GRAPHS WHICH ARE LOCALLY A CUBE

Dominique Buset

Université Libre de Bruxelles, Département de Mathématique, C.P. 216, Boulevard du Triomphe, B-1050 Bruxelles, Belgique

Received 29 October 1982

We prove that there are exactly two connected graphs which are locally a cube: a graph on 15 vertices which is the complement of the (3 x 5)-grid and a graph on 24 vertices which is the 1-skeleton of a certain 4-dimensional regular polytope called the 24-cell.

1. Introduction

Let \(\{e_1, e_2, e_3, e_4\} \) be the standard basis of \(\mathbb{R}^4 \). The 24-cell is a 4-dimensional regular polytope whose vertices are the 24 vectors \(\pm e_i \pm e_j \) \((i \neq j)\) of \(\mathbb{R}^4 \), two vertices being adjacent iff the angle between the corresponding vectors is 60°. It is well known [2] and easy to check that the 1-skeleton (i.e. the graph consisting of the vertices and edges) of this polytope has the following property: for every vertex \(v \), the neighbourhood of \(v \) (i.e. the subgraph induced by \(G \) on the set of vertices adjacent to \(v \)) is isomorphic to the 1-skeleton of a 3-dimensional cube. In other words, the 24-cell is locally a cube.

More generally [3], given a graph \(G' \), we shall say that a graph \(G \) is locally \(G' \) if, for every vertex \(v \) of \(G \), the neighbourhood \(G(v) \) of \(v \) is isomorphic to \(G' \). If \(G' \) is the 1-skeleton of a 3-dimensional cube and if \(G \) is locally \(G' \), we shall say that \(G \) is locally a cube.

It is natural to ask whether the 24-cell is the only connected graph which is locally a cube.

Theorem. If a connected graph \(G \) is locally a cube, \(G \) is isomorphic either to the 1-skeleton of the 24-cell or to the complement of the (3 x 5)-grid.

The \((p \times q)\)-grid is the graph whose vertices are the \(pq \) ordered pairs \((i, j)\) with \(i = 1, \ldots, p \) and \(j = 1, \ldots, q \), two vertices being adjacent iff they have one coordinate in common.

The adjacency relation in a graph \(G \) will be denoted by \(\sim \) and the number of vertices of \(G \) by \(|G| \).

2. Proof of the Theorem

Lemma 1. For any two adjacent vertices of \(G \), there are exactly 3 vertices of \(G \) adjacent to both of them.
This follows immediately from the fact that the cube is a regular graph of degree 3.

Let \(v \) be a fixed vertex of \(G \). We shall denote by \(v_i (i = 1, \ldots, 8) \) the vertices of \(G(v) \) and by \(G_i \) the subgraph induced by \(G \) on the set of vertices adjacent to \(v_i \) and at distance 2 from \(v \). Since the neighbourhood of \(v_i \) is isomorphic to a cube, \(G_i \) is a 3-claw, that is \(G_i \) has 4 vertices \(w_i, i_1, i_2, i_3 \) such that \(w_i \sim i_r \) for every \(r = 1, 2, 3 \) and \(i_t \neq i_r \) for every \(r \neq s \).

Lemma 2. If \(v_i \neq v_j \), then \(G_i \neq G_j \) and the subgraph \(G_i \cap G_j \) is not an edge.

Proof. If \(G_i = G_j \), the vertices \(v_i, v_j, i_1, i_2, i_3 \) are all in the neighbourhood of \(w_i \), which is isomorphic to a cube. This is a contradiction because \(v_i \) and \(v_j \) are both adjacent to \(i_1, i_2, i_3 \) and the graph of a cube cannot contain 5 such vertices.

If the claws \(G_i \) and \(G_j \) have exactly one edge in common, we may assume without loss of generality that it is the edge \(\{w_i, i_1\} \), so that \(w_i = w_j \) or \(w_i = i_1 \). In any case, the neighbourhood \(G(w_i) \) contains the vertices \(v_i, v_j, i_1, i_2, i_3 \) with \(v_j \sim i_1 \).

Since \(G(w_i) \) is isomorphic to a cube, \(v_j \) must also be adjacent to one of the vertices \(i_2 \) or \(i_3 \), and so \(G_i \) and \(G_j \) have at least two edges in common, contradicting the initial assumption.

Lemma 3. If \(v_i \sim v_j \), then \(w_i \neq w_j \), \(w_i \notin G_j \), \(w_j \notin G_i \) and \(|G_i \cap G_j| = 2 \).

Proof. Since \(v_i \sim v_j \), there are exactly 3 vertices adjacent to \(v_i \) and \(v_j \) by Lemma 1. One of them is \(v \). There is no vertex adjacent to \(v_i \) and \(v_j \) in \(G(v) \). Therefore the two missing vertices are at distance 2 from \(v \), and so \(|G_i \cap G_j| = 2 \).

