	velocity	of	the	IMU	center	
in the Doppler axis frame. The velocity is not instanta-
neous but an average over the 0.1-s interval of validity.

The	 measurement	 is	 linearized	 for	 a	 Kalman	 update	
for the navigation error states. The filter observation is 
calculated as:

  	 (12)

The bar over the navigation velocity indicates an aver-
age over the interval of validity. 

Finally, an error model for this measurement was 
derived	by	taking	differentials.	Showing	only	the	most	
important terms, the resulting model is:

  (13)

The	 error	 states	 in	 Eq.	 (13)	 are	 defined	 in	 Table	 1.	
The Doppler error term consists of Doppler input axis 
misalignments (modeled by individual axis, not shown 
here)	and	discrete	measurement	noise.	

The	fact	that	Equation	13	employs	Doppler	coordinates,	
rather than ecef, has major advantages. In these axes the 
three scalar measurements can be modeled with inde-
pendent noise, and the three scalar updates can be done 
sequentially. This allows skipping or performing updates 
on a sensor-by-sensor basis, in response to sensor output 
validity indicators. The power level output by the Doppler 
sensors is used for this purpose. If one or two Dopplers 
measure very low power, this is taken to indicate invalid 
axes;	 for	 example,	 an	 axis	 may	 be	 pointing	 to	 a	 very	
distant	 reflector	or	 to	 infinity.	 If	 all	 three	 axes	 read	 low	
power and other sanity checks are met, this indicates a 
stand-still event, and a zero velocity update is executed 
instead.

Also note that the Doppler observation is a combination 
of velocity and attitude error, a consequence of the fact 
that it measures in a body-fixed frame, in contrast to 
GPS,	which	measures	velocity	in	the	earth-fixed	frame.	
This can often create interesting results. For example, if 
GPS	signals	are	strong	and	velocity	is	accurate,	attitude	
can be improved by the Doppler. On the other hand, 
in	a	GPS-deprived	scenario,	attitude	error	can	limit	the	
improvement of navigation position accuracy.

summary
Results	have	shown	that	Draper’s	configuration	of	deep	
integration	GPS	combined	with	other	sensors	is	a	prac-
tical design for a personal navigator. This paper has 
illustrated the main features of the algorithm design.
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This	 paper	 analyzes	 the	 error	 sources	 defining	 tactical-
grade performance in silicon, in-plane tuning-fork gyro-
scopes such as the Honeywell-Draper units being delivered 
for military applications. These analyses have not yet 
appeared in the literature. These units incorporate crystal-
line silicon anodically bonded to a glass substrate. After 
general descriptions of the tuning-fork gyroscope, order-
ing modal frequencies, fundamental dynamics, force and 
fluid coupling, which dictate the need for vacuum pack-
aging, mechanical quadrature, and electrical coupling are 
analyzed. Alternative strategies for handling these engi-
neering	 issues	 are	 discussed	 by	 introducing	 the	 Systron	
Donner/BEI	 quartz	 rate	 sensor,	 a	 successful	 commer-
cial	 product,	 and	 the	 Analog	 Device	 (ADXRS),	 which	 is	
designed for automotive applications.

Introduction 
The development of microelectromechanical systems 
(MEMS)	inertial	sensors	offers	revolutionary	improvements	
in	 cost,	 size,	 and	 ruggedness	 relative	 to	 fiber-optic	 and	
spinning mass technologies.[1],[2] Driven by high-volume 
commercial market needs, applications continue to grow 
for	modest	 performing	 components	 at	 prices	 below	$10/
axis.	 The	 Army	 is	 funding	 a	 $100M	 initiative	 to	 realize	
producible,	low-cost,	tactical-grade	MEMS	inertial	measure-
ment	units	(IMUs)	for	gun-launched	munitions	and	missile	
applications. The continued maturation of the technology 
will enable new applications and markets to be realized.

This paper analyzes design considerations necessary to 
reach	tactical-grade	performance	in	a	silicon	MEMS	tuning-
fork	gyroscope	(TFG)	such	as	the	Draper-based	design	that	
Honeywell is delivering in military systems. In the appen-
dices, alternative strategies for handling these engineering 
issues	 are	 discussed	 by	 introducing	 the	 Systron	Donner/

abstract
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BEI	quartz	 rate	 sensor,	 a	 successful	 commercial	product,	
and	 the	 Analog	 Device	 (ADXRS),	 which	 is	 designed	 for	
automotive applications.

While	many	 universities,	 government	 organizations,	 and	
companies have done research or even advertised the avail-
ability of inertial sensors, only a handful produces inertial 
instruments	on	a	commercial	scale.	University	of	Califor-
nia,	Berkeley,[3]-[5]	University	of	Sheffield,	UK,[6] University 
of	Newcastle,	UK,[7]	Seoul	University,	Korea,	U.	Neuchatel,	
Switzerland,[8]	 the	Massachusetts	 Institute	 of	Technology	
(MIT),	Tohoku	University,	 Japan,[9]	 Sandia,[10] Integrated 
Micro	 Instruments,[10]	 Cal	 Tech,	 Jet	 Propulsion	 Lab,[11] 
University	of	California,	Los	Angeles	(UCLA),[11]	National	
University	of	Singapore,[12]	University	of	Michigan,[13],[14] 
Sagem,[15]	 and	 many	 others	 have	 published	 on	 MEMS	
gyros.	Three	hundred	sixty	eight	MEMS	fabrication	facili-
ties	have	been	identified	worldwide.[16] 

The	MEMS	angular	rate	sensor	or	gyroscope	divides	itself	
into	 tactical	 and	 automotive/commercial	 performance	
categories. Two companies are producing tactical-grade 
performance	 on	 the	 order	 of	 1	 to	 10	 deg/h.	 Several	 are	
producing	automotive	grade,	which	 is	 loosely	defined	as	
several	hundred	to	a	few	thousand	deg/h.	The	scarcity	of	
commercial sources despite the plethora of research efforts 
and	advertisements	underscores	the	difficulty	in	construct-
ing	MEMS	angular	rate	sensors.

Based	 on	 technology	 developed	 at	 Draper	 Laboratory,	
Honeywell	is	delivering	HG1900,	HG1920,	and	HG1930	
navigation systems. After a decade of excellent test data, 
production quantities are now being realized. In 2004, 
several hundred systems were delivered for military appli-
cations, such as artillery shell and mortar shell guidance. 
Discussed further in the next section, this gyro is crystal-
line silicon-on-glass and has two mechanically-coupled 
proof masses moving in antiparallel directions, and senses 
rate in the wafer substrate plane.

Systron	 Donner/BEI	 has	 built	 hundreds	 of	 thousands	 of	
quartz	TFGs	over	the	past	15	years.[17],[18] For their higher 
performance	units,	quoted	specification	sheet	performance	
is	36	deg/h/  noise, and uncompensated thermal sensi-
tivities	 are	 21	 deg/h/°C	 and	 300	 ppm/°C.	 These	 sensors	
have been used in many higher performance automobiles 
for traction and stability control and in military systems.

Automotive or commercial-grade angular rate sensors 
perform	 at	 several	 hundred	 to	 a	 few	 thousand	 deg/h.	
Analog	Devices’	ADXRS150	specifies	noise	of	180	deg/h/  
and	uncompensated	thermal	sensitivities	of	1440	deg/h/°C	
and	1700	ppm/°C	(typical	values	are	180	deg/h/°C	and	150	
ppm/°C).	Analog	employs	polysilicon	deposited	over	oxide	
sacrificial	layers.	Because	of	integrated	on-chip	electronics,	
these	gyros	are	small	and	consume	only	30	mW	per	axis.	

Silicon	 Sensing	 Systems,	 a	 collaboration	 of	 BAE	 Systems	
and	 Sumitomo,	 sells	 an	 automotive	 gyro	 consisting	 of	 a	
MEMS	 ring	 resonator	 driven	 by	 magnetic	 fields.	 Delphi	

pursued ring resonators for several years, but no informa-
tion has been released in recent years. In their automo-
tive	 products,	 Bosch	 has	 incorporated	 a	 rate	 sensor	 that	
can	be	purchased	as	a	replacement	part	at	BMW	dealers.	
The sensor consists of two linear accelerometers supported 
in a vibrating frame.[19]	Bosch	employs	a	10-µm	polysili-
con process[20] that results in gorgeous parts with straight 
smooth sidewalls.

For	 several	 dollars,	 Murata	 sells	 a	 vibrating	 beam	 gyro-
scope	with	a	piezoelectric	readout.	Since	stability	is	poor,	
high-pass	 filtering	 is	 recommended.	 This	 gyro	 has	 been	
applied to vibration control problems such as camera and 
camcorder	 stabilization.	 O-Navi	 (formerly	 Gyration)	 is	
selling sample quantities.[21]	 Crossbow	 Technology	 and	
Cloud	Cap	Technology,	Hood	River,	Oregon,	deliver	 six-
axis systems based on Analog Devices’ inertial sensors. 

Other	 gyro	 manufacturers	 include	 L-3,	 Panasonic,	 and	
Samsung.[22],[23] Although mentioned on their web sites, 
little is known about these angular rate sensors. Imego, 
Sweden,[24]	produces	small	numbers	of	sensors.	Kionix,[25] 
Ithaca,	 NY,	 and	 Microsensors,	 a	 subsidiary	 of	 Irvine	
Sensors,	 advertise	 automotive-grade	 MEMS	 gyroscopes.	
SensoNor	will	ship	their	SAR10	automotive-grade	angular	
rate sensor on short notice.[26] 

This	 paper’s	 unique	 contributions	 include:	 1)	 analysis	
and tolerances required to realize antiparallel tuning-
fork	motion;	 2)	 two-degree-of-freedom	model	 of	 instru-
ment dynamics, including fluid and mechanical cross-axis 
couplings;	 3)	 force	 and	 fluid	 coupling	 models,	 which	
dictate	 evacuated	 packages	 for	 better	 performance	 units;	
and	4)	mechanical	quadrature	models	that	have	led	to	laser	
trimming.

When	 discussing	 performance,	most	 published	work	 on	
MEMS	angular	rate	sensors	focused	on	z-axis	gyros,	which	
sense rate perpendicular to the substrate, and emphasized 
wide bandwidth resolution. For z-axis gyros, nonideal 
suspension	geometries	were	studied	in	References	[27]	and	
[28].	More	recently,	the	University	of	California,	Irvine,	has	
considered z-axis gyro scale-factor variation with frequency 
and temperature.[29],[30] 

Description of Honeywell/Draper tFG
The	Draper/Honeywell	TFG	is	shown	in	Figure	1.	This	
sensor was designed to achieve the highest perfor-
mance consistent with costs that are low compared with 
traditional mechanical sensors. The gyro consists of 
two perforated proof masses supported by a system of 
suspension elements. The suspension and proof masses 
are doped crystalline silicon anodically bonded to a 
Pyrex	or	glass	substrate	at	the	suspension	beam	anchors	
and at the comb structures.[31],[32]	 Curling	 from	 etch	
stop doping gradients is avoided by annealing silicon 
diffused with boron or by employing uniformly grown 
silicon-on-insulator. The glass substrate precludes on-
chip	 electronics;	 however,	 the	 high	 resistivity	 reduces	



 44 Error Sources in In-Plane Silicon Tuning-Fork MEMS Gyroscopes

stray capacitance, which mitigates the need for on-chip 
circuitry.	(With	silicon	wafers,	bond	pads	are	isolated	from	
the conducting substrates by thin dielectric layers so that 
high	 stray	 capacitance	 limits	 performance.	With	 on-chip	
circuits,	bond	pads	and	stray	capacitance	are	avoided.)

Figure	1.	 The	Draper/Honeywell	TFG	mechanism.	In	1(b)	
and	1(c),	silver	is	metal,	diagonal	lines	indicate	
silicon attached to glass, and white indicates 
suspended	 silicon.	 Electrical	 contact	 pads	 are	
right	 motor	 drive	 (RM),	 right	 sense	 electrode	
(RS),	motor	pickoff	 (MPO),	 left	 sense	electrode	
(LS),	 left	motor	drive	 (LM),	 and	 sense	pick	off	
(SPO).	

On either side of each proof mass are interdigitated 
combs.[33] The outer combs (left and right motor in Figure 
1)	 are	 used	 for	 electrostatically	 driving	 the	 proof	masses	
antiparallel to the substrate in the x direction. The inner 
combs	(motor	pickoff	in	Figure	1)	sense	the	drive	motion	
and	are	typically	biased	to	5	Vdc	through	an	op	amp	that	
senses charge traversing the comb gap. As described in “The 
Fundamental	 Dynamics	 of	 Oscillating	 Coriolis	 Sensors”	

section,	rotation	about	the	in-plane	z-axis	induces	Corio-
lis acceleration, which deflects the proof masses in oppo-
site	directions	perpendicular	to	the	substrate.	Beneath	the	
plates are deposited metal electrodes that are excited with 
dc	voltages	of	opposite	polarities.	The	right	sense	plate	(RS	
in	Figure	1)	is	typically	excited	with	5	V	and	the	left	sense	
plate	(LS)	with	-5	V.	Differential	proof	mass	motion	induces	
electrical currents in the structure that flow through the 
suspensions	 and	 sense	 pickoff	 (SPO,	 Figure	 1)	 into	 a	
preamplifier	whose	 input	contains	 the	 input	angular	rate	
modulated by the drive frequency.

With	drive	resonant	frequencies	from	10	to	20	kHz,	these	
gyroscopes are relatively stiff with suspension stiffnesses 
greater	than	100	N/m.	With	3-µm	gaps,	mechanical	spring	
force	of	300	µN	is	available	to	overcome	sticking;	neverthe-
less, care in etching and release, in electronic excitation, 
and mechanical handling is required.

As detailed below, the challenge is to obtain excellent 
performance in a device where the sensitivity to angular 
rate is small. Obstacles include manufacturing tolerances 
and	the	relatively	large	magnitudes	of	non-Coriolis	forces	
and electrical drive and excitation signals.

Mode Ordering
A first challenge is designing the angular rate sensor’s 
dynamic eigenfrequencies.	If	one	considers	the	TFG	proof	
masses	(Figure	1)	rigid	and	the	suspension	beams	without	
mass, 3 rotations and 3 translations times 2 masses imply at 
least 12 dynamic modes. For advanced designs, proof mass 
compliance and suspension modes add further consider-
ations.	The	TFG	is	designed	so	that	the	lowest	frequency	
modes	are	generally:	1)	drive	or	tuning	fork,	2)	translation,	
3)	sense,	and	4)	out-of-plane.	In	the	tuning-fork	mode,	the	
proof masses move antiparallel to the substrate. One usually 
attempts to excite this mode through the electrostatic motor 
drive.	Similar	proof	mass	amplitudes	are	the	design	goal.	
The drive frequency is designed for 10-20 kHz to reduce 
vibration and acoustic effects. For the translation mode, 
the	proof	masses	move	parallel	 to	 the	 substrate.	Because	
the drive combs are controlled to apply forces in opposite 
directions, translation should not be excited by electrostatic 
drive;	however,	translation	is	excited	by	linear	acceleration.	
To ensure tuning-fork operation despite beam width toler-
ances, the in-plane translation frequency is usually set 10-
15% or more away from the drive frequency. 

