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The paper presents a new modality extending An-
swer Set Programming in order to refine its capabil-
ity of representing knowledge in case of possible per-
ception failure. The aim of the proposal is mainly to
present a new logical approach to deal with uncertainty
arising from perception bugs, and to show its effective-
ness in the context of agent reasoning representation.

The basic environment of Answer Set Programming,
has been chosen to simplify the study of the above
aspect, without limiting the possibility of using our
approach in the wide scenario of agent-oriented logic
languages.
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1. Introduction

Answer Set Programming (ASP) [7,2] is a lan-
guage very suitable for representing human-like
reasoning in case of possible incomplete informa-
tion, and it is used as a core for many agent-
oriented logic languages [3,11,10,6]. Moreover,
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logic programming is a framework very suitable
also to represent dynamic environments provided
that specific features concerning time, actions, in-
ertia, etc., are included in the language [15,8,14,9].

Our paper falls in the context of the agent rea-
soning representation by logic programming. In
this scenario, we are interested in a particular as-
pect not yet considered in logic-based languages
for agents. We refer to the chain sense-think-act of
agents, where beyond sensors a perception layer al-
ways may alter what actually sensors report. Per-
ception is intended in a general way: it can be re-
lated to the view of a robot, or to the network
layer, in case of remote source of knowledge for a
software agent, and so on. The core problem of this
paper is the following: How to represent agent rea-
soning that takes into account possible perception
failure?

We reasonably assume that the above aspect is
orthogonal to those addressed by agent-oriented
logic languages (mentioned above). As a conse-
quence, we study this problem in the simplest set-
ting, that is pure Answer Set Programming.

It is well known that ASP negation by default
combined with classical negation, allow us the rep-
resentation of reasoning in presence of incomplete
knowledge. However, our purpose is to face the
case of missing information arising from the fail-
ure of the perception layer, by assuming that some
status information detects such abnormal situa-
tion. In this case, we can realize that ASP does
not permit a natural encoding, so that we propose
a specific modality making the encoding natural
and strongly declarative.

Consider the following example. An agent is ap-
proaching a traffic light (for simplicity suppose
that the traffic light consists of just a green light
that can be either on or off). He knows that in
case he is able to perceive the status of the light,
he can draw reliable information from the traffic
light. Thus, if the light is on, then the agent crosses
the way, otherwise he stops. Suppose now that the
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agent is able to detect a situation of compromised
perception, for example the presence of a thick
fog. In this case, he knows that it might happen
that light perceived as off does not actually mean
that the agent has to stop (since the fog prevents
the agent to see the light). Suppose again that the
agent would keep an optimistic behaviour, in or-
der not to loose time (for instance in case of emer-
gency). In other words, he wants to cross the way
also in the latter case.

If we try to represent the above reasoning by
ASP, then we write the following rule:

r1 : cross ← not ¬on
In words, the above rule means that the agent

crosses the way if he has not evidence that the
light is off (here, synonym of ¬on). The literal
¬on could be derived through at least one rule
where it appears in the head. Since we want to take
into account possible incomplete knowledge arising
from the weather conditions, we do not allows the
derivation of ¬on simply on the basis of the impos-
sibility of deriving the truth of on. In other words,
the program cannot contain a “closure rule” of the
form:

r2 : ¬on ← not on
The ASP encoding above works correctly only

in case of fog. Indeed, whenever the view is clear,
if the agent does not see the light on, he goes
across anyway (since the literal ¬on is not derived
and, therefore, the rule r1 allows the derivation of
cross). Clearly, according to the above description,
this does not correctly represent the behaviour of
the agent, who in case of full perception gives to
the traffic light strong reliability (thus, in case of
light off he stops).

The aim of the paper is to introduce a machin-
ery capable of dealing with the perception failure,
allowing us to refine the representation of the rea-
soning in case of incomplete information in order
to take into account some detected status of per-
ception failure.

We implement such machinery by introducing
the possibility of underlining literals.