If \(w_i \in G_j \), then \(w_i \sim v_j \). This contradicts Lemma 1 because \(v_i \) and \(w_i \) are both adjacent to \(i_1, i_2, i_3, v_j \). Therefore \(w_i \notin G_i \) and similarly \(w_j \notin G_i \). In particular, \(w_i \neq w_j \).

Let \(d(v_i, v_j) \) denote the distance between \(v_i \) and \(v_j \) in the subgraph \(G(v) \).

Lemma 4. If \(d(v_i, v_j) = 2 \), then \(G_i \cap G_j \neq \emptyset \), \(\{w_i\} \) and \(\{w_j\} \).

Proof. If \(G_i \cap G_j \) is equal to \(\emptyset \), \(\{w_i\} \) or \(\{w_j\} \), then the vertices \(i_1, i_2, i_3, j_1, j_2, j_3 \) are pairwise distinct. Since \(d(v_i, v_j) = 2 \), there is a vertex \(v_k \in G(v) \) adjacent to \(v_i \) and \(v_j \). By Lemma 3, \(w_k \notin G_i \cup G_j \) and we may assume without loss of generality that \(G_i \cap G_k = \{i_1, i_2\} \) and \(G_j \cap G_k = \{j_1, j_2\} \). It follows that \(G(v_k) \) contains at least 9 vertices, a contradiction.

Lemma 5. If \(d(v_i, v_j) = 2 \) and \(w_i = w_j \), then the subgraph \(G_i \cap G_j \) is a 2-claw (i.e. the union of two intersecting edges).

Proof. This is a direct consequence of Lemmas 2 and 4.
Lemma 6. If $d(v_i, v_j) = 2$ and $w_i \neq w_j$, then $G_i \cap G_j = \{i_r\}$ for some $r \in \{1, 2, 3\}$. Moreover the 8 vertices of $G(i_r)$ are $v_i, v_j, v_{i}, v_{j}, w_i, w_j, w_k, w_l$ where v_k and v_l are the vertices adjacent to v_i and v_j in the subgraph $G(v)$.

Proof. By Lemmas 2 and 4, we already know that $|G_i \cap G_j| = 1, 2$ or 3. In view of Lemma 3, we may assume that $G_i \cap G_k = \{i_1, i_2\}$ and $G_i \cap G_j = \{j_1, j_2\}$.

By hypothesis, $w_i \neq w_j$. Moreover, $w_i \neq i_1, i_2$ because $w_i \notin G_k$ thanks to Lemma 3. If $w_j = i_3$, then $i_r \neq i_k$ for every $r, s \in \{1, 2, 3\}$ and so i_1, i_2, j_1, j_2 are 4 distinct vertices adjacent to v_k. It follows that $G(v_k)$ contains at least 9 vertices, a contradiction. Therefore $w_i \notin G_i$ and similarly $w_l \notin G_l$, so that $G_i \cap G_l \subseteq \{i_1, i_2, i_3\}$. Observe also that $\{i_1, i_2\} \neq G_i \cap G_l$, because otherwise i_1 and i_2 would be adjacent to v_i, v_j, w_k which is a contradiction since i_1, i_2, v_i, v_j, w_k are all in $G(v_k)$ and since the graph of a cube cannot contain 5 such vertices.

(i) If $|G_i \cap G_j| = 3$, then $G_i \cap G_l \ni \{i_1, i_2\}$, which is impossible as we have just seen before.

(ii) If $|G_i \cap G_j| = 2$, it is no loss of generality, thanks to the preceding observations, to assume that $G_i \cap G_j = \{i_1, i_3\}$ and $G_k = \{w_k, i_1, i_2, j_2\}$ with $i_1 = j_1$. The neighbourhood $G(i_1)$ contains $v_i, v_j, v_{i}, v_{j}, w_i, w_j, w_k$ with $w_i \sim v_i \sim v_k \sim v_j \neq w_l$. Since $G(i_1)$ is isomorphic to a cube, there must be a vertex $x \in G(i_1)$ adjacent to v_i and v_j but not to w_l. Moreover $x \in G(v)$ because $x \sim v_i, x \neq v_i, x \neq w_i$ and $x \neq w_j$. Thus $x = v_i$ and so $v_i \sim i_1$. Using the fact that $G(v_i)$ is a cube, we get $v_i \sim i_3$. Now, in $G(v_i)$, v_i and v_j are both adjacent to v_i, i_1, i_2, a contradiction since $G(v_i)$ is a cube.