The sense mode has the two proof masses moving away 
or toward the substrate in opposite directions. This could 
also be a rotation about their common center. For good 
gain, the sense eigenfrequency is set 5-15% away from the 
drive.	While	higher	gain	can	be	achieved	at	smaller	separa-
tion, small variations in the resonant frequencies result in 
larger	 fractional	 changes	of	 scale	 factor.	When	 the	out-of-
plane mode is excited, the two proof masses move together 
perpendicular to the substrate. It is important that the lowest 
modes do not fall close to one another and that higher order 
modes are not integral multiples of the basic four. 
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Obtaining ±2% sense-drive frequency separation toler-
ance is challenging. The mechanical design is done using 
modal	 analysis	 in	 finite-element	 calculations.	 The	 toler-
ance required is estimated by noting that the beam mass 
is	small	compared	with	 that	of	 the	proof	mass.	As	a	first	
approximation, stiffness is determined by beam bending 
(more	detailed	analyses	 include	torsion	elements)	so	that	
the sense resonant frequency depends on the beam thick-
ness as w1/2t3/2, while the drive resonance depends on the 
beam width as t1/2w3/2.	For	a	fixed	thickness,	the	frequency	
separation	is	proportional	to	the	beam	widths.	With	greater	
detail, the frequency separation is still strongly determined 
by tolerances on the beam width and thickness. In the 
dissolved wafer process[31]	used	for	the	Draper/Honeywell	
TFGs,	 the	 beam	width	 and	 thickness	 are	 determined	 in	
independent steps. The thickness is determined by boron 
diffusion or by purchased silicon-on-insulator wafers. The 
beam widths are set by masks and deep reactive ion etching. 
Typical beam widths are 10 µm. Achieving 2% accuracy in 
frequency separation requires 0.2-µm absolute accuracy of 
the beam widths. This accuracy challenges the tolerances 
on masks and requires great control of deep etching.

Consider	separation	of	 the	 in-plane	translation	and	drive	
or tuning-fork mode where the proof masses translate 
in parallel but opposite directions. Tuning-fork motion 
is desired to common mode reject in-plane linear accel-
erations	and	to	reduce	damping	forces.	With	tuning-fork	
operation, the proof masses move in opposite directions so 
that	the	base	beam	(Figure	1)	remains	essentially	station-
ary, and only small shear stresses are transmitted through 
the	 anchors	 to	 the	 substrate.	With	 no	 anchors	 bending,	
energy is not transmitted or radiated to the substrate so 
that a high mechanical quality factor, a precursor to low 
force	coupling	(see	next	section),	is	attained.	The	tuning-
fork eigenfrequency depends only on the suspension beams 
from	 the	 proof	mass	 to	 the	 base	 beam	 (Figure	 1).	With	
only a single proof mass, acceleration near drive frequency 
would alter the proof mass velocity and appear directly as 
a	scale-factor	error	in	(4).	For	order	of	magnitude	common	
mode rejection, the driven amplitudes of the two proof 
masses	should	match	to	10%;	that	is,	the	common	mode	
motion or translation mode should be 5% of the individual 
proof mass motion.

A lumped parameter, two-mass three-spring model for 
drive-translation motion is shown in Figure 2. Derived in 
Appendix A, the translation is related to the tuning fork or 
differential motion by:

  	 (1)

where 

 k = nominal stiffness of beam from proof mass to base 
beam

 Dk = stiffness deviation from nominal (k1 = k + Dk/2,	

k2 = k - Dk/2)

 Dx = differential proof mass motion (x1 – x2)

 Sx = translation motion (x1 + x2)

 wH	 =	 eigenfrequency	 of	 hula	 (in-plane	 translation)	
mode

 DF = F1 – F2 = differential force (excites tuning-fork 
mode)

	 s	 =	 Laplace	transform	of	d	/dt	=	jwD

Figure	2.	Lumped	parameter	model	of	in-plane	dynamics.

Where	 the	 tuning-fork	 beams	 (from	 proof	mass	 to	 base	
beam)	 largely	 determine	 the	 drive	 resonance,	 the	 trans-
lation mode also depends on the anchor beams (from 
anchors	 to	 base	 beam).	 Smaller	 differential	 stiffness	 and	
larger drive-translation frequency separation excites trans-
lation less. The stiffness depends on beam width cubed. 
Assume that the beam widths differ by 1% for the right 
and	left	proof	masses,	the	differential	stiffness	is	3%.	With	
the	translation	frequency	90%	of	the	drive	frequency,	the	
translation motion is 6.4% of the tuning-fork motion. The 
beams must match to 0.1 µm (see earlier portion of this 
section).	Achieving	good	separation	often	requires	that	the	
anchor beams be thinner than the tuning-fork beams. If the 
anchor beams are thick and rigid, the base beam is attached 
to	the	substrate	and	the	proof	masses	move	independently;	
that is, the drive and translation modes are identical. These 
thin beams present challenges and often approach the limits 
of micromachining capability.

Fundamental Dynamics of Oscillating Coriolis sensors
To	 understand	 TFG	performance,	 consider	 a	model	 that	
includes only the sense and drive modes. As shown in the 
previous section, the drive motion can often be consid-
ered	separate	from	the	translation	(hula)	modes.	With	only	
linear terms considered, the drive and sense axis dynamics 
are described by second-order spring-mass systems with 
coupling between modes:

Drive 
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    	 (3)

where 

 m = mass of one proof
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 b = damping   

	 k	 =	 stiffness.	 Mostly	 mechanical	 with	 modifications	
by electrostatic forces

 kds = quadrature coupling. The drive axis suspension 
force coupling into the sense axes

 bds = in-phase damping ‘surfboard’ coupling to sense 
axis

	 x	 =	 motion	along	drive	axis	(parallel	to	substrate)

	 y	 =	 motion	along	sense	axis	(normal	to	substrate)

	 s	 =	 Laplace	transform	of	d	/dt

 Fd = motor drive force applied by the outer combs in 
Figure 1

 WI = slowly varying  input rate

 a = drive force coupling to sense axis

 Q = quality factor

From (2) and (3), another challenge emerges. The driving 
force as well as the drive axis suspension force and drive 
axis damping are coupled into the sense axis.	With	 good	
design, these forces should be small compared with the 
Coriolis	Force	 .

For low-frequency angular rate inputs, the desired output 
is the angular rate modulated by the drive frequency. As 
shown in the electrical circuit of Figure 3, the proof masses 
are the negative input of a high input impedance, high-
gain	operational	amplifier	whose	 input	node	 is	at	virtual	
ground. The feedback resistor is large so that it does not 
affect	the	output	at	the	gyro’s	drive	frequencies.	From	(3)	
and	Figure	3,	the	preamplifier	output	is	given	by	(Appen-
dix	B):

 	 (4)

where 

	 Vo	 =	output	of	preamplifier

	 Vs = bias voltage (plus and minus applied to right and 
left	sense	plates	in	Figure	1)	on	sense	electrodes	
(5	V,	example	values	are	given	in	parentheses)

	 Vc	 =	coupling	(drive	feedthrough)

	 VN	 =	preamplifier	input	voltage	noise	(10-8	V/ )

	 Cfb = feedback capacitor about the sense axis pream-
plifier	(2	pF)

	 Cs	 =	total	of	sense	capacitors	(2	pF)

	 CN	 =	preamplifier	 input	 capacitance	 to	 ground	 (5	
pF)

	 Cc	 =		coupling	 (undesirable	 capacitor)	 to	 virtual	
ground	(preamplifier	input)

	 dCs/dy	 =	differential	 change	 of	 sense	 capacitors	 with	 y	
motion	(2	pF/3	µm)

 SC	 =	sum	 of	 all	 capacitors	 attached	 to	 the	 virtual	
ground. Includes strays, working, feedback, 
and	amplifier	capacitors	(12	pF).

 wd = drive mode undamped natural frequency  
(20 kHz x 2 prad/s)

 ws = sense mode undamped natural frequency   
(22 kHz x 2 prad/s)

 xo	 =	amplitude	of	drive	motion	(10	µm	zero-to-peak)

 Fs = cross coupling forces acting along the sense 
direction	(B-6)

 q	 =	phase	shift	through	sense	dynamics	(B-6)

Figure	3.	Circuit	diagram	for	sense	preamplifier	analysis.

In	(4),	it	is	assumed	that	the	proof	mass	motion	is	driven	
so that the displacement is a sinusoidal function of time. 
The	 rate	 signal,	 the	 Coriolis	 term,	 is	 in	 phase	 with	 the	
proof mass velocity, i.e., in quadrature with the proof mass 
position. For the sample parameters above, the gyro scale 
factor	at	the	preamplifier	output	is	1.3	mV/rad/s.	With	a	
field	effect	transistor	(FET)	preamplifier	whose	input	noise	
at	drive	frequency	is	10	nV/ , the rate equivalent noise 
is	10	deg/h/ . Attaining the theoretical noise limit is a 
challenge	 discussed	 further	 in	 the	 “Electrical	 Coupling”	
section. 

Because	of	the	sense-drive	frequency	separation	and	high	
sense-axis quality factor, the damping term is omitted in 
the	denominator	of	(4);	therefore,	gain	does	not	depend	
on damping. High resonant frequencies are desired to 
remove the gyro’s sensitive frequencies from acoustic 
noise and vibration and to permit isolators that allow 
adequate	bandwidth.	For	a	fixed	sense-plate	bias,	higher	
sensitivity is achieved by lowering the resonant frequen-
cies	 and/or	 by	 decreasing	 the	 separation	 between	 sense	
and drive mode. Drive frequencies of 10-25 kHz and 
sense-drive mode separations of 5-15% have worked well 
for	MEMS	 TFGs.	 At	 baseband,	 the	 transfer	 function	 of	
output voltage to rate input has a lightly damped peak 
at	the	frequency	separation.	Placing	the	separation	at	1-2	
kHz	allows	a	100-Hz	bandwidth,	which	adequately	filters	
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the undamped peak. If the frequency separation is small, 
the scale factor becomes sensitive to small variations in 
resonant	frequencies	(4).

Demodulation	 (Figure	 4)	 multiplies	 the	 output	 (4)	 by	
sin(wdt+j),	 a	 signal	 in-phase	 with	 the	 drive	 velocity.	
The	 output	 after	 demodulation	 and	 low-pass	 filtering	 is	
(Appendix	B):

	 	 (5)
where 

	 Gac = gain before the demodulator

	 VB = bias voltage in dc section often caused by ampli-
fier	offset	voltages.

 dem = demodulation operation. Frequencies near the 
demodulation frequency are transferred to base-
band by the sin(wdt+j)	demodulation

 j = small phase shift between rate signal in sense 
chain and demod reference

Figure	4.	TFG	electrical	block	diagram.

In	 (5),	 small	 angle	 approximations	 for	 the	 angles	q and 
j	were	applied.	The	ac	gain,	 typically	5-20	V/V,	and	 the	
low-pass	filtering	blocks	are	shown	in	Figure	4.	This	low	
pass	filter,	typically	50-100	Hz,	sets	the	gyro’s	bandwidth.	
Feedthrough	 terms	 (5)	 are	 extremely	 important.	 The	
demodulation function dem emphasizes that extra voltages 
in phase with drive velocity appear directly as dc bias errors 
in	 the	TFG.	Components	 in	quadrature	 to	drive	velocity	
are	greatly	 reduced	at	 the	dc	output;	however,	mechani-
cal and electric phase shift error causes quadrature terms 
to appear as in-phase bias. Individual challenges and their 
implications on gyro construction are discussed in the next 
section. 

error Mechanisms
Force-Related Errors – The Impetus for Evacuation

Vacuum packaging is needed to reduce the required motor 
force and the voltage required to drive the motor.	From	(3),	
the motor force couples into the sense axis. For reason-
able scale factor, large drive amplitude is desired so that the 
drive	axis	is	operated	at	resonance;	that	is,	the	motor	force	
is	in	phase	with	the	drive	velocity.	When	the	interdigitated	
combs are over a ground plane, lift forces are exerted.[33] 
Derived	 in	Appendix	C,	 the	erroneous	estimated	angular	
rate can be calculated from:

 	 (6)

For	 a	 single	 set	 of	 combs,	 the	 coupling	 coefficient	a is 
of the order of 0.3.[33]	Because	 the	 left	 and	 right	motors	
behave	 similarly,	 this	 is	 common	 mode	 coupling.	 Since	
both outer combs cause lift and since the sense plate exci-
tation is selected to detect differential motion, the differ-
ential coupling determines the gyro bias. The coupling 
coefficient	depends	strongly	on	vertical	misalignment	(the	
disengagement)	 of	 the	moving	 and	 stationary	 combs.[33] 

With	a	20-kHz	drive	frequency	and	100,000	quality	factor,	
the	erroneous	common	mode	angular	rate	is	0.2	rad/s.	The	
differential magnitude is typically an order of magnitude 
smaller.	Because	damping	changes	by	a	factor	of	three	over	
operating temperature, thermal compensation is usually 
employed;	nevertheless,	the	absolute	tolerances	and	stabil-
ity of the comb disengagements must be held very closely 
to achieve tactical performance.

In addition to the electrostatic force coupling, hydrody-
namics couple drive force into sense force. Described by 
lubrication theory, the fluid coupling is described in detail 
with	 closed-form	 solutions	 in	 Reference	 [34].	 Once	 the	
coupling	coefficient	is	calculated,	(6)	can	be	used	to	esti-
mate	 the	 impact	 on	 estimated	 angular	 rate.	 Evacuation	
and pressure relief holes are required for acceptably low 
effects	on	in-phase	bias.	Perforated	designs	such	as	Figure	
1 result in hydrodynamic lift that is smaller than the elec-
trostatic coupling. The perforations also assist cleaning and 
inspection.

The	random	motion	of	the	proof	mass	is	dictated	by	Brown-
ian	motion.	To	achieve	preamplifier	limited	performance,	
gas damping must be reduced by evacuation so that the 
principal damping is material and radiation through the 
anchors into the glass.

Even	if	a	vacuum	is	not	required	(as	in	an	accelerometer),	
the small gaps and masses dictate hermetic sealing since 
humidity variation causes unacceptable variations in scale 
factor because of effective gap change. As temperature 
changes even with hermetic sealing, outgassing deposits 
material and changes the sense and motor gaps so that the 
scale factor is changed.

To summarize, evacuation is required in high-performance 
gyros	 for	 the	 following	reasons:	1)	reduce	the	electrostatic	
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drive	 force	 and,	 hence,	 coupling	 into	 sense	 axis	 force;	 2)	
reduce	 hydrodynamic	 lift	 (surfboarding)	 effects;	 3)	main-
tain acceptable phase stability between sense and drive axes 
(the	omitted	damping	in	the	denominators	of	(4)	and	(5));	
4)	render	Brownian	motion	small	so	that	wide	bandwidth	
resolution	is	achieved;	and	5)	enhance	resolution	since	low	
damping	does	not	restrict	sense-axis	motion	in	(4)	and	(5).

Low	damping	 increases	proof	mass	motion	 if	 shocks	 are	
applied. These effects are reduced by the two-mass design, 
which rejects common mode inputs, and modal frequency 
selection. The high resonant frequencies are above most 
shock	spectra,	which	are	often	defined	to	a	few	kilohertz.	
With	 high	 resonant	 frequencies,	 shocks	 and	 acoustic	
inputs	are	reduced	by	suspension	isolating	the	IMU.	The	
sense axis baseband peak, which occurs at the drive-sense 
separation, typically 10 kHz, is greatly reduced by sense 
chain	low-pass	filtering.

Mechanical Quadrature

The drive axis is operated at resonance so that the stiffness 
and	inertial	forces	in	(2)	cancel	and	the	drive-axis	response	
is	dominated	by	damping;	nevertheless,	a	 relatively	 large	
spring	 force	 is	 being	 exerted.	 Because	 of	 manufacturing	
imperfections or tolerances, the mechanical stiffness force 
results in the cross-coupling term kds. A slender beam tries 
to bend along its principal axes of inertia.[35] If the princi-
pal inertias are not aligned with the drive and sense axes, 
an attempt to bend the beams in the x direction results in 
a	y	 force.	Consider	 the	cross	section	of	a	simple	suspen-
sion beam where the sidewalls are not cut vertical but at 
an angle q to form a parallelogram cross section as shown 
in Figure 5. For small sidewall angles q, the ratio of cross-
coupling to in-plane force is given by:[36] 

 	 (7)

where 

 t = thickness of suspension beams and proof mass as 
defined	in	Figure	5

	 w	 =	 nominal	beam	width	as	defined	in	Figure	5

 q = tilt of sidewalls

Figure	5.	Nomenclature	 for	 analyzing	 quadrature	 from	
beam sidewall angle.