In the example above, we apply this modality to
the literal on, and represent the agent reasoning
by the following rule:

r3 : cross ← on
The meaning is the following: In case of full per-

ception the underlining is ignored, otherwise the
meaning of the body is just that of the original
ASP program (i.e., not ¬on). As a consequence,

the agent, in case of fog, goes across also if he does
not see the light on. But whenever the view is clear,
since the underlying is ignored, he stops if he does
not see the light on (exactly as we have required).

Observe that the application of this machinery
to the literal on in the rule r3, makes the condition
required to derive the head cross less strict than
the standard case (i.e., cross ← on). In words,
the agent requires the condition on, in order to go
across, but if he is not able to perceive such an
information, he does without it.

Thus, our modality, applied to a positive literal
occurring in the body of a rule, refines its meaning,
by assuming a more optimistic behaviour (than
the standard one) in case of perception-based in-
definiteness of such a literal. Coherently, the same
modality, if applied to a literal with negation as
failure, gives a specular behaviour.

Indeed we expect that rule:
r4 : stop ← not on
has the same behaviour of the rule r3, as it hap-

pens in ASP. Indeed, if the underlining in rules r3

and r4 is not considered, then we have that the
meaning of the two rules coincides, as both heads
and bodies represent a complementary knowledge.
In particular, both rules state than the agent goes
across only in case on is true.

The semantics of underlining clearly preserves
this behaviour, so that according to the rule r4

(with underlining), in case of perception failure
(we recall that in the other case underlining is un-
influential), the body is true only if on is proven
to be false (i.e., ¬on is true). Differently from the
standard case, the indefiniteness of on does not
make true its negation by failure. In other words,
the proposed modality allows us to refine negation
by failure by introducing a more pessimistic be-
haviour than the standard case. Indeed, in case of
perception failure we do not assume the falsity of
the information carried out by the literal to which
the negation is applied, as standard ASP does.

In the next section we present two more artic-
ulated examples in order to give the flavour of
our proposal in an intuitive way. The formal de-
scription of syntax and semantics of our programs,
called U(nderlined)-programs, is presented in Sec-
tion 3. In Section 4 we give the translation of our
semantics into answer sets and we prove that such
a translation is correct. The relevance of the con-
tribution of our proposal is discussed, by examples,
in Section 5, while, in Section 6, we discuss about
related work. Finally we draw our conclusions in
Section 7.
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2. Examples

2.1. The Robot

In this example, we consider a robot moving
into a room having a chessboard floor, in order to
achieve a target object. The robot can move ei-
ther horizontally, vertically or diagonally, and it
can rotate for aligning itself with a row, a column
or a diagonal. There could be one obstacle in some
square. The room boundaries are also viewed as
obstacles. This situation is depicted in Figure 2-
(A), where the symbols F, L and R represent the
front, left and right side of the robot respectively.
The robot relies on the following boolean sensors:

(1) target ahead : The sensor is true whenever the
target is entirely within the field of vision
(supposed to be 90◦) of a frontal video-cam;

(2) target front: The sensor is true whenever the
angle between the robot front direction and
that pointing the target is less than 45◦, also
in case the obstacle is in the middle (we might
imagine this sensor as a directional antenna);

(3) target achieved: When this sensor is true,
there is at most an empty square between the
robot and the target;

(4) obstacle front: The value true means that
there is at most an empty square between the
robot and the obstacle in front of it;

(5) obstacle left (resp. obstacle right): The value
true means that the obstacle is in the next
square on the left (resp. on the right).

Concerning the above sensors, we allow that
some of them may be affected by (perception) fail-
ure (in particular, sensors (1) and (4)).

We consider some other events, each associated
to an action that is performed by the robot when-
ever the event is inferred by the program. These
are:

(6) go ahead : The robot moves one position
ahead;

(7) redirect : The robot rotates in order to max-
imize the alignment with the target, i.e. the
robot chooses an allowed direction (i.e. hori-
zontal, vertical, diagonal) such that is mini-
mum the angle between that direction and the
target one;

(8) avoid left (resp. avoid right): The robot moves
sideways one position on the left (resp. on the
right), in order to avoid the obstacle in front of
it, provided that go ahead is not derived (thus,
the robot prefers to go ahead, if possible);

(9) end : The robot stops. This action has the
highest priority.