(iii) Therefore $|G_i \cap G_j| = 1$ and $G_i \cap G_j = \{i_r\}$ for some $r \in \{1, 2, 3\}$. Together with $G_i \cap G_k = \{i_1, i_2\}$ and $G_j \cap G_k = \{j_1, j_2\}$, this implies $r \neq 3$ and so, without loss of generality, $G_i \cap G_j = \{i_1\}$ and $G_k = \{w_k, i_1, i_2, j_2\}$. Using the same type of arguments as in (ii), we get $v_i \sim i_1$, and, because $G(i_1)$ is a cube, $v_j \neq i_1$. Thus $w_l \neq w_k$ and the vertices w_l, w_j, w_k, w_l are pairwise distinct.

Lemma 7. If $d(v_i, v_j) = 3$, then $w_i \neq w_j$.

Proof. Assume that $w_i = w_j$ and let $v_i \sim v_m \sim v_n \sim v_j$ be a path of length 3 joining v_i to v_j in $G(v)$.

If $|G_i \cap G_j| = 1$, then $G_i \cap G_j = \{w_i\}$ and $i_r \neq j_r$ for every $r, s \in \{1, 2, 3\}$. By Lemma 3, we may assume that $G_i \cap G_m = \{i_1, i_3\}$. Moreover, since $w_m \neq w_i = w_j$, we may assume, by Lemma 6, that $G_j = G_m = \{j_3\}$. Therefore $G_m = \{w_m, i_1, i_2, j_3\}$, which implies $i_3 \neq i_1$ and $j_3 \neq i_2$, a contradiction in the cube $G(w_i)$.

If $|G_i \cap G_j| = 2$, then $G_i \cap G_j$ is an edge, contradicting Lemma 2.

If $|G_i \cap G_j| = 3$, then the subgraph $G_i \cap G_j$ is a 2-claw and we may assume that $G_i = \{w_i, i_1, i_2, j_3\}$ with $i_1 = j_1$ and $i_2 = j_2$. By Lemma 3, $|G_i \cap G_m| = 2$ with $w_i \notin G_m$, and so G_m contains at least one of the two vertices i_1, i_2. Since $w_m \neq w_i = w_j$, Lemma 6 implies that $G_j \cap G_m = \{i_3\}$ for some $s \in \{1, 2, 3\}$, and so G_m contains at most one of the two vertices i_1, i_2. Therefore, without any loss of generality,
$G_i \cap G_m = \{i_2\}$. Now, by Lemma 6 again, $G(i_2)$ has exactly 4 vertices in common with the cube $G(v)$, namely v_i, v_m and the two vertices of $G(v)$ adjacent to v_i and v_m. On the other hand, $v_i \in G(i_2) \cap G(v)$. This is a contradiction since v_i is not adjacent to v_j.

If $|G_i \cap G_j| = 4$, then $G_i = G_j$, contradicting Lemma 2.

Proposition 1. If a graph G is locally a cube and if, for some vertex v of G, there are two vertices $v_i, v_j \in G(v)$ such that $d(v_i, v_j) = 2$ and $v_i \neq v_j$, then G is isomorphic to the 1-skeleton of the 24-cell.

Proof. It is easy to check that the 1-skeleton of the 24-cell satisfies the above hypothesis. Therefore, it suffices to prove that a graph G satisfying this hypothesis is uniquely determined up to isomorphism.

We shall denote the adjacencies in the cube $G(v)$ by

$$
v_1 \sim v_2 \sim v_3 \sim v_4 \sim v_1, \quad v_5 \sim v_6 \sim v_7 \sim v_8 \sim v_5
$$

and

$$v_i \sim v_{i+4} \text{ for every } i = 1, 2, 3, 4.$$

Suppose that $w_1 \neq w_3$. Then, by Lemma 6, $G_1 \cap G_3 = \{1_1\}$ without any loss of generality and $v_1, v_2, v_3, v_4, w_1, w_2, w_3, w_4$ are the 8 vertices of the cube $G(i_1)$, with

$$w_1 \sim w_2 \sim w_3 \sim w_4 \sim w_1, \quad w_1 \neq w_3, \quad w_2 \neq w_4$$

Since $v_5 \sim v_1$ and $v_5 \neq 1_1$, it follows from Lemma 3 that $G_1 \cap G_5 = \{1_2, 1_3\}$. Moreover, by Lemma 3 again, $G_1 \cap G_2 = \{1_1, 1_2\}$ without any loss of generality, and so $G_i \cap G_4 = \{1_1, 1_3\}$ thanks to Lemma 6. The neighbourhood $G(i_1)$ contains the vertices $v_1, v_2, v_3, w_1, w_2, w_5$ with

$$w_5 \sim w_5 \sim v_1 \sim v_2 \sim w_2 \sim w_1 \sim v_1$$

and $w_3 \neq w_1$ by Lemma 3. Since $G(i_2)$ is a cube, we have $w_2 \neq w_5$ and so, by Lemma 6, $G_2 \cap G_5 = \{1_2\}$ and $v_1, v_2, v_3, v_4, w_1, w_2, w_3, w_4$ are the 8 vertices of the cube $G(i_2)$, with

$$w_1 \sim w_2 \sim w_6 \sim w_5 \sim w_1, \quad w_1 \neq w_6, \quad w_2 \neq w_5$$