Because	 the	 suspension	 consists	 of	 several	 beams	 rather	
than a simple cantilever, the mechanical quadrature is 3-
10	times	smaller	than	that	calculated	by	(7).	Equating	the	
Coriolis	term	to	the	cross-coupled	term	as	in	Appendix	C,	
the estimated input rate error from cross coupling is given 
by:

 	 (8)

Because	the	coupling	is	 in-phase	with	drive	position,	the	
cross-coupled force term is in quadrature with the desired 
rate	 signal.	With	 good	 demodulation	 (see	 “Mode	Order-
ing”),	 little	 quadrature	 should	 appear	 in	 the	 indicated	
rate	output.	In	a	typical	TFG,	t/w	=	2.	Because	of	the	two	
proof masses, the differential coupling between right and 
left	masses	is	the	principal	concern.	With	sidewall	slopes	
matched	 to	0.002	r	 (0.1	deg),	a	 tight	 tolerance	 for	verti-
cal deep etching in silicon, the coupling ratio aQ	is	0.008	
and	the	magnitude	of	the	quadrature	signal	(8)	is	502	rad/
s (108	deg/h).	For tactical performance, the sheer magni-
tude of the possible quadrature signal presents major design 
challenges. In addition to dynamic range, small variations 
in demodulator phase lead to unacceptable bias shifts.

The	 TFG	 handles	 quadrature	 by	 very	 careful	 microma-
chining and by applying a quad nulling loop[37] to reduce 
the quadrature signal injected into the sense channel. As 
shown in Figure 4, the sense axis output is demodulated 
into components in-phase and in quadrature with the 
desired input rate-drive velocity signal. The sense chain 
quadrature signal is nulled by applying a dc voltage bias to 
the drive combs in addition to the two frequencies motor 
drive.	 Because	 of	 limited	 available	 voltage,	 mechanical	
quadrature	must	be	less	than	50	rad/s	for	successful	quad	
nulling.	Because	of	the	nulling	loop,	the	sense	chain	does	
not require head room for the large mechanical quadra-
ture. High-performance or as-etched quadrature larger 
than	50	rad/s	requires	mechanical	trimming,	a	procedure	
described	in	Reference	[36].	The	difficulty	of	quadrature	is	
that	small	imperfections	lead	to	large	quadrature;	however,	
only small amounts of material must be removed for effec-
tive trimming.

Electrical Coupling

The	drive	voltages	are	typically	5	V.	From	(4)	or	(5),	100	
fF	(Cc = 10-13	F)	stray	capacitance	to	the	sense	node	results	
in	 an	output	 voltage	of	250	mV,	 equivalent	 to	200	 rad/s	
(4 x 107	deg/h).	Small	coupling	capacitance	can	lead	to	a	
sense change signal much larger than the desired angular 
rate resolution and to dynamic range issues. This coupling 
effect is mitigated by two-frequency operation and balanced 
drive. The coupling can occur at the combs or in the leads 
leading to the package or even in the electronics itself.

For an electrostatic drive, the force is proportional to the 
voltage	squared;	thus,	the	drive	force	could	be	at	the	differ-
ence frequency between two input voltages.[37]	 Because	
the two frequencies can differ from the drive frequency 
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at which demodulation is done, coupling effects from the 
motor	to	the	sense	are	greatly	reduced	(5).	Because	the	half	
frequencies are generally derived from the motor position 
signal, the motor drive must be designed carefully to make 
motor frequency signals small.

Voltage	squaring	allows	the	motor	to	be	driven	with	plus	
and minus voltages, which reduce the coupling into the 
sense	 chain.	 Because	 of	 amplitude	mismatch	 (see	 “Mode	
Ordering”),	the	voltages	must	cancel	for	each	proof	mass	so	
that layout and connections become more complicated. A 
bias is added to the motor drives to null mechanical quadra-
ture signals and charge injected by the motor pickoff.

For proper operation, the motor drives must also be 
isolated from the motor sense so that the drive oscillator 
loop locks onto the mechanical motion and not onto the 
half frequency signals. Considerations of dynamic range, 
motor loop oscillator, and stability dictate that capacitance 
be matched to 10 fF, a significant design and manufactur-
ing challenge.	This	figure	is	supported	by	simulation	and	
results of production units.

Conclusion
For	TFGs,	the	phenomena	that	cause	the	principal	errors	in	
estimating angular rate were evaluated. To realize a work-
ing	MEMS	gyroscope,	many	design	features	must	be	done	
correctly. Design teams must converge quickly to a feasible 
solution	or	have	sufficient	resources	to	afford	several	itera-
tions. The challenges overcome in realizing a high-perfor-
mance	 MEMS	 gyro	 included:	 1)	 geometric	 tolerances,	
2)	 attaining	 theoretical	 noise	 limits,	 3)	 vacuum	 packag-
ing,	 4)	 reduction	 of	mechanical	 quadrature,	 5)	 eigenfre-
quency	 location,	 6)	 electrical	 coupling,	 and	 7)	 thermal	
expansion	 effects.	 Precise	 suspension	 beam	 dimensions	
were required to maintain the desired ordering of modes 
and frequency separation to achieve beam symmetry for 
reasonable quadrature and to maintain comb disengage-
ment, which causes vertical forces. Achieving acceptable 
quadrature required mechanical trimming and electrical 
feedback.	Reaching	theoretical	noise	limits	required	care-
ful, symmetric layout of electrical leads, of electronics, and 
of the sensor itself to avoid coupling through unbalanced 
stray capacitance. Thermal expansion changes dimensions 
that	change	gyro	performance;	for	example,	comb	engage-
ment alters sense axis force, and, hence, instrument bias, 
and sense gap alters scale factor. Alternatives for overcom-
ing the above challenges are presented by introducing the 
Analog	Devices	and	BEI	angular	rate	sensors.

Draper used the considerations and analyses presented 
here	 in	 developing	 the	 TFG	 technology	 Honeywell	 has	
applied to its navigation systems. After a decade of excel-
lent test data, production quantities are now being real-
ized. In 2004, several hundred systems were delivered for 
mainly military applications, such as artillery shell and 
mortar	shell	guidance.	Gyro	noise	is	5-10	deg/h/  with 
bias and scale factor repeatability over temperature and 

turn	off	better	 than	30	deg/h	and	400	ppm,	respectively.	
Raw,	uncompensated	thermal	sensitivities	are	10	deg/h/°C	
and	250	ppm/°C.	

appendix a. Derivation of translation Mode from 
Differential Force
The relation for translation mode versus differential mode 
(1)	is	derived.	From	Figure	2,	consider	only	motion	paral-
lel	to	the	substrate.	Neglect	damping	and	apply	Newton’s	
law to proof masses 1 and 2 and to the base beam:

 F1 = m1s2x1 + k1(x1 – xb)	 (A-1)

 F2 = m2s2x2 + k2(x2 – xb)	 (A-2)

 0 = (mbs2 + kb)xb – k1(x1 – xb)	–	k2(x2 – xb)	 (A-3)

where 

 k = stiffness of extension spring

 m = mass

 x = displacement of mass

 1,2,b = subscripts indicating proof mass 1, proof mass 2, 
or base beam

	 s	 =	 Laplace	transform	of	d	/dt	=	jwD

Add	(A-1)	and	(A-2)	to	obtain	the	translation	equation:

 	 (A-4)

where 

	 Dk = stiffness deviation from nominal (k1 = k + Dk/2,	
k2 = k - Dk/2)

	 Dm = mass deviation from nominal (m1 = m + Dm/2,	
m2 = m - Dm/2)

	 Dx = differential proof mass motion (x1 – x2)

	 Sx = sum of translation motion (x1 + x2)

	 DF = F1 – F2 = differential force (excites tuning-form 
mode)	 usually	 applied	 by	 electrostatic	 comb	
drive

	 SF = F1 + F2	=	sum	of	forces	(excites	translation).	Loads	
caused by substrate acceleration along the drive 
direction are included here.

Subtract	 (A-2)	 from	(A-1)	 to	obtain	 the	differential	drive	
mode equation.                      

 	 (A-5)

With	perfect	 construction,	 the	 translation	 (A-4)	 includes	
the	base	motion	while	the	differential	motion	(A-5)	is	free	
of	base	motion.	Reorder	(A-3).																													

 	 (A-6)

With	a	large	number	of	teeth,	the	differential	drive	force	is	
much larger than the sum. The base beam mass is much 
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less than the proof masses. Therefore, set mb and SF to 
zero	and	solve	(A-4)	through	(A-6)	simultaneously	for	Sx, 
Dx, and xb.                                           

 	 (A-7)

where wH	 =	 eigenfrequency	of	hula	(in-plane	translation)	
mode

 =   

	 wd = drive frequency =   

Because	 of	 their	 larger	 lateral	 dimensions,	 proof	 masses	
match	more	closely	 than	the	spring	stiffnesses;	 therefore,	
Dm	in	(A-7)	was	set	to	zero	to	obtain	(1).

appendix B. Derivation of sense Preamplifier Output
The	sense	axis	preamplifier	output	 (4)	and	 the	demodu-
lated	output	(5)	are	derived.	Solve	(2)	and	(3)	simultane-
ously for the drive and sense axis positions x and y. Assume 
that fluid and suspension cross couplings bds and kds, the 
Coriolis	 coefficient	 2mWI, and the force coupling a are 
small.	Because	is	motion	is	driven	by	small	terms,	the	sense	
position	becomes	a	small	term.	Neglecting	the	products	of	
small terms, the drive and sense positions are determined 
by:                                           

 	 (B-1)

 	 (B-2)

where	s		=		Laplace	transform	of	time	derivative	d/dt

Because	 the	 drive	 oscillator	 loop	 requires	 that	 the	 drive	
loop operate at resonance, the drive position and force 
are	sinusoids	once	steady-state	operation	is	achieved;	that	
is:                                

	 x(t)	=	xocos(wdt)	 (B-3)																				

 Fd(t)	=	-bdxowdsin(wdt)	 (B-4)

Since	the	sense	mode	resonant	frequency	is	typically	10%	
different from the drive resonant frequency, the damping 
can often be neglected in determining the steady-state sense 
position	magnitude.	Solve	(B-2)	with	(B-3)	and	(B-4).							

  
	 	 (B-5)

where 

	 q = phase shift through sense dynamics

  

=

  

The hydrodynamic lift and the drive force coupling are in-
phase with the desired rate signal, while the suspension 
force	coupling	is	out	of	phase.	The	sense	position	(B-5)	can	
be written as:              

 	 (B-6)

where 

 Fs = force acting in sense direction

 Fs = (abd – bds)xowdsin(wdt + q)	+	kdsxocos(wdt + q)

The	 sense	 preamplifier	 output	 is	 determined	 from	 the	
circuit diagram of Figure 3. The sense plates below the 
proof	masses	are	biased	with	opposite	voltages	(Figure	1)	
so	that	antiparallel	vertical	motion	is	detected.	Because	of	
the	amplifier’s	high	gain,	the	preamplifier	input,	which	is	
wired directly to the proof masses, is at virtual ground. 
Because	 the	 feedback	 resistor	 Rfb is large, the resistor 
and	 its	 Johnson	 noise	 are	 small	 effects	 at	 the	 gyro	 drive	
frequency wd.              

 	 (B-7)

Inserting	(B-6)	into	(B-7)	yields	(4).	Demodulation	(Figure	
4)	 multiplies	 the	 output	 (4)	 by	 sin(wdt+j),	 a	 signal	 in-
phase with the drive velocity. High-frequency content is 
removed	by	 low-pass	filtering	so	 that	 the	output	after	ac	
gain	and	demodulation	is	described	by	(5),	which	includes	
a	bias	voltage	from	amplifier	offsets	in	the	dc	chain.

appendix C. Derivation of In-Phase Bias error from 
Force Coupling
Equation	 (6)	 for	 calculating	 the	 in-phase	 bias	 caused	 by	
force	coupling	is	derived.	Since	the	TFG	is	operated	at	the	
drive resonance, the drive force amplitude on one proof 
mass is given by:                                           

 	 (C-1)

To calculate the angular rate errors, the undesired sense 
axis forces Fs	 are	 compared	 to	 the	 Coriolis	 accelera-
tion 2mWIwdxo;	 that	 is,	 the	 estimated	 rate	 is	 calculated	
from:                        

 	 (C-2)

The undesired force is the drive force multiplied by the 
coupling	coefficient	aF. Inserting aFd	from	(C-1)	into	(C-2)	
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results	in	(6).	Because	both	the	coupled	and	Coriolis	forces	
act on the sense axis dynamics, the frequency separation 
denominator	of	(4)	does	not	appear	in	(C-2).

appendix D. In-Plane Quartz Gyroscope
The	quartz	rate	sensors	(QRS)	reached	the	market	 in	the	
late	 1980s,	 a	 decade	 before	 silicon	MEMS	 devices	 were	
developed.	The	QRS	has	been	a	very	successful	product;	
therefore,	 a	 comparison	with	 silicon	TFGs	 is	 instructive.	
A	typical	Systron	Donner/BEI	QRS	is	shown	in	Figure	6.	
Per	 References	 [17]	 and	 [18],	 the	 actual	 designs	 differ	
depending on applications, which range from tactical to 
automotive. The H-shaped sensing mechanism is made of 
piezoelectric	quartz,	a	significant	variation	from	the	elec-
trostatically	silicon	gyros.	Electrodes	are	deposited	so	that	
the upper tines are driven as a tuning fork with antipar-
allel	motion	in	the	substrate	plane.	Because	of	symmetric	
construction and mechanical coupling, the lower tines 
oscillate at the drive frequency, although they are not 
excited	electrically.	When	the	substrate	is	rotated	about	an	
axis	parallel	 to	 the	 tines	(Figure	6),	 the	drive	 tines	move	
into	and	out	of	the	plane	in	response	to	the	Coriolis	accel-
eration, deflections that are coupled into the lower, sense 
tines. The sense electrodes are designed, deposited, and 
wired to sense the out-of-plane sense motion. 

Figure	6.	 BEI	quartz	rate	sensor:	(a)	sensing	mechanism,	
(b)	schematic	of	operation.[18]

Because	of	the	piezoelectric	material,	drive	and	detection	
signals are at the same frequency for constant rate inputs, 
and gaps around the moving elements are much larger than 
the 1-4 µm typical of the electrostatically-driven devices. 
Silicon	 micromachining’s	 deposition,	 doping,	 and	 wafer	
bonding	techniques	are	not	available	in	quartz;	therefore,	
quartz parts are generally limited to wafer thickness, which 
is greater than 100 µm (silicon parts are 5-20 µm thick or 
several	hundred	micron).	

The greater thickness and the required proximity of in- and 
out-of-plane eigenfrequencies results in moving elements 
larger	than	those	of	the	silicon	MEMS	devices.	Drive	oscilla-
tion	at	9	to	17	kHz	dictates	the	length	of	the	tines,	while	the	
continuous beams and the number of tines dictate that the 
tines and tip masses must be shaped carefully.[18]	Because	
the wafers are 100 µm thick, the wafers are much smaller 
than those used in silicon processing. The combination of 
small	wafers	and	large	die	tend	to	make	the	projected	QRS	
costs	higher	than	those	for	silicon	rate	sensors.	Because	of	
the thick part and large air gaps, sticking should not be an 
issue	for	the	QRS.	Because	of	the	thicker	parts	and	larger	
gaps that result in lower damping, it is possible that the 
QRS	can	be	sealed	at	higher	pressures	than	the	TFG	and	
still	demonstrate	low	Brownian	motion	noise.