The following ASP program P, whose literals
represent the above sensors and events, can be as-
sociated to the robot:

r1 : ¬obstacle front ← target ahead,
target front

r2 : redirect ← not target front
r3 : go ahead ← not obstacle front,

target front
r4 : avoid left ← target front,

obstacle front,
not obstacle left,
not avoid right

r5 : avoid right ← target front,
obstacle front,
not obstacle right,
not avoid left

r6 : end ← target achieved

The meaning of the program rules follows:

r1 : In case the robot both is aligned with and per-
ceives the target, then it assumes that there
is no obstacle in the frontal direction, thus al-
lowing, by means of the following rule r3, a
sort of “contact navigation”.

r2 : The robot performs the action redirect in order
to be aligned with the target.

r3 : The action go ahead is taken if the robot is
aligned with the target and there is no evi-
dence of obstacles.

r4 : (resp. rule r5): The robot performs the action
avoid left (resp. avoid right) if (i) it is aligned
with the target, (ii) an empty square sepa-
rates the robot from the obstacle in front of
it, (iii) there is no evidence of an obstacle in
the next square on the left (resp. on the right)
and, finally, (iv) the action avoid right (resp.
avoid left) has not been chosen.

r5 : If the target is far at most one empty square
from the robot, then the action end is taken.

Moreover, the robot can assume three states,
that we call evaluate, run and stop, on the basis of
the following behaviour (see Figure 1).
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evaluaterun stop

end is not derived

end is derived

Fig. 1. The robot behaviour

In the state evaluate the robot applies its reason-
ing task, by first inserting in the program P a fact
(i.e., a rule with empty body) for each true sensor
and then evaluating the intended models (i.e. the
answer sets) of the resulting program. If end is not
derived, then the robot switches to the state run,
where it nondeterministically chooses one of the
answer sets computed in the previous state and
then executes the action associated to the chosen
answer set (according to the program, due to prior-
ities stated in (8) and (9), the action to execute is
always unique). Next, it switches back to evaluate.
Otherwise, in case end is derived in the state eval-
uate, the robot switches to the state stop, where it
halts.

Since we admit that some sensor may be imper-
ceptible, we want to study the behaviour of the
robot in each of the following cases, either:

(a) all the sensors are perceptible,
(b) target ahead is imperceptible,
(c) obstacle front is imperceptible, or
(d) both target ahead and obstacle front are im-

perceptible.

Case (a). First, assume that the robot starts
from the position 1 of Figure 2-(A) and all the
sensors are perceptible (observe that in this case
the presence of underlined literals in the program
would be irrelevant).

The initial state of the robot is evaluate, and all
the sensors are false. P admits only one answer
set, namely redirect (throughout this example, for
simplicity, we do not include sensor literals in the
answer sets).

Thus, the robot switches to the state run where
executes the action redirect, that is it rotates for
aligning itself with the target. This way, the robot
reaches the position 2 (see Figure 2-(B)), and then
it switches to the state evaluate.

Now all the sensors but target front are false.
target front is true since, in such a position, the tar-
get is within the aperture of the antenna. Again, P
has only one answer set, which is go ahead. Thus,
the robot goes to the state run.

Fig. 2. An example of robot movement

Due to the execution of the action go ahead, the
robot moves one position ahead, reaching the posi-
tion 3, and then it switches to the state evaluate. In
this state the values of the sensors are the previous
ones, with only the change of obstacle front, which
becomes true, since the distance between the robot
and the obstacle is one square.

At this point the robot evaluates the answer sets
of P, that are {avoid left} and {avoid right}, and
switches to the state run. Then it nondeterministi-
cally chooses the answer set {avoid right} and thus
it executes the action avoid right, moving sideways
one square on the right, reaching the position 4,
and switching then to the state evaluate.

Now (∗) the values of the sensors are true for
both target ahead and target front and false for the
others. Observe that, since the target belongs to
the field of vision of the video-cam and it is aligned
with the robot, the falsity of obstacle front is de-
rived. The program admits now one answer set,
namely {go ahead}. Thus, the robot goes to the
state run, where the corresponding action is exe-
cuted.