By similar arguments, $w_4 \neq w_5$, $G_4 \cap G_5 = \{1_3\}$ and $v_1, v_4, v_5, v_8, w_1, w_4, w_5, w_8$ are the 8 vertices of the cube $G(1_3)$, with

$$w_4 \sim w_6 \sim w_5 \sim w_1, \quad w_1 \neq w_8, \quad w_4 \neq w_5$$

The neighbourhood $G(w_1)$ contains the vertices $v_1, 1_1, 1_2, 1_3, w_2, w_4, w_5$. Since $G(w_1)$ is a cube, the missing vertex $w \in G(w_1)$ must be adjacent to w_2, w_4, w_5 and non adjacent to $1_1, 1_2, 1_3$, so that $w \neq w_1, w_2, w_3, w_4, w_5, w_6, w_8$. Note that $w_2 \neq w_8$ (because w_2 is already adjacent to 8 vertices distinct from w_8) and also $w_4 \neq w_6, w_5 \neq w_3$.

Using similar arguments, it is now easy (but a little bit tedious) to show that the subgraph induced by G on the set of vertices w_i ($i = 1, \ldots, 8$) is isomorphic to a cube which is precisely the neighbourhood $G(w)$. Moreover, given any 4 vertices v_i, v_j, v_k, v_l in a face of the cube $G(v)$, there is exactly one vertex f_i of G which is adjacent to v_i, v_j, v_k, v_l and to the vertices w_i, w_j, w_k, w_l of the corresponding face of the cube $G(w)$; for example, we have seen that $1_1, 1_2, 1_3$ are three of the vertices $f_1, f_2, f_3, f_4, f_5, f_6$. This shows that the graph G has $1 + 8 + 6 + 8 + 1 = 24$ vertices and, being uniquely determined up to isomorphism by the preceding construction, it is isomorphic to the 1-skeleton of the 24-cell.

Proposition 2. If a graph G is locally a cube and if, for some vertex v of G, $w_i = w_l$ whenever $v_i, v_l \in G(v)$ with $d(v_i, v_l) = 2$, then G is isomorphic to the complement of the (3×5)-grid.

Proof. It is easy to check that the complement of the (3×5)-grid satisfies the above hypothesis. Therefore, it suffices to show that a graph G satisfying this hypothesis is uniquely determined up to isomorphism.

We use the same notations as in the proof of Proposition 1 to denote the adjacencies in $G(v)$.

The hypothesis implies that w_1 is adjacent to v_1, v_3, v_6, v_8 and that w_2 is adjacent to v_2, v_4, v_5, v_7, with $w_1 \neq w_2$ by Lemma 3. Using Lemma 5, we may assume without loss of generality that $G_1 = \{w_1, 1_1, 1_2, 1_3\}$ and $G_3 = \{w_1, 1_2, 1_3, 3_1\}$. Since $G(w_1)$ is a cube, it follows that 3_1 is adjacent to v_6 and v_8 and, without loss of generality, $G_6 = \{w_1, 1_1, 1_3, 3_1\}$ and $G_8 = \{w_1, 1_1, 1_2, 3_1\}$. By Lemmas 3 and 5, the subgraphs G_2, G_4, G_5, G_7 are then completely determined.

This construction shows that the graph G has 15 vertices and is uniquely determined up to isomorphism.

The proof of the Theorem follows immediately from Propositions 1 and 2.

3. Final comments

A. Brouwer [1] proved independently that there are exactly two connected graphs which are locally a cube. After some exchange of information, he could prove a more general result characterizing the graphs which are locally the complement of a $(p \times q)$-grid with $p \geq q \geq 2$ ($q \geq 2$ or $p > 3$). We shall say that these graphs are locally $p \times q$.

Theorem (Brouwer [1]). If G is a connected graph which is locally $p \times q$ with $p \geq q \geq 2$ ($q \geq 2$ or $p > 3$), then G is the complement of a $((p + 1) \times (q + 1))$-grid or

(i) $p = 4$, $q = 2$ and G is the 1-skeleton of the 24-cell

(ii) $p = q = 3$ and G is the Johnson scheme (ξ) on 20 vertices (that is the graph...
whose vertices are the 3-subsets of a 6-set, two vertices being adjacent iff the corresponding 3-subsets intersect in a 2-subset).

The remaining cases \((p, q) = (3, 2), (2, 2)\) or \((p, 1)\) with \(p > 1\) allow infinitely many nonisomorphic solutions. \(K_2\) is obviously the unique locally 1×1 graph.

References