The quartz’s etching characteristics are not as controlled 
as those of silicon because of the fundamental nature 
of quartz crystallographic properties and the etchants. 
The	 etching	 results	 in	 sidewalls	 (see	 “Error	Mechanisms:	
Mechanical	Quadrature”)	that	require	each	part,	including	
automotive, be trimmed.[18] Trimming has been done by 
the addition of mass and by laser removal, a process that 
has been highly automated. For high-performance sensors, 
the level of quadrature trimming is suspected to be quite 
tight because the linear piezoelectric drive does not offer 
the	possibility	of	quadrature	nulling	discussed	in	the	“Error	
Mechanisms:	Mechanical	Quadrative”	section.	

With	piezoelectric	operation,	both	the	drive	signals	and	the	
sense output are at the same frequency for no rate input. In 
electrostatically operated silicon devices, the drive voltages 
can be at different frequencies from the sensed output (see 
“Error	Mechanisms:	Electrical	Coupling”).	For	the	QRS,	the	
sense and drive electrodes are physically separated in the 
H structure so that coupling within the sensor should be 
small;	 nevertheless,	 controlling	 stray	 capacitance	 is	 chal-
lenging.	 BEI	 has	 demonstrated	 proprietary	 electronics[18] 
that enable tactical performance so that other stray paths 
have been controlled.

appendix e. analog Devices Out-of-Plane Gyroscopes
Analog Devices began their gyro development with the 
ground rules that the instrument should be inexpensive 
but should satisfy automotive applications. To minimize 
expense,	 Analog’s	 accelerometer	 CMOS	 and	 polysilicon	
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process	 was	 mandated.	 In	 the	 mid-1990s,	 the	 process	
focused	on	2-µm	thick	suspended	parts.	Based	on	perfor-
mance considerations, Analog has moved to 4-µm thick 
suspended polysilicon parts.[38] The 4-µm thickness 
results in smaller moving parts, shorter beams, and smaller 
deflections	 than	 for	 the	 larger	 TFGs.	 To	 incorporate	 on-
chip circuitry, the substrate must be silicon. The moving 
elements, wire runs, and bonding pads are isolated from 
the conducting silicon substrate by an oxide layer.

As	shown	in	Figure	7,	the	gyro	mechanism	consists	of	two	
independent mechanical structures.[38] For each structure, 
the inner member is driven and sensed electrostatically. The 
sensing frame supports the driven member. An angular rate 
about an axis perpendicular to the substrate moves the driven 
mass	along	the	sense	direction	(Figure	7),	which	is	parallel	to	
the substrate plane. As discussed below, the suspension is 

designed so that the sensing frame does not move in the drive 
direction, but follows the proof mass in the sense direction. 
Electrostatic	combs	detect	the	frame	position.

Eliminating	trimming	to	reduce	quadrature	was	a	dominant	
decision	in	ADXRS	design.[38]-[42]	With	crab	leg	or	folded	
beam suspension, different beam stiffness can cause sense-
axis motion when driving the proof mass.[40]	Because	this	
motion is in phase with position, it is in quadrature to the 
desired	rate-induced	motion.	The	ADXRS	beam	widths	are	
1.7	µm,	and	width	tolerances	are	0.2	µm	so	that	quadra-
ture reduction was a major design goal.[38]	Straight	beams	
between	the	sense	and	drive	elements	(Figure	7)	result	in	
very little sense-axis motion. The beams have stress relief 
at	their	ends	(not	shown	in	Figure	7)	to	reduce	longitudi-
nal stresses from polysilicon thermal expansion and from 
drive	motion.	Although	Analog	has	not	employed	it,	a	fine	
quadrature	 trim	 is	 possible	 by	 fingers	 excited	 to	 exert	 a	
sense force that is modulated by the drive motion.[43] 

In	the	ADXRS,	both	the	sense	and	drive	motions	are	paral-
lel	to	the	substrate’s	plane;	thus,	all	critical	dimensions	are	
done in one masking and etching operation. If the poly-
silicon thickness is off, all frequencies move together so 
that	mode	ordering	 is	maintained.	While	 the	proof	mass	
is	driven	at	7-µm	amplitude,	 the	sense	motion	 for	angu-
lar rate is roughly 10-10	m/rad/s,[38] an order of magnitude 
lower	than	for	TFGs.	This	smaller	motion	is	attributed	to	
smaller drive amplitude, the fact that the drive mass must 
also drive the additional sense mass, and 20 to 30% sepa-
ration of sense and drive resonant frequencies. The greater 
separation is consistent with 2-µm beam width compat-
ible with 4-µm thickness and the resulting proof mass and 
suspension dimensions.

The gyro consists of two mechanically independent mech-
anisms	 (not	 tuning	 forks,	 see	 “Mode	 Ordering”	 section)	
whose drive frequency is roughly 15 kHz and whose 
quality factor is 45.[38] The units are electrically cross-
connected[42] so that the proof masses move antiparallel 
to common mode reject linear acceleration. To achieve 
common mode rejection with a Q of 45, the two drive 
resonant frequencies should be within 1% of each other.

If the moving drive teeth are not centered with respect to 
the stationary teeth (i.e., the entire proof mass is moved 
relative	to	the	stationary	combs),	a	large	coupling	to	drive	
force results. The coupling of drive force to sense-axis 
effects	are	described	 in	 (3).	Since	 the	drive	 force	 is	 large	
because of the high damping and since the drive force is 
in	phase	with	 the	drive	velocity	and,	hence,	 the	Coriolis	
acceleration, the proof mass must be centered to very tight 
levels. 

With	1.7-µm	wide	beams,	achieving	the	geometric	control	
for sense drive frequency separation, matching drive 
frequencies, and centering the combs is challenging.
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Figure	7.	Mechanism	 for	Analog	Devices	ADXRS	angular	
rate	sensor:	(a)	photomicrograph,[41]	 (b)	sketch	
of one proof mass assembly.[42]
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The	 ADXRS	 is	 hermetically	 sealed	 at	 1	 atmosphere.	
Because	 of	 the	 resulting	 damping,	 noise	 is	 limited	 by	
Brownian	motion.[38]	To	achieve	drive	amplitude,	the	5-V	
supplies	must	be	boosted	to	approximately	12	V.	Damping	
adds	phase	shift	between	sense	and	drive	axes.	Electron-
ics design and increasing separation between sense and 
drive frequencies reduce the effect of this additional phase 
shift.	The	resulting	damping	renders	 the	ADXRS	tolerant	
of operating shock.

The	ADXRS	relies	heavily	on	its	on-chip	electronics	to	over-
come the small size and low scale factor of the mechanical 
parts. The sense displacement per rate input is 10% and 
the	capacitance	variation	is	1%	of	the	20-µm	thick	TFGs.	
Analog measures displacement resolution similar to the 
TFGs,	but	with	much	smaller	capacitors.
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This	paper	applies	a	unified	approach	to	variational	smooth-
ing and segmentation to brain diffusion tensor image data 
along user-selected attributes derived from the tensor, with 
the aim of extracting detailed brain structure information. 
The application of this framework simultaneously segments 
and denoises to produce edges and smoothed regions within 
the white matter of the brain that are relatively homogeneous 
with respect to the diffusion tensor attributes of choice. The 
approach enables the visualization of a smoothed, scale-
invariant	representation	of	the	tensor	data	field	in	a	variety	
of diverse forms. In addition to known attributes such as 
fractional anisotropy, these representations include selected 
directional tensor components and, additionally associated 
continuous	valued	edge	fields	that	may	be	used	for	further	
segmentation. A comparison is presented of the results of 
three different data model selections with respect to their 
ability to resolve white matter structure. The resulting 
images are integrated to provide a better perspective of the 
model	 properties	 (edges,	 smoothed	 image,	 etc.)	 and	 their	
relationship to the underlying brain anatomy. The improve-
ment in brain image quality is illustrated both qualitatively 
and quantitatively, and the robust performance of the algo-
rithm	in	the	presence	of	added	noise	is	shown.	Smoothing	
occurs without loss of edge features due to the simultane-
ous segmentation aspect of the variational approach, and the 
output enables better delineation of tensors representative of 
local and long-range association, projection, and commis-
sural	fiber	systems.

Introduction 
Diffusion weighted and diffusion tensor magnetic resonance 
imaging	 (MRI)	 has	 come	 into	 widespread	 use	 over	 the	
past few years. This is mainly because of the unique view 
diffusion imaging provides of the microstructural details 
within the cerebral white matter in health and disease. As it 
represents a relatively new class of image data, the process-
ing required for visualization and analysis of tensor data 
provides numerous new challenges. 

1 Control	and	Information	Systems	Division,	Draper	Laboratory,	Cambridge,	MA.
2 Center	for	Morphometric	Analysis	and	Massachusetts	General	Hospital	(MGH)/MIT	Athinoula	A.	Martinos	Center	
for	Biomedical	Imaging,	Department	of	Neurology,	MGH,	Boston. 
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these	examples,	the	identification	of	white	matter	anatomic	
structure is qualitatively enhanced and reduction of regional 
anisotropy	variance	is	quantified.	This	reduction	in	variance	
is then shown to be robust in the presence of added noise. 

While	demonstrated	with	 respect	 to	 specific	data	models,	
this simultaneous smoothing and segmentation framework 
is general and opens a rich and versatile set of processing 
options to address the noisy, voxel-averaged sampling of 
DTI data. It also enables the selection of appropriate models 
of various physical characteristics of the diffusion tensor in 
cerebral	white	matter.	Specific	clinical	objectives	will	dictate	
the optimal selection of “mapping” models and parameters 
for enhanced smoothing and segmentation and will be the 
focus of future studies. 

Materials and Methods
Data Acquisition
The sample data used in this paper used the following proto-
col:	Siemens	1.5	Tesla	Sonata,	five	sets	of	interleaved	axial	
slices	to	provide	2	×	2	×	2	mm3 contiguous coverage, single-
shot	echo-planar	imaging	(EPI)	with	six	directional	diffusion	
encoding directions, and a nonencoded baseline acquisition 
was	performed	with	TR	=	8	s,	TE	=	96	ms,	averages	=	12,	
number of slices = 12 per interleave, data matrix = 256 (read-
out)	×	128	(phase	encode),	and	diffusion	sensitivity	b	=	568	
s/mm2. The total imaging time for the session was approxi-
mately 45 minutes. The subject provided informed consent 
and was a 35-year old, right-handed male normal control 
from	 a	 study	 of	 schizophrenia.	 The	 Institutional	 Review	
Board	of	the	Massachusetts	General	Hospital	approved	the	
study protocol.

Computation of the Diffusion Tensor Attributes
Once the diffusion tensor, g, is sampled, the magnitude (or 
trace)	can	be	calculated	to	express	the	 total (no direction-
ality)	diffusivity	at	the	voxel	location.	The	directionality	of	
the diffusion is assessed by an eigen decomposition of the 
diffusion tensor

where li, si, i = 1,…3 are the three eigenvalue-eigenvector 
pairs for the tensor with eigenvectors of unit magnitude. The 
largest eigenvalue and the associated eigenvector correspond 
to the major directionality of diffusion at that location. The 
fractional anisotropy fa[29] is a scalar measure that is often 
used to characterize the degree to which the major axis of 
diffusion	 is	 significantly	 larger	 than	 the	 other	 orthogonal	
directions. 

Specifically	 regarding	 brain	 imaging,	 to	 the	 extent	 that	
white	matter	fiber	systems	have	homogeneous	directional-
ity	at	the	spatial	scale	of	the	voxel	size,	these	fiber	systems	

The history and general descriptions of the standard meth-
ods for diffusion imaging are discussed in detail in recent 
reviews	of	the	field.[1]-[3] Diffusion imaging has been used in 
a host of clinical and research application areas.[4]-[13] The 
ability	 to	 use	 diffusion	 tensor	 imaging	 (DTI)	 directional-
ity and anisotropy to characterize the compact portion of 
discrete corticocortical association pathways in the cerebral 
white matter of living humans has been demonstrated and 
validated.[14]	Identification	and	visualization	of	specific	fiber	
tracts[15]-[24] and exploration of the potential to elicit infor-
mation	about	functional	specificity[25] have also been carried 
out. The wide variety of application areas, along with the 
fact that the novel in vivo data are obtainable in this fashion 
makes DTI a potentially powerful clinical tool. 

Compared	 with	 conventional	 MRI,	 however,	 DTI	 image	
acquisition is quite slow, due to the need to encode multi-
ple different directions of diffusion sensitivity. This leads 
to practical tradeoffs in the use of DTI between acquisition 
time, diffusion sampling method, spatial resolution, and 
slice	coverage.	Partial	volume	effects	are	particularly	prob-
lematic in DTI since competition of multiple different direc-
tional features within a voxel can render the resultant tensor 
not representative of the underlying anatomic structure. The 
development of methods that take optimal advantage of the 
diffusion data in light of potentially low signal-to-noise ratio 
(SNR)	is	an	important	objective	for	making	DTI	more	clini-
cally relevant. 

Prior	 work	 in	 regularizing	 or	 smoothing	 diffusion	 tensor	
fields	include	the	work	in	Reference	[15],	where	a	Markov-
ian	model	is	proposed	to	track	brain	fiber	bundles	in	the	DTI	
data.	Diffusion	direction	 is	 applied	 to	fiber	 tract	mapping	
and	smoothing	in	Reference	[26],	in	which	the	total	varia-
tion	norm	algorithm	is	applied	to	the	raw	data.	Regulariza-
tion of diffusion-based direction maps to track brain white 
matter	fascicles	is	reported	in	Reference	[21],	in	which	the	
emphasis	 is	on	 the	use	of	prior	 information	 in	a	Bayesian	
framework,	 and	 in	 Reference	 [27],	 in	which	 the	 paths	 of	
anatomic connectivity are determined based on the direc-
tionality	 of	 the	 tensor.	 A	 continuous	 field	 approximation	
of	discrete	DTI	data	has	been	applied	in	Reference	[28]	to	
extract microstructural and architectural features of brain 
tissue.	Smoothing	employing	parametric	patches	has	been	
applied	 in	Reference	 [23]	 to	 three-dimensional	 (3D)	 scat-
tered data that describe anatomic structure.

In this paper, we present an algorithm for simultaneous 
smoothing or denoising and segmentation of diffusion 
tensor	data.	This	algorithm	smooths	the	image	field	within	
homogeneous regions, while at the same time preserves the 
edges of these regions at discontinuities by generating the 
associated	 edge	 fields	 based	 on	 user-selected	 tensor	 attri-
butes. The smoothing and edge estimation are applied with 
respect to a user-selectable “mapping,” or models, of the 
input	tensor	data	in	order	to	emphasize	specific	properties	of	
the	tensor.	Sample	application	of	the	algorithm	is	presented	
that demonstrates smoothing with respect to normalized 
tensor magnitude and principal eigenvector direction. In 
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are	 expected	 to	 demonstrate	 significant	 anisotropy.	More	
general	eigenvalue/eigenvector-based	scalar	as	well	as	vector	
and tensor features can be used to capture the underlying 
structure in the diffusion tensor image. 

We	have	developed	a	segmentation	and	smoothing	approach	
that	permits	user	selection	among	these	(and	other)	features	
of the tensor image in order to capture the relevant underly-
ing structural details. 