Whenever the robot comes back to the state
evaluate, the configuration (∗) above is replicated.
As a consequence, the execution pattern following
(∗) will be repeated one more time, until the robot
reaches the position 6.

In this position, both target ahead and tar-
get front become false, since the target is not de-
tected anymore by both the video-cam and the
antenna, thus only target achieved is true. In the
state evaluate the robot computes the answer set
of P, that is {end, redirect}, and switches to the
state stop.

Now, consider the imperceptibility cases (b), (c)
and (d) mentioned above.

Case (b). Suppose the robot re-starts from the
position 1 of Figure 2-(A) and the sensor tar-
get ahead is imperceptible due to, say, fog. Ta-
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Table 1

Robot behaviour (programs P and P ′′) in case (b)

Pos Evaluate Run

1 {} redirect

2 {target front} go ahead

3 {target front, obstacle front} avoid right (avoid left)

4 {target front} go ahead

5 {target front} go ahead

6 {target achieved} end

Table 2

Robot behaviour (program P) in both case (c) and case (d)

Pos Evaluate Run

1 {} redirect

2 {target front} go ahead

3 {target front} go ahead

3′ {target front} go ahead

crash!

ble 1 describes the robot behaviour reporting, for
each position achieved, the set of true sensors in
the state evaluate and the action performed in the
state run.

Likewise case (a), the robot is able to reach po-
sition 4 (see Figure 2-(B)). Now, observe that the
intended meaning of rule r3 is the following: the
action go ahead is performed either in case the
robot proves the falsity of obstacle front (by means
of rule r1) or in case there is no evidence of ob-
stacles in front of it, provided that target front is
true. Since in this case rule r1 is blocked, then the
robot relies just on the fully working sensors ob-
stacle front and target front, in order to proceed
safely, thus performing a sort of “instrument nav-
igation”.

Thus, thanks to the repeated effect of rule r3,
the robot easily achieves the target.

Unfortunately, in case (c) the robot does not
succeed in achieving the target, as shown by Ta-
ble 2 and next explained.

Case (c). Now assume that the sensor obsta-
cle front is imperceptible. The robot starts from
the position 1 of Figure 2-(A) and reaches posi-
tion 3 of Figure 2-(B). The above assumption cor-
responds to having all the sensors but target front
false.

In the state evaluate, the robot computes the
only answer set of P, that is {go ahead} (∗∗) (due
to the rule r3), thus after switching to the state
run, it moves to a square next to the obstacle. Now,
the robot switches to the state evaluate, replicat-
ing the situation (∗∗) and finally it goes ahead,
crashing into the obstacle.

Table 3

Robot behaviour (program P′) in both case (a) and case
(c) (Robot behaviour (program P ′′) in case (c))

Pos Evaluate Run

1 {} redirect

2 {target front} avoid right (avoid left)

4′ {target ahead, target front} go ahead

4 {target ahead, target front} go ahead

5 {target ahead, target front} go ahead

6 {target achieved} end

Case (d). It is easy to see that Table 2 is appli-
cable also to case (d).

In order to explain this anomaly, we observe that
the program P does not take into account the in-
formation incompleteness arising from the sensors.

However, ASP is capable of dealing with such
an issue, by means of the two forms of negation,
suitably combined each other.

Indeed, in order to overcome the above problem,
we try to change P in such a way that (i) the robot
does not go ahead unless it has proved that there
is no frontal obstacle and (ii) side movements are
allowed also in case the frontal obstacle is not per-
ceived. Thus, we rewrite rules r3, r4 and r5 as fol-
lows:

r′3 : go ahead ←¬obstacle front,
target front

r′4 : avoid left ← target front,
not ¬obstacle front,
not obstacle left,
not avoid right

r′5 : avoid right ← target front,
not ¬obstacle front,
not obstacle right,
not avoid left

Observe that, in rule r′3, the NAF of obsta-
cle front has been replaced by ¬obstacle front, in
order to prevent the robot to go ahead unless the
explicit falsity of obstacle front (i.e. ¬obstacle front)
has been proved, provided that target front is true.