The Approach
The core concept of the method is the simultaneous varia-
tional	 segmentation	 and	 smoothing	 formulation.	 Given	
an	 observed	 tensor	 field,	 g,	 the	 objective	 is	 to	 obtain	
two	 outputs:	 the	 smoothed	 tensor	 u,	 and	 edge	 field	 v.	
These outputs, respectively, represent the simultaneous 
smoothing and segmentation of the raw tensor data. The 
approach, shown schematically in Figure 1, makes use of 
the following:

•	A	specified	data	fidelity	model	H(u,	g).

•	A	 continuity	model,	 f(u),	 that	 forms	 a	basis	 for	 adap-
tively determining the regions of continuity within 
which smoothing is to take place. 

Energy Functional 
In general, we may consider a region of interest W in a 
Euclidean	 space	Rn.	 Let	 x	 designate	 the	pixel	 position	 in	
W. Thus, for 3D spatial data, we have n = 3. Our results are 
based on the processing of a slice from a brain image, so n = 
2, and W	is	a	two-dimensional	(2D)	region,	and	the	vector	
x	is	a	2D	position	vector	in,	for	instance,	Cartesian	coordi-
nates. Over this region W,	estimation	of	a	field	u	=	u(x)	is	
of	 interest,	and	measurements	g	=	g(x)	are	collected.	The	
following energy functional[30]	for	scalar	fields	is	based	on	
the	energy	functional	of	References	[31]	and	[32]

 	 (1)

We	generalize	the	above	functional	to	vector	field	smooth-
ing (introduction of tensor notation at this stage, although 
more	cumbersome,	provides	no	additional	insight)	with	the	
introduction	 of	 the	 data	 fidelity	 and	 continuity	 functions	
(h1(u),	h2(g)),	and	f(u),	respectively	

 	 (2)

For a given data g and choices of functions h1(u),	h2(g),	and	
f(u),	the	energy	functional	is	minimized	with	respect	to	u	
and v. Input data g and smoothed data u are vector	fields	
(tensor	 processing	 can	 be	 recast	 as	 vector	 processing)	 of	
dimensions m and r, respectively, whereas v is a scalar	field	
that	 represents	 the	 edges	 of	 the	 smoothed	 vector	field	u.	
Further	g,	u	and	v	are	continuous	n-dimensional	fields	and	
are defined for all x in region W in an n dimensional space x. 
The	first	term	in	the	above	functional	represents	a	smooth-
ing penalty term that favors spatial smoothness of vector 
field	f(u),	rather	than	of	u,	at	all	interior	points	of	the	region,	
where	edge	field	v	<<	1	with	0	≤ v ≤1, as explained later. 
It	is	worth	noting	that	the	field	f	may	be	of	a	lower	dimen-
sion	than	the	field	u	and	that	the	smoothing	penalty	is	in	
terms of a metric F(fx(u))	of	fx(u),	the	Jacobian	with	respect	
to	x	of	the	smoothed	continuity	function	f(u(x)),	which	we	
simply	denote	by	f(u).	Note	that	since	the	edge	field	v	is	also	
simultaneously estimated, the spatial extent of smoothing is 
adaptive with the smoothing penalty tending to zero over 
parts of region W, where edge strength v tends to 1. 

The	second	term	reflects	data	fidelity	between	the	input	data	
g,	 and	smoothed	field	u,	 as	given	by	 the	metric	H(h1(u),	
h2(g)).	We	specify	explicit	forms	for	h1, h2, and f in the next 
section. The third and fourth terms represent prior models 
for	the	characteristics	on	the	type	of	edge	field	dependent	on	
just parameter r. The third term provides for smoothness of 
the	edge	field	in	terms	of	the	2-norm	of	its	spatial	gradient	
vx, while the fourth term penalizes the excessive presence 

Figure	1.	Block	diagram	of	the	variational	segmentation	processing	framework.		Variables	are	referred	to	in	Eq.	(1).
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 (3) Data Continuity Model, h
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of edges. The constants a, b, and r represent the chosen 
weights on the accompanying cost components and deter-
mine the nominal smoothing radius, the edge width, as well 
as	govern	the	value	of	edge	function	v.	Specifically,	the	ratio	
a/b is related to the nominal smoothing radius, r to the 
edge width, and a governs the edge strength. Further details 
governing the choice of constants a, b, and r is discussed 
in	 Reference	 [33].	 For	 more	 details	 on	 the	 segmentation	
approach and on the results of the application of the func-
tional	 for	 smoothing	 and	 segmentation	 of	 phantom,	MRI	
and	 functional	magnetic	 resonance	 imaging	 (fMRI)	 scalar	
data, as well as for the fusion of different modality data, see 
References	[33]-[36]	and	the	references	therein.	

The	edges	are	estimated	based	on	continuity	attributes	f(u)	
of	the	smoothed	tensor	field	u	and	the	specified	prior	model	
on	 edge	field.	 The	Euler	 Lagrange	 equations	 that	 are	 the	
necessary conditions associated with the minimization of 
the energy functional can be solved by the gradient descent 
method	(e.g.,	References	[33]-[35]).	

From the outputs u and v, additional relevant attributes 
associated with size, shape, and orientation of the diffusion 
ellipsoid	may	be	distilled	for	further	analysis.	Example	attri-
butes	 include	 the	 trace	 (for	 diffusion	magnitude),	 anisot-
ropy	 measures	 (for	 diffusion	 “shape”),	 and	 the	 direction	
of	 eigenvectors	 (for	 diffusion	 orientation).[37] The ability 
to	 select	 functions	 f(u)	 and	h1(u),	h2(g)	 to	 satisfy	various	
continuity	and	data	fidelity	requirements,	respectively,	is	an	
important advantage that enables the viewing of the same 
DTI data from different perspectives.

Application to DTI Data
Depending on the objective, one can select the continuity 
functions h1(u),	h2(g)	 and	fidelity	 function	 f(u)	 to	obtain	
an	 edge	 field	 v	 and	 an	 accompanying	 smoothed	 tensor	
field	u	with	respect	to	specific	features	of	the	data.	Differ-
ential smoothing concerns can thus be applied to different 
weighted eigenspace components of the tensor, and more 
generally, to any other sets of attributes of the tensor. 

We	next	illustrate	two	different	models	that	capture	differ-
ent characteristics of spatial similarity for the tensor data 
by	 selection	of	different	 forms	of	 continuity	 function	 f(u)	
and	the	data	fidelity	function	h2(g)	while	retaining	the	same	
form of function h1(u)	=	u

(a)	 Normalized	tensor	smoothing

(b)	 Dominant	directional	tensor	component	smoothing

 

where l1 is the maximum of the three eigenvalues of the 
tensor g.

The	first	model	represents	a	scale-invariant	continuity	crite-
rion	 for	 the	 tensor	data	g.	By	contrast,	 the	second	model	

assumes the same invariance continuity criterion as the 
first,	but	with	respect	to	only	the	subspace	of	tensor	g	asso-
ciated with its dominant eigenvector s1. The objective of 
identifying regions of spatial continuity within the image, or 
equivalently, segmenting, motivates the choice of model. It 
may be noted that for dominant directional tensor smooth-
ing	 in	 (b)	above,	 	we	have	chosen	 to	work	 in	 the	rank-1	
dominant tensor space s1sT

1 rather than the vector space of 
associated direction s1. 

For measures, we adopt the following choices for F, H of 
Eq.	(2)	

      	 (3)

 	 (4)

where	F	and	H	represent	the	Euclidean	norm	of	the	gradi-
ent	of	f(u)	and	the	estimated	error	u	-	h2(g),	respectively.

Assessment
In order to assess the results of the application of this process-
ing to clinically relevant DTI data, we selected a representative 
axial slice that included a comprehensive set of neuroanatomic 
white	matter	 regions	 of	 interest	 (ROIs).	 These	 anatomic	
regions include the corpus callosum, internal capsule, 
superior longitudinal fasciculus, and cingulum bundle. 
First, we visually inspect the results of the smoothing 
modes	on	the	appearance	of	fractional	anisotropy	(fa)	maps	
as well as in visualization of tensor orientation information. 
Second,	we	quantify	 these	observations	by	evaluating	 the	
distribution of fa values over the anatomic regions listed 
above. Third, we evaluate the sensitivity of the proposed 
methodology by comparing, using images and the change 
in performance with traditional methods when noise is 
added	to	the	raw	data.	We	choose	to	add	Gaussian	noise	at	
increasing levels to the data, with negative values set to zero 
to remain within the physical constraint of non-negative 
intensity. In addition to comparing the proposed method 
and the traditional approach using images, we also quan-
tify the effect of noise on the performance of the proposed 
approach	 in	 terms	of	 the	coefficient	of	variation	of	 the	 fa	
over each anatomic region of interest. 

results
In this section, we demonstrate the operation of the algo-
rithm in the context of two different smoothing models, 
characterize this processing in the context of anatomic 
information contained within the DTI data, and summarize 
some of the noise properties of the implementation. Figure 
2 demonstrates a number of different views of the results 
of this smoothing procedure on an axial brain slice. This 
includes	the	raw	(unsmoothed)	data	in	the	first	column	as	
well as the results of the two different smoothing models: 
normalized tensor in the second column, and directional 
projection in the third column. The “cuboid” and color 
representations[38] of the directional information contained 
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Figure	2.	Effect	of	two	smoothing	models	(2nd and 3rd columns)	on	an	axial	brain	slice.	The	fractional	anisotropy	and	edge	
maps	are	displayed	in	the	first	two	rows,	and	the	“cuboid”	and	color	representations	of	the	directional	information	
contained	in	the	resultant	tensor	fields	are	displayed	in	the	last	two	rows.	Maximum	details	emerge	when	smoothing	
is most selective, directional projection based (3rd	column),	within	the	edge	field	boundaries.
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in	the	resultant	tensor	fields	are	presented	in	the	third	and	
fourth rows, respectively. 

From	the	edge	field	visualization	in	the	first	row,	it	is	clear	
that the most details consistent with the anatomic struc-
ture emerge when smoothing is most selective within the 
edge	 field	 boundaries.	 Specifically,	 the	 edge	 map	 in	 the	
third column, which is based on the directional projection, 
displays more details than the edge map in the second 
column, which is based on the normalized tensor. 

The second row of images indicates that the impact of 
edge	 preservation	 on	 the	 smoothing	 of	 the	 tensor	 field	
and its components can also be appreciated from the fa 
images for the smoothed tensor. The raw data’s fractional 
anisotropy	is	shown	in	the	first	column	for	comparison.	

It	 might	 be	 remarked	 that	 by	 definition,	 the	 fractional	
anisotropy of the directional component in the raw data 
will be unity and of interest is the deviation from unity that 
arises from the spatial variation of the dominant direction 
component that is reflected in the smoothing. The quanti-
tative impact of different modes of smoothing is presented 

in Table 1. This includes the mean and standard deviation 
of	the	functional	anisotropy	fa	(as	well	as	the	coefficient	of	
variation	(CV))	for	five	anatomically	motivated	and	manu-
ally	 defined	 regions	 annotated	 in	 Figure	 3.	 These	 regions	
were	 identified	 by	 a	 trained	 neuroanatomist	 using	 both	
tensor orientation and anisotropy information. For the case 
of	normalized	 tensor	smoothing,	SNR,	or	equivalently	 the	
reciprocal	of	the	CV,	is	improved	for	all	regions	except	for	
lateral ventricle whose edges with the adjacent region of the 
internal capsule are not well delineated, resulting in loss of 
restricted regional smoothing at the border of that region. For 
the	case	of	directional	smoothing,	SNR	values	are	uniformly	
enhanced for all regions due to better regional edge details 
and	attendant	region	limited	smoothing.	The	CV	is	reduced	
by at least 2.5-fold when comparing directional smoothing 
to the original measures of anisotropy, indicating a concomi-
tant	increase	in	the	resultant	SNR	for	these	measures.

The “cuboid” displays in the third row of Figure 2 can explain 
the superior performance of the directional projection method 
in the third column. These cuboid displays are better appreci-
ated by looking at a closeup of particular regions, as is done in 

Table 1.

  Raw Tensor fa Smoothed Smoothed Dominant 
   Normalized Directional Tensor
   Tensor fa Component fa

 Corpus Callosum

	 Mean	(m)	 0.646	 0.5806	 0.9575
	 Std.	Dev	(s)	 0.117	 0.1014	 0.0493
	 CV	(100	s/m)	 18.1	 17.46	 5.14

 Cingulum Bundle

	 Mean	(m)	 0.5524	 0.4306	 0.9238
	 Std.	Dev	(s)	 0.151	 0.0953	 0.0515
	 CV	(100	s/m)	 27.3	 22.13	 5.57

 Internal Capsule

	 Mean	(m)	 0.3615	 0.28	 0.9308
	 Std.	Dev	(s)	 0.0768	 0.0493	 0.0620
	 CV	(100	s/m)	 21.24	 17.61	 6.67
 Superior Longitudinal
 Fasciculus

	 Mean	(m)	 0.5676	 0.4928	 0.9496
	 Std.	Dev	(s)	 0.1078	 0.0799	 0.0598
	 CV	(100	s/m)	 18.99	 16.21	 6.30

 Lateral Ventricle

	 Mean	(m)	 0.2647	 0.2078	 0.8103
	 Std.	Dev	(s)	 0.1136	 0.1233	 0.0883
	 CV	(100	s/m)	 42.92	 59.34	 10.90

This table demonstrates the quantitative impact of different modes of smoothing and segmentation in 
terms	of	mean,	standard	deviation	and	coefficient	of	variation	(CV)	statistics	of	fractional	anisotropy	fa	in	
five	different	regions	of	the	brain	for	the	particular	2-D	slice	of	DTI	data	shown	in	Figure	4.	The	CVs	are	
lowest, an indication that directional smoothing yields effective segmentation of homogeneous regions.



 62 Model-Based Variational Smoothing and Segmentation for Diffusion Tensor Imaging in the Brain

the second row of Figure 4. The closeup region, a portion of 
the cerebral hemisphere, is indicated in the top image of the 
first	 row.	We	added	 images	displaying	 the	dominant	direc-
tion vectors for the raw data, the smoothed normalized tensor, 
and the smoothed directional projection in the third row of 
Figure 4 for the sake of comparison. Again, we see that direc-
tion details are better kept using the smoothed directional 
projection. One example is the region above the thick arrows, 
where	directional	(curved	corners)	structure	is	preserved	in	
the directional image, but smoothed over in the normalized 
tensor image. Comparison of other parts of the closeup views 
leads to a similar conclusion. It is this preservation of the higher 
dimensional directional characteristics of the tensor at the pixel 
level that is responsible for the superior image obtained from 
the directional projection method.

We	 now	 consider	 added	 noise,	 our	 third	 assessment	
criterion. The effect of added noise is evaluated to 
establish the robustness of the approach. In Figures 5 
and 6, we compare the results of increasing noise levels 
added	 to	 the	 raw	 data.	 Levels	 of	 the	 additional	 noise	
range	 from	 0	 (no	 simulated	 noise	 added)	 to	 approxi-
mately 5 times the estimated sigma value. The sigma 

value was estimated from the raw data outside the 
brain. These images include: top row – raw data frac-
tional	 anisotropy	 (fa);	 second	 row	 –	 smoothed	 frac-
tional	anisotropy;	third	row	–	our	edge	field	v;	bottom	
row	 -	 conventional	 Sobel	 edge	 field	 of	 raw	 fa.	 Using	
anatomically-based	 ROIs,	 Figure	 6	 illustrates,	 for	 the	
corpus callosum region, that the smoothed tensor-
based estimate of regional anisotropy fa in the second 
row of Figure 5 has a substantially lower coefficient of 
variation	 (bottom	curve	 in	Figure	6)	 than	 the	original	
data	(top	curve	in	Figure	6);	the	reduction	is	by	almost	
a	factor	of	10.	Similar	reductions	were	obtained	for	all	
other regions of Figure 4: cingulum bundle, superior 
longitudinal fasciculus, and internal capsule. Addition-
ally, as Figure 5 indicates, comparison of edge fields 
from our approach on the third row with a conventional 
Sobel	edge	field	on	the	fourth	row	illustrates	that,	while	
added	noise	has	a	deleterious	effect	on	the	Sobel	edge	
field, the new models introduced to the energy func-
tional preserve details even as noise is added. 

Discussion
The above results demonstrate the model-based variational 
segmentation functional approach’s ability to provide a 
diverse	collection	of	output	images	within	a	unified	frame-
work. The usefulness of the variational segmentation func-
tion approach has been demonstrated for other forms of 
brain imaging, such as structural[34] and functional magnetic 
resonance imaging data.[35] 

The versatility of these functionals, in their ability to 
produce a diverse collection of output images, is an impor-
tant addition to the methods or tools available for image 
analysis.	 This	 innovation	 provides	 a	 unified	 framework	
for spatially selective smoothing of noisy brain image 
data along attributes of choice derived from the diffusion 
tensor whereby we can adaptively determine smoothed 
regions within the white matter that are relatively homo-
geneous	 with	 respect	 to	 specific	 tensor	 properties	 of	
shape, size, and orientation of the associated diffusion 
ellipsoid. In addition to providing a demarcation of the 
regions	with	respect	to	user-specified	attributes	of	homo-
geneity in the DTI data, the segmentation functional is 
amenable and flexible to using prior information on attri-
butes	of	both	the	tensor	and	edge	field	with	incorporation	
of additional penalty terms in the functional. Determin-
ing	 smoothed	 regions	 with	 specific	 tensor	 properties	
enhances the ability to characterize the morphometric 
properties of the compact portion, or “stem,” of the major 
white matter pathways in regions where partial volume 
problems and the validity of the tensor assumption are 
less problematic.[14] 

A comparison has been presented of attributes such as 
anisotropy and direction of diffusion for the raw tensor 
itself without smoothing, the smoothed normalized tensor, 

Figure	3.		Manual	 delineation	 of	 five	 anatomically	 moti-
vated regions for further analysis (Figure 6, Table 
1)	 of	 impact	 of	 different	 modes	 of	 smoothing	
and segmentation on fractional anisotropy of 
smoothed tensor in the regions. Delineations 
were based on tensor orientation and anisot-
ropy and are shown with respect to the fractional 
anisotropy map here. 

CC Corpus Callosum

IC Internal Capsule

SLF Superior Longitudinal
 Fasciculus

CG Cingulum Bundle

lv Lateral Ventricle
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Figure	4.	Closeup	displays	demonstrate	the	effect	of	normalized	tensor	(2nd	column)	and	directional	projection	(3rd	column)	
smoothing more clearly by displaying the ‘cuboid’ (2nd	row)	and	dominant	direction	vector	(3rd	row)	of	the	principal	
eigenvector for these two models for a portion of the cerebral hemisphere marked on fractional anisotropy display. 
Region	above	thick	arrows	are	one	example	where	directional	projection	preserves	details	more	visibly.	
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Figure	6.		Effect	of	noise	on	smoothing.	The	
coefficient	 of	 variation	 of	 the	 smoothed	 fa	
(bottom	curve)	corresponding	to	the	second	
row	 of	 images	 in	 Figure	 5	 is	 significantly	
lower than that of the raw or original fa 
(top	 curve)	 corresponding	 to	 the	 first	 row	
of	 Figure	 5.	 Curves	 are	 for	 corpus	 callo-
sum	region.	Similar	 results	obtain	 for	other	
regions in Figure 3.

Figure	5.	Effect	of	added	noise	on	raw	fa,	smoothed	fa,	our	edge	field	v,	and	conventional	Sobel	edge	field.	
The directional projection-based smoothing and segmentation (2nd and 3rd)	row	are	more	robust	to	
added noise. 
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and the smoothed tensor component associated with the 
dominant eigenvector. The underlying diffusion character-
istics of the white matter in the brain motivate the choice 
of these mappings, whereas normalization provides scale 
invariance of salient features. Therefore, it is possible to 
visualize attributes of anisotropy and direction of the resul-
tant	tensor	fields	and	the	associated	edge	field	in	various	
ways.	 In	 this	 fashion,	 the	 applicability	 of	 a	 unified	 and	
versatile image processing framework for smoothing and 
feature	 extraction	 in	 support	 of	fiber	pathway	 identifica-
tion within the human brain is demonstrated. 

Specifically,	promise	of	the	utility	of	the	variational	simulta-
neous smoothing and segmentation functional to improve 
the characteristics of tensor-valued imaging data has been 
demonstrated. The result is an improvement of the over-
all	 signal	 that	 preserves	 the	 anatomic	 detail.	Within	 the	
directional component smoothing case, regions of discrete 
directionality are smoothed, but transitions between 
regions are well preserved. This can be particularly well 
seen as one traverses from the cortex toward the central 
portion of the images shown in Figure 4. The white matter 
contained within the gyral folds near the cortex remains 
nicely visualized and oriented “out” of the gyri. Transitions 
of radially oriented white matter of the corona ratiata and 
U	fibers	with	the	perpendicularly	oriented	internal	capsule	
and various associational pathways are clearly demarked. 
This level of detail is only retained in the directional 
smoothing case. Finally, it should be noted that visualiza-
tion based on the dominant direction coding in Figure 2 is 
less sensitive to the underlying variations and noise struc-
ture, presumably due to the subtleties of the variations in 
intensity of directional noise compared to the large color 
differences	 of	 the	different	 fiber	 systems.	 For	 the	 images	
examined, directional smoothing thus seems appropriate 
because of the simple fact that it simultaneously smooths 
while preserving directionality. This smoothing can act as 
a preprocessing step for virtually any subsequent process-
ing of the diffusion data, such as between group analyses 
of anisotropy data,[11],[39] anatomic regional characteriza-
tion,[40] and tractographic reconstruction.[41]-[43] 

Turning to the results of Figures 5 and 6, we examine 
respectively	 two	aspects:	 the	edges	and	 the	coefficient	of	
variation	over	ROIs.	First,	as	the	graph	demonstrates,	the	
coefficient	of	variation	of		fa	calculated	over	the	anatomic	
region of the corpus callosum is dramatically reduced 
(improved)	with	 simultaneous	 smoothing	 and	 segmenta-
tion, and that this substantial improvement holds even in 
the presence of the greatly reduced image quality at the 
maximum added noise.   

Turning to the edges in Figure 5, we observe that with 
incrementally increasing noise added to the raw data, 
the	 conventional	 (Sobel)	 edge	field	 is	 seen	 to	deteriorate	
more	 rapidly.	 By	 contrast,	 with	 our	 approach,	 edges	 are	

maintained at the increased noise levels. This result is a 
direct consequence of working with a most dominant 
feature	 of	 the	 tensor,	 specifically,	 the	 dominant	 rank-1	
tensor. 

Limitations
A method that is generalizable in terms of processing image 
data and its dimensionality is presented. The application 
used to illustrate the processing, namely DTI, is an impor-
tant and new radiological tool for the clinical assessment of 
cerebral	white	matter.	Processing	can	improve	the	resultant	
SNR	without	penalizing	the	resultant	spatial	resolution,	and	
thus can enhance the utility of these measurements. This 
improvement	in	SNR	can	be	used	to	shorten	the	potentially	
lengthy diffusion acquisition time. It is acknowledged that 
the tensor acquisition may not be optimal for observation 
of	 specific	 fiber	 tracts	 themselves,	 and	 that	 this	 acquisi-
tion optimization is an open research question. These 
processing tools, however, will extend to a higher order 
(i.e.,	q-space	and	high	angular	resolution)	diffusion	acqui-
sitions,[44]-[46] and can still play an important role in the 
processing and analysis of these classes of data acquisition. 
Indeed, the utility of submodel-based smoothing becomes 
even more important as the complexity of the input data 
increases. The flexibility of the methods we report here can 
be	adapted	easily	for	processing	models	defined	in	terms	
of any matrix decomposition of the acquired data, not just 
the eigen-decomposition typical in the six-direction tensor 
acquisitions. Also, there is a spatial resolution tradeoff 
between the need for high resolution to observe subtle white 
matter pathways and the acquisition time available for the 
subjects. These processing tools will be helpful to extend 
the	limits	of	SNR	in	the	extraction	of	meaningful	anatomic	
information. An additional area of potential impact for a 
tool such as this includes utilizing tensor information in 
solving for neural systems-based functional imaging.[47]-
[49] It might be remarked that the focus of the reported 
work is the model-based optimal extraction of information 
for	a	given	SNR	and	DTI	data	acquisition	parameters,	and	
future work remains necessary for optimization involving 
SNR	and	data	acquisition	parameters.

We	 note	 that	 the	 simultaneous	 smoothing	 and	 segmen-
tation process can change the nature of the error in the 
smoothed estimates and the use of smoothed estimates for 
further analysis, such as for group analysis, which may need 
to employ alternate analysis approaches that are not neces-
sarily	based	on	a	specific	noise	model	assumption	such	as	
Gaussian	noise.	For	example,	for	decision	support,	meth-
ods such as support vector machines can be employed.

In addition, the method’s appeal is the flexibility to use 
various lower dimensional attributes of the higher dimen-
sional data using functions F and H, and we demonstrate 
this strength here primarily in the context of 2D data. The 
method, however, can be readily applied to 3D data. In the 
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case of  3D analysis, additional terms associated with gradi-
ents	of	the	data	and	edge	fields	in	the	added	third	dimension	
arise	in	the	energy	functional	E	of	(2).	We,	therefore,	have	
edge surfaces in 3D that are smoother than those obtainable 
from edge boundaries produced by the 2D analysis.

To conclude, we have presented a general framework for 
smoothing diffusion tensor data and have developed a tool 
to	execute	this	processing.	The	preferred	choice	of	the	fidel-
ity and continuity functions h1(u),	h2(g)	and	f(u)	generally	
will depend on both the image and the objective of the 
image analysis task. There is no universal image model that 
outperforms	all	others	in	all	situations.	Moreover,	different	
regions of the data domain require segmentations based 
on more than one model. An important objective in this 
study is, therefore, to identify for DTI data a small number 
of potent models that can be adapted for effective segmen-
tation. Further, as no single model applies over the entire 
image due to variations in the underlying tissue and partial 
volume effects, adaptive learning of relevant features at 
every voxel based on neighborhood characteristics is another 
focus of ongoing research. The improved output data will 
enable	a	more	refined	analysis,	 including	segmentation	of	
white matter substructures using various manual and auto-
mated techniques.
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Patents
Introduction

Draper	Laboratory	is	well	known	for	integrat-
ing widely diverse technical capabilities and 
technologies into innovative and creative 
solutions for problems of national impor-

tance. Draper’s scientists and engineers are actively 
encouraged to advance the application of science and 
technology, to expand the functions of existing technol-
ogies, and to create new ones.

Draper has an established patent policy and understands 
the value of patents in directing attention to individual 
accomplishments. Disclosing inventions is an important 
step in documenting these creative efforts and is required 
under	 Laboratory	 contracts	 and	 by	 an	 agreement	with	
Draper	that	all	employees	sign.	Pursuing	patent	protec-
tion	enables	the	Laboratory	to	pursue	its	strategic	mission	
and to recognize its employees’ valuable contributions to 
advancing the state-of-the-art in their technical areas. An 
issued patent is also recognition by a critical third party 
(the	U.S.	Patent	Office)	of	innovative	work	for	which	the	
inventor should be justly proud.

Through	 December	 31,	 2006,	 1297	 Draper	 patent	
disclosures	have	been	submitted	to	the	Patent	Commit-
tee	 since	1973;	655	of	 those	were	 approved	by	Drap-
er’s	 Patent	 Committee	 for	 further	 patent	 action.	 As	 of	
December	31,	a	total	of	4804	patents	have	been	granted	
for inventions made by Draper personnel. Twelve patents 
were issued for calendar year 2006.

This	year’s	competition	for	Best	Patent	resulted	in	a	tie.	
The featured patents are:

Multi-gimbaled borehole navigation system

and

Flexural plate wave sensor

The following pages present an overview of the tech-
nology	 covered	 in	 each	 patent	 and	 the	 official	 patent	
abstracts	issued	by	the	U.S.	Patent	Office.
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Multi-Gimbaled Borehole 
Navigation System
Mitchell L. Hansberry, Michael E. Ash, Richard T. Martorana

Patent # 7,093,370 B2   Date Issued: August 22, 2006

This invention addresses the need to monitor and guide the direction 
of a drill bit so that a borehole is created where desired. To determine 
the location of a drill bit in a borehole, the position and attitude must 
be known, including the vertical orientation and the north direction. 

Typically, gyroscopes can be used to determine the north direction, and accel-
erometers	can	be	used	to	determine	the	vertical	orientation.	Prior	systems	have	
used	single-orientation	gyroscopes	and/or	single	orientation	accelerometers	due	
to size limitations. However, these systems can suffer from long-term bias stabil-
ity problems.

Many	prior	 systems	 attempted	 to	determine	 the	drill	 bit’s	 location	 accurately	
and	efficiently,	but	each	system	had	limitations.	For	example,	where	the	internal	
diameter	of	a	drill	pipe	is	not	large	enough	to	fit	the	optimal	number	of	typical	
navigation sensors, one prior system removed the drill bit from the borehole 
and lowered a monitoring tool down the borehole to determine its location. 
However, it is costly to stop drilling and spend time removing the drill bit to 
take measurements with the monitoring tool. Other systems used single-axis 
accelerometers to determine the vertical orientation of the drill bit. However, 
an accelerometer system cannot determine north, which is necessary to deter-
mine the full location of a borehole. Another prior design used magnetometers 
to	determine	the	magnetic	field	direction	from	which	the	direction	of	north	is	
approximated. However, such systems must correct for magnetic interference 
and magnetic materials used in the drill pipe and can suffer accuracy degrada-
tion	due	to	the	Earth’s	changing	magnetic	field.	

This patent describes a novel navigation borehole system that can determine 
position and attitude for any orientation in a borehole using multiple gimbals 
that contain solid-state or other gyros and accelerometers. The navigation system 
includes a housing that can be placed within the smaller diameter drill pipes 
used toward the bottom of a borehole, an outer gimbal connected to the hous-
ing, and at least two or more stacked inner gimbals nested in and connected to 
the outer gimbal. The inner gimbals each have an axis parallel to one another 
and perpendicular to the outer gimbal. The inner gimbals contain electronic 
circuits, gyros, and accelerometers whose input axes span three-dimensional 
space. The system includes outer and inner gimbal drive systems to maintain 
the gyro and accelerometer input axes as substantially orthogonal triads and a 
processor that is responsive to the gyro accelerometer circuits to determine the 
attitude and the position of the housing in the borehole. 