Moreover, in rules r′4 and r′5, every no-NAF oc-
currence of the literal obstacle front has been re-
placed as the NAF of the complementary literal.
This results in blocking the body of rules r′4 and
r′5 if ¬obstacle front has been proved.

Now we show that such a solution is not satis-
factory, since it does not work in both case (b) and
case (d). Anyway, first we study case (a) and case
(c).
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Table 4

Robot behaviour (program P′) in both case (b) and case
(d) (Robot behaviour (program P′′) in case (d))

Pos Evaluate Run

1 {} redirect

2 {target front} avoid right (avoid left)

4’ {target front} avoid right (avoid left)

endlessly moves to the right or to the left!

Cases (a) and (c). Table 3 shows the behaviour
of the robot, represented by program P ′ = P \
{r3, r4, r5} ∪ {r′3, r′4, r′5} in case (a). Note that in
case (c) the robot has the same behaviour. Accord-
ing to the new program P ′, the robot succeeds in
achieving the target.

Let us describe now cases producing anomalies.

Cases (b) and (d). In case (b) (resp. in case
(d)) the robot behaviour is described by Table 4.
Observe that, according to the program P ′, the
robot can go ahead only if ¬obstacle front has been
proved (due to rule r1), provided that the sensor
target front is true. Since in case (b) (resp. in case
(d)) the rule r1 is blocked, then the only move
the robot is allowed to do is either avoid right or
avoid left.

Now, although this is the intended robot be-
haviour in case (d) (since if both the sensors tar-
get ahead and obstacle front are imperceptible, we
expect that the robot is not able to achieve the
target), it holds that in case (b) the robot fails to
reach the target.

At this point, we apply the underlined modality
in order to fix the above problem.

To this aim we need to modify the rules r3, r4,
and r5 of P as follows:

r′′3 : go ahead ← not obstacle front,
target front

r′′4 : avoid left ← target front, obstacle front,
not obstacle left,
not avoid right

r′′5 : avoid right ← target front, obstacle front,
not obstacle right,
not avoid left

The underlining applied to the rule r′′3 has an
intuitive counterpart: If the robot is not able to
perceive the presence of a frontal obstacle then
it should not go ahead, unless ¬obstacle front is
derived, meaning that the sensor target ahead is
functional.

Moreover, the explanation of the underlining ap-
pearing in the rules r′′4 and r′′5 is that side move-
ments of the robot are safe, thanks to the pres-
ence of the (perceptible) sensors obstacle left and
obstacle right, although either the frontal view is
compromised due to the imperceptibleness of tar-
get ahead (case (b)) or obstacle front is impercep-
tible (case (c)).

Now we show that, according to the new pro-
gram P ′′ = P \{r3, r4, r5}∪{r′′3 , r′′4 , r′′5}, our robot
will behave as intended in all the considered cases.

Cases (a) and (b). In both case (a) and case (b)
P ′′ behaves as P (see Table 1), since all underlin-
ings are ignored.

Cases (c) and (d). In both case (c) (see Table 3)
and case (d) (see Table 4) P ′′ behaves as P ′, since
underlining in rule r′′3 (resp. in rules r′′4 and r′′5 )
strengthen (resp. soften) the requirements on ob-
stacle front expressed in the rule body.

Thus, the robot represented by P ′′ achieves the
target in all cases (a), (b) and (c). Finally, In case
(d) the robot endlessly moves either to the left or
to the right, without going ahead.

2.2. The Exploration Boat

An exploration boat has just performed some
experiments in open sea and it is travelling back to
the coast, after the sunset. A lighthouse has been
built near the harbour, in order to show the pres-
ence of some danger. Moreover, an on-board gps
device is capable of reporting that the boat is near
to the coast.

Under normal weather conditions, the captain
proceeds until the two following events occur: (1)
he is alerted by the gps device (i.e. gps is true)
and (2) he sees the lighthouse glowing (lighthouse
is true).

This situation can be represented by an ASP
program:

r1 : stop engine ← gps, lighthouse
r2 : ¬gps ← out of order
r3 : ¬lighthouse ← radio informed

Where rule r1 describes the captain’s behaviour
and by means of rule r2 (resp. rule r3) he assumes
the falsity of the information associated to the sen-
sor gps (resp. lighthouse) in case it is out of order
(resp. in case he has been informed by radio that
it is turned off).
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Now, suppose that either (i) the gps device is
unreachable by satellite signals, or (ii) a thick layer
of fog descends on the sea surface, thus cloaking
the lighthouse.

In either case (i) or (ii) the captain wants to stop
the engine, in order not to wreck the boat.

Unfortunately, the above ASP program does not
correctly represent such a cautious behaviour in
either the uncertain scenario (i) or (ii), since if ei-
ther gps or lighthouse is not true, then stop engine
is not derived.

Moreover, if we rewrite the rule r1 as

r′1 : stop engine ← not ¬gps, not ¬lighthouse

then we obtain that the new program behaves as
intended only in case (i) or (ii). Otherwise (i.e. in
case all sensors are perceptible) it fails since the
boat does not proceed even whether it could (i.e.
whenever both the gps device works and no radio
information about the lighthouse is given).

The desired behaviour is obtained by encoding
the rule r1 by means of underlining in the follow-
ing way:

r′′1 : stop engine ← gps, lighthouse

Indeed, if all sensors are perceptible, then the
underlining can be ignored and the meaning of the
program is the standard one: The engine is stopped
only if the lighthouse is visible and the coast is
nearby, whereas the boat proceeds otherwise. In
case of sensor imperceptibility (i.e. either case (i),
case (ii), or both), then the captain stops the en-
gine only if at least one literal between ¬gps and
¬lighthouse is true.

3. Syntax and Semantics

In this section we recall some basic concepts re-
garding ASP programs [7] and we introduce the
underlined logic programs (U-programs) and their
semantics. For the sake of presentation we only
refer, in this section, to variable-free (also said
ground) programs – the extension to the general
case is straightforward.

Recall that an atom is an expression p(t1, · · · , tn),
where p is a predicate of arity n and t1, · · · , tn are
constants.

A literal is either a positive literal a or a negative
literal ¬a, where a is an atom and ¬ is the classical
negation symbol. Given a literal a, its complemen-
tary literal ¬a is defined as ¬p, if a = p and p if
a = ¬p. Given a set L of literals, we denote by ¬L
the set {¬l | l ∈ L}. A set L of literals is said to be
consistent if L ∩ ¬L = ∅. Given a literal a we say
that not a is the negation as failure (NAF) of a
(observe that NAF of negative literals is allowed).

We recall that an (ASP) rule r is a formula a ←
b1, · · · , bi, not bi+1, · · · , not bm (0 ≤ i ≤ m), where
a and each bi (1 ≤ i ≤ m) are literals.

An (ASP) program is a finite set of rules.
Now, we introduce the notions of underlined lit-

eral, U-rule and U-program.

Definition 1. Given a positive literal a, we say that
a is an underlined literal. Given an underlined lit-
eral a, its complementary literal is the literal ¬a,
while the NAF of a is not a.

Observe that the application of the classical
negation removes the underlining.

Definition 2. A U-rule r is a rule where each bi (1 ≤
i ≤ m) is a (possibly underlined) literal. Given a
(U-)rule r, the literal a is called the head of r, the
conjunction of literals b1, · · · , bi, not bi+1, · · · , not bm

is the body of r. b1, · · · , bi (resp. not bi+1, · · · , not bm)
is called the positive part (resp. the NAF part)
of the body of r. We denote the set of (possi-
bly underlined) literals appearing in the head, in
the positive part, and in the NAF part of r by
head(r), body+(r), body−(r), respectively. We de-
note by body(r) the set body+(r) ∪ body−(r).

Given a U-rule r, we define the two sets
body+(r) = {a | a ∈ body+(r)} and body−(r) =
{a | a ∈ body−(r)}.
Definition 3. A U-program is a finite set of U-rules.

A U-program with no underlined literal is re-
ferred to as an independent U-program. Observe
that an independent U-program can be viewed as
an ASP program.

Now we introduce the semantics of U-programs.