This borehole navigation system can average out navigation errors due to gyro 
and accelerometer bias, gyro scale factor, and input-axis alignment errors, and 
allows gyro and accelerometer bias and gyro scale-factor calibration as well as 
attitude determination during gyrocompassing. This invention also provides 
long-term performance accuracy with only short-term requirements on sensor 
accuracy, can determine position and attitude while drilling, when the drill 
bit is stopped, when the drill bit is inserted or withdrawn, as well as while 
logging, both descending and ascending on a log line after the drill bit has been 
withdrawn. 
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Richard T. Martorana	is	a	Distinguished	Member	of	the	Techni-
cal	Staff	and	the	Technical	Director	for	the	WASP	Program.	With	
over	39	years	of	research,	design,	and	development	experience,	
he	has	directed	and	managed	programs	for	NASA,	USAF,	DARPA,	
NAVSEA,	and	others.	He	was	responsible	for	the	thermal	design	
of	the	Trident	II	 inertial	measurement	unit	(IMU).	His	respon-
sibilities	have	included:		Section	Chief	for	Fluid	Mechanics	and	
Thermal	Engineering,	Division	Manager	for	Mechanical	Design	
and	Analysis,	and	Director	of	Systems	Integration,	Test,	Evalu-
ation,	and	Quality	Management.	He	holds	three	U.S.	patents	in	the	areas	of	mechanical	and	thermal	design.	Mr.	
Martorana	has	BS	and	MS	degrees	in	Mechanical	Engineering	from	Columbia	University	and	MIT,	respectively,	an	
MBA	focused	on	management	of	innovation	from	Northeastern	University,	and	he	is	a	graduate	of	Harvard	Business	
School’s	Program	for	Management	Development.		

Mitchell L. Hansberry	is	a	Senior	Member	of	the	Technical	Staff	and	a	Mechanical	Design	Engineer	with	25	years	
experience	at	Draper	Laboratory.	Specializing	in	the	development	of	hardware	configurations	to	solve	system-level	
problems,	 he	 has	 been	 the	 Lead	Mechanical	 Designer	 on	many	 projects	 involving	 navigation	 instruments	 and	
systems,	space	hardware,	and	biomedical	mechanisms.	He	has	a	BS	in	Mechanical	Engineering	from	SUNY	at	Stony	
Brook.

Michael E. Ash	was	a	Principal	Member	of	the	Technical	Staff	in	the	System	Integration,	Evaluation,	and	Test	Divi-
sion,	where	he	worked	on	inertial	sensor	and	system	modeling,	simulation,	and	testing.	Previously,	he	worked	at	
the	MIT	Lincoln	Laboratory	on	an	interplanetary	radar	test	of	general	relativity	and	on-satellite	orbit	determination.	
He	was	Chair	of	the	Accelerometer	Committee	of	the	IEEE/Aerospace	Electronics	System	Society	(AESS)	Gyro	and	
Accelerometer	Panel	and	an	Associate	Fellow	of	the	AIAA.	He	received	a	BS	from	MIT	and	a	PhD	from	Princeton	
University,	both	in	Mathematics.

bios

(l-r) Mitchell L. Hansberry
and Richard T. Martorana
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Flexural Plate Wave Sensor
Marc S. Weinberg, Brian T. Cunningham, Eric M. Hildebrandt

Patent # 7,109,633 B2  Date Issued:  September 19, 2006

This	patent	describes	an	 improved	flexural	plate	wave	(FPW)	sensor	
that includes a thin flexural plate with drive teeth disposed across 
its entire length. Further improvements associated with drive combs 
of	 varying	 tooth	 length	 are	 described.	 This	 improved	 FPW	 sensor	

reduces the number of eigenmodes excited in the flexural plate and outputs a 
single pronounced peak or a peak much larger than any of the other peaks and a 
distinct	phase.	This	distinct	peak	simplifies	the	operating	and	designing	associ-
ated drive and sense electronics and improves stability by eliminating erroneous 
readings due to interference created by mode hopping between eigemnodes.

The	FPW	sensor	includes	a	diaphragm	or	plate	that	is	driven	so	that	it	oscillates	
at frequencies determined by a comb pattern and the flexural plate geometry. 
The comb pattern is disposed over the flexural plate and establishes electric 
fields	 that	 interact	 with	 the	 plate’s	 piezoelectric	 properties	 to	 excite	 motion.	
The eigenmodes describe the diaphragm displacements, which exhibit spatially 
distributed	 peaks.	 Each	 eigenmode	 consists	 of	 n	 half	 sine	 periods	 along	 the	
diaphragm’s	 length.	 A	 typical	 FPW	 sensor	 can	 be	 excited	 to	 eighty	 or	more	
eigenmodes.	In	a	typical	FPW	eigenmode,	the	plate	deflection	consists	of	many	
sinusoidal	(or	nearly	sinusoidal)	peaks.

Previous	flexure	plate	wave	sensor	designs	typically	include	drive	combs	at	one	
end of the plate and sense combs at the other end. The drive combs of these 
devices	 typically	 cover	only	25%	 to	40%	of	 the	 total	plate	 length.	When	 the	
number of drive teeth is small compared to the number of eigenmodes peaks, 
the	small	number	of	drive	teeth	can	align	with	several	eigenmodes.	Not	only	are	
the eigenmodes perfectly aligned with the comb teeth excited, but other eigen-
modes are also excited. In signal processing and spectral analysis, this effect is 
known	as	 leakage.	The	 increased	number	of	 eigenmodes	excited	 in	 the	FPW	
sensor produces a series of resonance peaks of similar amplitude and irregular 
phase,	 increasing	design	complexity	 and	 the	operation	of	 such	FPW	sensors.	
Other	previous	FPW	designs	employ	drive	and	sense	combs	at	opposite	ends	
of	the	flexural	plate	and	rely	on	analysis	based	on	surface	acoustic	waves	(SAW)	
where the waves propagate away from the drive combs and toward the sense 
combs, and back reflections are regarded as interference. A disadvantage is that 
SAW	theory	does	not	account	 for	 the	sensor’s	numerous	small	peaks	and	 the	
electronics’ locking onto different eigenmodes depending on noise or starting 
conditions. 

Bioscale	 has	 licensed	 the	 FPW	 technology	 from	Draper	 and	will	 introduce	 a	
commercial product.
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Marc S. Weinberg	 is	 a	 Laboratory	 Technical	 Staff	 Member	 at	
Draper	Laboratory.	He	has	been	 responsible	 for	 the	design	 and	
testing of a wide range of traditional micromechanical gyroscopes, 
accelerometers, hydrophones, microphones, angular displacement 
sensors, chemical sensors, and biomedical devices. He served in 
the	United	States	Air	Force	at	the	Aeronautical	System	Division,	
Wright-Patterson	Air	Force	Base	during	1974	and	1975,	where	
he applied modern and classical control theory to design turbine 
engine controls, and at the Air Force Institute of Technology, where 
he taught gas dynamics and feedback control. He holds 25 patents 
with	12	additional	in	application.	He	has	been	a	member	of	ASME	
since	 1971.	Dr.	Weinberg	 received	 BS	 (1971),	MS	 (1971),	 and	
PhD	(1974)	degrees	in	Mechanical	Engineering	from	MIT	where	
he	held	a	National	Science	Foundation	Fellowship.		

Brian T. Cunningham	was	a	Principal	Member	of	the	Technical	Staff	at	Draper	Laboratory.	Currently,	he	is	an	Associate	Profes-
sor	of	Electrical	and	Computer	Engineering	at	the	University	of	Illinois	at	Urbana-Champaign,	where	he	is	the	Director	of	
the	Nano	Sensors	Group.	His	group	focuses	on	the	development	of	photonic	crystal-based	transducers,	plastic-based	fabri-
cation	methods,	and	novel	instrumentation	approaches	for	label-free	biodetection.	He	is	a	founder	and	the	Chief	Technical	
Officer	of	SRU	Biosystems	(Woburn,	MA),	a	life	science	tools	company	that	provides	high	sensitivity	plastic-based	optical	
biosensors, instrumentation, and software to the pharmaceutical, academic research, genomics, and proteomics communi-
ties.	Prior	to	founding	SRU	Biosystems	in	June	2000,	he	was	the	Manager	of	Biomedical	Technology	at	Draper	Laboratory,	
where	he	directed	R&D	projects	aimed	at	utilizing	defense-related	technical	capabilities	for	medical	applications.	He	also	
served	as	Group	Leader	for	MEMS	sensors	at	Draper.	Concurrently,	he	was	an	Associate	Director	of	the	Center	for	Innovative	
Minimally	Invasive	Therapy	(CIMIT),	a	Boston-area	medical	technology	consortium,	where	he	led	the	Advanced	Technology	
Team	on	Microsensors.	Before	joining	Draper,	he	spent	5	years	at	the	Raytheon	Electronic	Systems	Division.	Dr.	Cunning-
ham	earned	BS,	MS,	and	PhD	degrees	in	Electrical	and	Computer	Engineering	at	the	University	of	Illinois.

Eric M. Hildebrant	is	a	Principal	Member	of	the	Technical	Staff.	Initially,	he	worked	on	the	MK6	CCD	stellar	sensor	system.	
Later	work	focused	on	developing	electronic	integrated	circuitry	for	micromechanical	gyros,	accelerometers,	and	chemical	
sensors.	He	holds	four	patents	in	the	field	of	instrumentation.	He	received	SB	(1976),	SB	(1982),	and	MS	(1989)	degrees	in	
Life	Sciences,	Electrical	Engineering,	and	Engineering	Design	from	MIT	and	Tufts	University.

bios

(l-r) Eric M. Hildebrant and
Marc S. Weinberg
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2006

Issued

patents

Anderson, J.M.; Kerrebrock, P.A.; McFarland, W.W.; 
Ogrodnik, T.G. 
Crawler Device
Patent	Number	7,137,465	B1,	November	21,	2006

Antkowiak, B.M.; Carter, D.J.; Duwel, A.E.; Mescher, 
M.J.; Varghese, M.; Weinberg, M.S. 
MEMS Piezoelectric Longitudinal Mode Resonator
Patent	Number	7,005,946	B2,	February	28,	2006

Coskren, W.D.; Parry, J.R.; Williams, J.R.; Sebelius, 
P.W.
Sensor Apparatus and Method of Using Same
Patent	Number	7,100,689	B2,	September	5,	2006	

Elliott, R.D.; Ward, P.A. 
Apparatus for and Method of Sensing a Measured 
Input
Patent	Number	7,055,387	B2,	June	6,	2006

Greenspan, R.L.; Przyjemski, J.M.
Method and System for Implementing a Commu-
nications Transceiver Using Modified GPS User 
Equipment
Patent	Number	7,123,895	B2,	October	17,	2006

Hansberry, M.L.; Ash, M.E.; Martorana, R.T.
Multi-Gimbaled Borehole Navigation System
Patent	Number	7,093,370	B2,	August	22,	2006

Miller, R.A.; Nazarov, E.G.; Eiceman, G.A.; Krylov, E. 
Method and Apparatus for Electrospray Augmented 
High Field Asymmetric Ion Mobility Spectrometry
Patent	Number	7,075,068	B2,	July	11,	2006

Miller, R.A.; Nazarov, E.G.; Zapata, A.M.; Davis, 
C.E.; Eiceman, G.A.; Bashall, A.D. 
Systems for Differential Ion Mobility Analysis
Patent	Number	7,057,168	B2,	June	6,	2006

Robbins, W.L.; Miller, R.A. 
Spectrometer Chip Assembly
Patent	Number	7,098,449	B1,	August	29,	2006

Weinberg, M.S.; Cunningham, B.T.; Hildebrant, E.M.
Flexural Plate Wave Sensor
Patent	Number	7,109,633	B2,	September	19,	2006

Williams, J.R.;  Cunningham, B.T.
Flexural Plate Wave Sensor and Array
Patent	Number	7,000,453	B2,	February	21,	2006

Williams, J.R.; Dineen Jr., D.A.; Prince J.R. 
Microfluidic Ion-Selective Electrode Sensor System
Patent	Number	7,101,472	B2,	September	5,	2006
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Chairman	of	the	Board	John	R.	Kreick	and	then-President	Vincent	Vitto	presented	
the	2006	Draper	Distinguished	Performance	Awards	 (DPAs)	 to	a	 team	and	 to	an	
individual	at	the	Annual	Dinner	of	the	Corporation	on	October	4,	2006.	

The	 Next	 Generation	 Fastraker	
team members responsible for 
hardware achieved production 
qualification	of	the	first	engineer-
ing	 model,	 which	 was	 the	 first	
mixed-signal multichip module 
ever	qualified	 for	production	by	
Draper.	 Production	 qualification	
occurred earlier than scheduled 
and in a package so much smaller 
than	 the	 sponsor’s	 specifications	
that the overall system size was 
reduced by nearly a factor of 
three.

The 2006 Draper Distinguished

Awards
performance

Accelerated Delivery of Miniaturized Radio Frequency Communications 
Hardware

Development and Strategic Distribution of a Geospatial Intelligence
Networked System to Middle Eastern Military Force 

Harold	 A.	 Bussey	 led	 the	 team	
that adapted the Draper-devel-
oped	 U.S.	 Air	 Force	 system	 for	
handling geospatial informa-
tion	 for	 use	 by	 NATO	 forces	 in	
the	 Middle	 East.	 He	 delivered	
the	 system	 to	 users	 in	 the	 field	
and trained them in its use. The 
system’s usefulness has led other 
military organizations to consider 
adopting it.

DPA Screening Committee 
Members

The	DPA	was	 established	 in	 1989	
and is the most prestigious award 
that Draper bestows for extraordi-
nary achievements by individuals 
or teams. These achievements must 
constitute a major technical accom-
plishment, the technical effort must 
entail highly challenging work of 
substantial	 benefit	 to	 the	 Labora-
tory and the outside community, 
include a recent discrete accom-
plishment that is clearly extraor-
dinary and represents a standard 
of	 excellence	 for	 the	 Laboratory,	
and the responsible individual or 
core	 team	can	be	 identified	as	 the	
prime	 participant(s)	 in	 achieving	
the	 significant	 results.	 This	 year’s	
committee	 was	 chaired	 by	 Scott	
Uhland.	Members	included	Heather	
Clark,	Christopher	Gibson,	Lauren	
Kessler,	 Edward	 Lanzilotta,	 David	
Owen,	Dora	Ramos,	Elliot	Ranger,	
and	 Roger	 Wilmarth.	 Administra-
tive	support	was	provided	by	Noel	
Cassidy.

(clockwise from left) Michael T. Clohecy, Vincent J. Attenasio, 
Jr., Don A. Black, Michael J. Matranga, John R. Burns III,
Donald I. Schwartz, and (inside center) Valerie H. Lowe

(l-r) President James D. Shields, Award Recipient Harold 
A. Bussey, and Chairman of the Board John R. Kreick
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Berners-Lee	 proposed	 his	 concept	
for	 the	 Web	 in	 1989	 while	 at	 the	
European	 Organization	 for	 Nuclear	
Research	(CERN),	launched	it	on	the	
Internet	 in	 1991,	 and	 continued	 to	
refine	 its	 design	 through	 1993.	 He	
designed	the	Web	with	public	domain	
scalable software and an open archi-
tecture to allow other inventions to 
be built on it.  

Berners-Lee	 is	 currently	 a	 senior	
researcher	 and	 holder	 of	 the	 3Com	
Founders	 Chair	 at	 the	 Computer	
Science	 and	 Artificial	 Intelligence	
Laboratory	 at	 MIT	 and	 a	 professor	
of	computer	science	in	the	School	of	
Electronics	 and	 Computer	 Science	
at	 the	 University	 of	 Southampton,	
UK.	He	continues	to	guide	the	Web’s	
evolution as founder and director 
of	 the	 World	 Wide	 Web	 Consor-
tium	(W3C),	an	international	forum	
that develops standards for the 
Web.	 A	 graduate	 of	Oxford	Univer-
sity,	England,	he	became	a	 fellow	of	
the	 Royal	 Society	 in	 2001.	 He	 has	
received several international awards, 
including	the	Japan	Prize,	the	Prince	
of	 Asturias	 Foundation	 Prize,	 the	
Millennium	 Technology	 Prize,	 and	
Germany’s	 Die	 Quadriga	 Award.	
Berners-Lee	was	knighted	by	Queen	
Elizabeth	in	2004.	He	is	the	author	of	
“Weaving	the	Web.”	