Definition 4. Given a (U-)program P, we denote
by LitP the set of literals occurring in P.

Definition 5. Given a U-program P, we define the
set s-LitP ⊆ LitP of s-literals of P.

Literals in s-LitP represent boolean sensors
which the program P depends on. As a conse-
quence, we consider only U-programs where s-
literals may occur in the head of the rules, pro-
vided that they are negative.
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Remark. Thus we assume that in general a sen-
sor a sends either the information true or false,
but the latter case does not coincide with explic-
itly stating the falsity of the event associated to a
(which would be represented by the literal ¬a).

In other words, we allow possible incomplete in-
formation about sensors (in the sense that either
they might give false negatives or they could not
be correctly perceived), so that a sensor a send-
ing the information false just produces the suc-
cess of any negation by failure on it, whereas the
information ¬a needs to be explicitly derived.

Definition 6. Given a U-program P, a U-interpre-
tation for P is a pair 〈I, D〉 where I is a consistent
subset of LitP , D ⊆ s-LitP and I ∩D = ∅.

The set D represents those s-literals that are
associated to imperceptible sensors.

We recall now the definition of answer set of an
ASP program P, as introduced in [7]. We start by
giving the definition of interpretation for a (U-)
program P as a consistent subset of LitP . Note
that, according to the above definition, we want to
limit our focus only on consistent answer sets1.

First we need to introduce the GL-transformation
of P w.r.t. an interpretation I for P as the not-free
program PI obtained from P by deleting (i) each
rule r ∈ P such that body−(r) ∩ I 6= ∅; (ii) from
each remaining rule r, every formula not a such
that a ∈ body−(r).

An interpretation I for P is an answer set of P if
I is the smallest subset of LitP such that for every
rule r ∈ PI , if body(r) ⊆ I then head(r) ⊆ I.

Now we define the intended models of our pro-
grams. First, we need to introduce a transforma-
tion whose aim is to produce an independent pro-
gram.

Definition 7. Let P be a U-program and 〈I, D〉 a
U-interpretation for P. We define the U-transforma-
tion of P w.r.t 〈I,D〉 as the independent program
P〈I,D〉, obtained from P by executing the following
operations:

(1) delete every rule r ∈ P such that (body−(r)∩
D) 6⊆ ¬I;

(2) remove from the body of every remaining
rule r every underlined literal a such that
a ∈ (body+(r) ∩D) ∧ a 6∈ ¬I;

1According to the original definition of answer sets [7],
also the inconsistent set of all possible literals can be a valid
answer set.

(3) remove from the body of each rule every un-
derlining.

The meaning of the above operations is:

(1) Every rule including the NAF of underlined
s-literal a whose associated information is im-
perceptible is removed, provided that, the fal-
sity of the associated information has not been
proved;

(2) The dependence on underlined literals is con-
sistently eliminated, i.e., any underlined “im-
perceptible” s-literal is removed from any re-
maining rule, provided that, for such s-literals,
the falsity of the associated information has
not been proved;

(3) Underlining applied to both s-literals associ-
ated to perceptible sensors and non s-literals
are meaningless.

Observe that the program so obtained is clearly
an independent U-program. We are thus ready to
introduce the definition of intended models of a
U-program.

Definition 8. Given a U-program P, a U-interpre-
tation 〈I, D〉 for P is a U-answer set of P if I is
an answer set of P〈I,D〉 thought as ASP program.

Consider again the example of the robot de-
scribed Section 2.1, and, in particular, the last ver-
sion of the U-program P ′′, consisting of the rules
{r1, r2, r

′′
3 , r′′4 , r′′5 , r6}. Suppose that the robot oc-

cupies the position 2 in the state evaluate (Fig-
ure 2-(B)) and the sensor obstacle front is imper-
ceptible (observe that, as required by the defini-
tion of the state evaluate, a fact target front ←
is added to the program P ′′ at this stage). In such
a case we show that the U-interpretation 〈I, D〉 =
〈{target front, avoid right}, {obstacle front}〉, is
a U-answer set of P ′′.