The 2007 Charles Stark

Prize
draper

The	Charles	Stark	Draper	Prize	was	established	in	1988	to	
honor	the	memory	of	Dr.	Charles	Stark	Draper,	“the	father	
of	 inertial	 navigation.”	 Awarded	 annually,	 the	 Prize	 was	
instituted	by	the	National	Academy	of	Engineering	(NAE)	
and	endowed	by	Draper	Laboratory.	It	is	recognized	as	one	
of the world’s preeminent awards for engineering achieve-
ment and honors individuals who, like Dr. Draper, devel-
oped	a	unique	concept	that	has	contributed	significantly	to	
the advancement of science and technology and the welfare 
and freedom of society.

The	2007	Charles	Stark	Draper	Prize	was	presented	to	Sir	Timo-
thy	Berners-Lee	 at	 a	 ceremony	on	February	20	 in	Washing-
ton,	D.C.	According	 to	 the	NAE,	Berners-Lee	 “imaginatively	
combined	ideas	to	create	the	World	Wide	Web,	an	extraordi-

nary innovation that is rapidly transforming the way people store, access, 
and share information around the globe. Despite its short existence, 
the	Web	has	contributed	greatly	 to	 intellectual	development	and	plays	
an important role in health care, environmental protection, commerce, 
banking, education, crime prevention, and the global dissemination of 
information.”  In addition, he “demonstrated a high level of technical 
imagination in inventing this system to organize and display information 
on	the	Internet.”		His	innovations	include	the	uniform	resource	identifier	
(URI),	 HyperText	Markup	 Language	 (HTML),	 and	HyperText	 Transfer	
Protocol	(HTTP).

Sir Timothy Berners-Lee
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2006:	 Willard	S.	Boyle	and	George	E.	Smith	for	the	invention	of	the	charge-coupled	device	(CCD)

2005:	 Minoru	Araki,	Francis	J.	Madden,	Don	H.	Schoessler,	Edward	A.	Miller,	and	James	W.	Plummer	
for	their	invention	of	the	Corona	earth-observation	satellite	technology

2004:	 Alan	C.	Kay,	Butler	W.	Lampson,	Robert	W.	Taylor,	and	Charles	P.	Thacker	for	the	development	
of	the	world’s	first	practical	networked	personal	computers

2003:	 Ivan	A.	Getting	and	Bradford	W.	Parkinson	for	their	technological	achievements	in	the	develop-
ment	of	the	Global	Positioning	System

2002:		 Robert	S.	Langer	for	bioengineering	revolutionary	medical	drug	delivery	systems

2001:	 Vinton	 Cerf,	 Robert	 Kahn,	 Leonard	 Kleinrock,	 and	 Lawrence	 Roberts	 for	 their	 individual	
contributions to the development of the Internet

1999:	 Charles	K.	Kao,	Robert	D.	Maurer,	and	John	B.	MacChesney	 for	development	of	fiber-optic	
technology

1997:	 Vladimir	Haensel	 for	 the	development	of	 the	chemical	engineering	process	of	“Platforming”	
(short	 for	 Platinum	Reforming),	which	was	 a	 platinum-based	 catalyst	 to	 efficiently	 convert	
petroleum into high-performance, cleaner-burning fuel

1995:	 John	 R.	 Pierce	 and	 Harold	 A.	 Rosen	 for	 their	 development	 of	 communication	 satellite	
technology

1993:	 John	Backus	for	his	development	of	FORTRAN,	the	first	widely	used,	general-purpose,	high-
level computer language

1991:	 Sir	Frank	Whittle	and	Hans	J.P.	von	Ohain	for	their	independent	development	of	the	turbojet	
engine

1989:	 Jack	S.	Kilby	and	Robert	N.	Noyce	for	their	independent	development	of	the	monolithic	inte-
grated circuit

For	information	on	the	nominating	process,	contact	the	Awards	Office	at	 the	National	
Academy	of	Engineering	at	(202)	334-1266	or	http://www.nae.edu/awards.

Recipients of the Charles Stark Draper Prize
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The	2006	Howard	Musoff	 Student	Mentoring	Award	was	presented	 to	
Laura	Forest,	a	Human-System	Collaboration	Engineer	in	the	Software	
System	Architectures	and	Human-Computer	Interfaces	(HCI)	Depart-
ment.	When	asked	about	the	importance	of	mentoring	activities,	Laura	

remarked,	“It	has	been	very	rewarding	to	mentor	and	work	with	Draper	Laboratory	
Fellows	(DLF)	and	other	student	interns.	I	have	especially	enjoyed	witnessing	the	
students’ transformation as they step from undergraduate classroom-based prob-
lem solving to the broader scope of engineering research and subsequent publish-
ing.	Seeing	the	students	take	the	knowledge	and	experience	I	share	with	them	and	
use	it	for	their	own	growth	is	truly	fulfilling.		Mentoring	can	also	establish	life-long	
contacts	 and	 friendships	 –	 I’m	 planning	 on	 attending	 one	 of	my	 former	DLF’s	
wedding	in	Reno,	NV,	this	summer.		Additionally,	the	students	contribute	to	my	
own professional development through the research areas they explore, the lead-
ership opportunities they present, and the associated expansion of my academic 
contacts.  I look forward to continuing mentoring relationships in the future.” 

In addition to her mentoring activities at 
Draper,	 for	 the	past	 two	years,	Laura	has	
been	 a	 volunteer	 with	 Science	 Club	 for	
Girls,	 a	 weekly	 after-school	 program	 in	
Cambridge.	 Volunteers	 perform	 a	 variety	
of science experiments with the girls and 
discuss their careers as scientists.

Laura’s	primary	 research	 interests	 include	
cognitive engineering, human-guided 
algorithms,	human	factors,	and	HCI.	She	is	
currently working on projects that include 
research on human-guided algorithms, 
spacecraft automation for lunar landing, 
decision support for intelligence analysts, 
and requirements for facial recognition 
systems. A member of the Human Factors 
and	Ergonomics	Society	(HFES),	Society	of	
Women	Engineers	(SWE),	IEEE,	and	AIAA,	
Laura	has	a	BS	 in	 Industrial	and	Systems	
Engineering	from	Georgia	Tech	and	an	MS	
in	Aeronautics	and	Astronautics	from	MIT.

The	 Howard	 Musoff	 Mentoring	 Award	
was established in his memory in 2005. 
A Draper employee for more than 40 
years,	 Musoff	 advised	 and	 mentored	
many Draper Fellows. This award is given 
each	February	during	National	Engineers	
Week	and	recognizes	staff	members	who,	
as	 Musoff	 did,	 share	 their	 expertise	 and	
supervise the professional development 
and research activities of Draper Fellows. 
The award, endowed by the Howard 
Musoff	 Charitable	 Foundation,	 includes	
a	$1,000	honorarium	and	a	plaque.	Each	
Engineering	 Division	 Leader	may	 submit	
one nomination of a staff person from his 
Division.	 The	 Education	Office	 assists	 in	
the process by soliciting comments from 
students who were residents during that 
time	 period.	 The	 Selection	 Committee	
consists	of	the	Vice	President	of	Engineer-
ing,	the	Principal	Director	of	Engineering,	
and	the	Director	of	Education.

The 2006 Howard Musoff Student

Award

mentoring

Laura Forest
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Anderson,	A.D.;	Supervisors:	Gustafson,	D.E.;	Deyst,	J.	
Recovering Sample Diversity in Rao-Blackwellized 
Particle Filters for Simultaneous Localization and 
Mapping
Master	of	Science	Thesis,	MIT,	June	2006	

Bairstow,	S.H.;	Supervisors:	Barton,	G.H.;	Deyst,	J.J.
Reentry Guidance with Extended Range Capability for 
Low L/D Spacecraft
Master	of	Science	Thesis,	MIT,	February	2006

Barker,	D.R.;	Supervisors:	Singh,	L.;	How,	J.	
Robust Randomized Trajectory Planning for Satellite 
Attitude Tracking Control
Master	of	Science	Thesis,	MIT,	June	2006	

Beaton,	J.S.;	Supervisors:	Dever,	C.W.;	Appleby,	B.D.	
Human Inspiration for Autonomous Vehicle Tactics
Master	of	Science	Thesis,	MIT,	May	2006

Bryant,	C.H.;	Supervisors:	Armacost,	A.P.;	Abramson,	
M.R.;	Kolitz,	S.E.;	Barnhart,	C.	
Robust Planning for Effects-Based Operations
Master	of	Science	Thesis,	MIT,	June	2006	

Chau,	D.;	Supervisors:	Racine,	R.J.;	Liskov,	B.	
Authenticated Messages for a Real-Time Fault-Tolerant 
Computer System
Master	of	Engineering	Thesis,	MIT,	September	2006	

Earnest,	C.A.;	Supervisors:	Dai,	L.;	Page,	L.A.;	Roy,	N.;	
Barnhart,	C.	
Dynamic Action Spaces for Autonomous Search 
Operations
Master	of	Science	Thesis,	MIT,	March	2006

Harjes,	D.I.;	Supervisors:	Clark,	H.A.;	Kamm,	R.D.	
High Throughput Optical Sensor Arrays for Drug 
Screening
Master	of	Science	Thesis,	MIT,	September	2006

Jimenez,	A.R.;	Supervisors:	Kaelbling,	L.P.;	DeBitetto,	P.A.	
Policy Search Approaches to Reinforcement Learning 
for Quadruped Locomotion
Master	of	Engineering	Thesis,	MIT,	May	2006	

Krenzke,	T.P.;	Supervisors:	McConley,	M.W.;	Appleby,	B.D.	
Ant Colony Optimization for Agile Motion Planning
Master	of	Science	Thesis,	MIT,	June	2006	

McAllister,	D.B.;	Supervisors:	Kahn,	A.C.;	Kaelbling,	L.P.;	
Jaillet,	P.	
Planning with Imperfect Information: Interceptor 
Assignment
Master	of	Science	Thesis,	MIT,	June	2006	

Mihok,	B.E.;	Supervisors:	Miller,	J.W.;	Appleby,	B.D.	
Property-Based System Design Method with Applica-
tion to a Targeting System for Small UAVs
Master	of	Science	Thesis,	MIT,	June	2006	

Parikh,	K.M.;	Supervisors:	Weinberg,	M.S.;	Freeman,	D.M.	
Modeling the Electrical Stimulation of Peripheral 
Vestibular Nerves
Master	of	Engineering	Thesis,	MIT,	September	2006

Ren,	B.B.;	Supervisors:	Keshava,	N.;	Freeman,	D.
Calibration, Feature Extraction and Classification of 
Water Contaminants Using a Differential Mobility 
Spectrometer
Master	of	Engineering	Thesis,	MIT,	May	2006

Sakamoto,	P.;	Supervisors:	Armacost,	A.P.;	Kolitz,	S.E.;	
Barnhart,	C.	
UAV Mission Planning Under Uncertainty
Master	of	Science	Thesis,	MIT,	June	2006

Schaaf,	B.T.;	Supervisors:	Andrews,	G.L.;	Appleby,	B.D.	
Using Learning Algorithms to Develop Dynamic Gaits 
for Legged Robots
Master	of	Science	Thesis,	MIT,	June	2006	

Smith,	C.A.;	Supervisors:	Cummings,	M.L.;	Forest,	L.M.	
Ecological Perceptual Aid for Precision Vertical 
Landings
Master	of	Science	Thesis,	MIT,	June	2006	

Smith,	T.B.;	Supervisors:	Nervegna,	M.F.;	Barnhart,	C.	
Decision Algorithms for Unmanned Underwater 
Vehicles During Offensive Operations
Master	of	Science	Thesis,	MIT,	June	2006	

Springmann,	P.N.;	Supervisors:	Proulx,	R.J.;	Deyst,	J.J.	
Lunar Descent Using Sequential Engine Shutdown
Master	of	Science	Thesis,	MIT,	January	2006

Sterling,	R.M.;	Supervisors:	Racine,	R.J.;	Liskov,	B.H.	
Synchronous Communication System for a Software-
Based Byzantine Fault-Tolerant Computer
Master	of	Science	Thesis,	MIT,	August	2006	

Swanton,	D.R.;	Supervisors:	Brown,	R.A.;	Kaelbling,	L.P.	
Integrating Timeliner and Autonomous Planning
Master	of	Science	Thesis,	MIT,	August	2006	

Teahan,	G.O.;	Supervisors:	Paschall	II,	S.C.;	Battin,	R.H.
Analysis and Design of Propulsive Guidance for Atmo-
spheric Skip Entry Trajectories
Master	of	Science	Thesis,	MIT,	June	2006

Thrasher,	S.W.;	Supervisors:	Dever,	C.W.;	Deyst,	J.J.	
Reactive/Deliberative Planner Using Genetic Algo-
rithms on Tactical Primitives
Master	of	Science	Thesis,	MIT,	June	2006
 
Varsanik,	J.S.;	Supervisors:	Duwel,	A.E.;	Kong,	J-A	
Design and Analysis of MEMS-Based Metamaterials
Master	of	Engineering	Thesis,	MIT,	June	2006

During	2006,	the	Draper	Fellow	Program	served	65	students	from	MIT	and	several	other	universities.	Abstracts	of	theses	
completed	this	year	are	available	on	the	Laboratory’s	web	site	at	www.draper.com.	The	list	of	completed	theses	follows:

2006 Graduate

Theses
research
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2006

Exposition

technology

Each	year,	Draper	hosts	a	Technology	Exposition	(Tech	
Expo)	to	showcase	recent	projects	and	highlight	the	
Laboratory’s	 core	 competencies.	 Held	 on	 October	
4-5 to coincide with the fall meeting of Draper’s 

Board	 of	Directors	 and	 the	Annual	Meeting	 of	 the	Corpora-
tion,	 guests	 included	 employees	 and	 Corporation	members,	
students	from	local	universities	and	Cambridge	public	schools,	
and sponsors. 

The	exhibits	 featured	developing	technologies	 in	the	Labora-
tory’s program areas: strategic, tactical, space systems, special 
operations, biomedical engineering, and independent research 
and	development.	The	exhibits	also	reflected	the	Laboratory’s	
core	competencies:	guidance,	navigation,	and	control;	embed-
ded,	 real-time	 software;	 microelectronics	 and	 packaging;	
autonomous	 systems;	 distributed	 systems;	 microelectrome-
chanical	 systems;	 biomedical	 engineering;	 and	 prototyping	
system	 solutions.	 In	 coordination	 with	 Draper’s	 Education	
Office,	many	projects	also	included	graduate	or	undergraduate	
students on their teams. 

Draper’s	subsidiary	venture	capital	fund,	Navigator	Technology	
Ventures,	LLC	(NTV),	displayed	information	about	a	number	
of its portfolio companies. These companies include Actuality 
Systems,	Aircuity,	Assertive	Design,	Food	Quality	Sensor	(FQS)	
International,	 HistoRx,	 Polnox	 Corp.,	 Polychromix,	 Renal-
works	Medical	Corp.,	Sionex	Corp.,	and	Tizor	Systems.

Ray Barrington (left) and Stephen Smith 
(center) discuss Draper’s Space Programs 
with an interested visitor.

Malinda Tupper demonstrates one of several 
biological/chemical sensors under develop-
ment as Draper continues to pursue the 
smallest, most robust, and selective electronic 
detection platforms.

Linda Fuhrman shares her enthusiasm for space 
exploration and Draper’s role with Cambridge 
public school students.

Roger Wilmarth (left) and a Draper Fellow 
discuss innovations in small robotics systems 
for surveillance and rescue operations, includ-
ing precision airdrop systems, small undersea 
vehicles, and systems designed to overcome 
difficult mobility challenges.
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