The U-transformation of P ′′ is the ASP program
P〈I,D〉:

target front←
¬obstacle front← target ahead,

target front
redirect← not target front

avoid left← target front,
not obstacle left,
not avoid right

avoid right← target front,
not obstacle right,
not avoid left

end← target achieved
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It’s easy to see that I is an answer set of P〈I,D〉.

4. Translation

In this section we give the translation from U-
programs under the U-answer set semantics to
ASP programs under the answer set semantics.

Moreover, we show that for any U-program P,
an ASP program Γ(P) exists such that there is a
one-to-one correspondence between the U-answer
sets of P and the answer sets of Γ(P).

This result allows us to compute the semantics
of any U-program P by exploiting existing answer
set solvers such as the DLV system [12], Smodels
[16], etc.

Definition 9. Given a U-program P, we define
Γ(P) as the ASP program obtained from P by ex-
ecuting Algorithm 1.

For each U-rule
r: a ← b1, · · · , bi, not bi+1, · · · , not bm,

c1, · · · , cj , not cj+1, · · · , not cn

for each underlined literal ck

(resp. NAF of underlined literal not ck)
(1 ≤ k ≤ n):

1. replace ck (resp. not ck)
by a new literal fr,k 6∈ LitP ;

2. add the two rules:
fr,k ← ck

fr,k ← imp(ck), not ¬ck

(resp. add the two rules:
fr,k ← not ck, not imp(ck)).
fr,k ← ¬ck, imp(ck)).

Algorithm 1. The translation Algorithm

Concerning Algorithm 1, observe that the predi-
cate imp() does not occur in P. Moreover, for each
s-literal a ∈ s-LitP , the literal imp(a) is used in
Γ(P) to represent that the sensor associated to a
is imperceptible. Finally, it easy to see that the
computational complexity of Algorithm 1 is O(n),
where n is the number of underlinings occurring in
P.

Before stating the equivalence between the orig-
inal U-program and its translation, we need to in-
troduce some more definitions.

Definition 10. Given a U-program P and a U-
interpretation 〈I, D〉 for P, we define I〈I,D〉 =
I ∪ {imp(a) | a ∈ D}.

In words, I〈I,D〉 is obtained by adding to I an
atom imp(a) for each “imperceptible” s-literal a.

Moreover, given a U-program P and a set D ⊆
s-LitP , we define both ΓD(P) = Γ(P)∪{imp(a) ←
| a ∈ D} and ASf (ΓD(P)) as the set of all answer
sets of ΓD(P), where every literal fr,k (∀r, k) is
removed.

Given a U-program P, we want to prove the
equivalence between the set of U-answer sets of P
and the set ASf (ΓD(P)).

To this aim we need some preliminary defini-
tions and results. Recall that, given a positive ASP
program P and an interpretation I for P, I is a
(Herbrand) model of P if ∀r ∈ P, body(r) ⊆ I ⇒
head(r) ⊆ I.

Given a U-program P, we denote by FP the
set including every literal fr,k (∀r, k) occurring in
Γ(P), by Ind(P) the subset of P including only
rules with no underlined literal, and by Dep(P)
the set P \ Ind(P), respectively.

Fact 1. Given a U-program P and a U-interpretation
〈I, D〉 for P, ∀r ∈ Dep(P), the U-transformation
of the U-program {r} w.r.t. 〈I,D〉, {r}〈I,D〉, is
such that either:
(i) {r}〈I,D〉 = ∅, if (body−(r) ∩D) 6⊆ ¬I, or
(ii) {r}〈I,D〉 = {s}, where s is a classical rule

such that
head(s) = head(r),
body+(s) = body+(r) \ ((body+(r) ∩D)\

(body+(r) ∩D ∩ ¬I)),
body−(s) = body−(r).

Fact 2. ∀r ∈ Dep(P) it is Γ({r}) = Rr ∪{tr}, such
that:

Rr ={fr,k ← ck | ck ∈ body+(r)}∪
{fr,k ← imp(ck), not ¬ck | ck ∈ body+(r)}∪
{fr,k ← not ck, not imp(ck) | ck ∈ body−(r)}∪
{fr,k ← ¬ck, imp(ck) | ck ∈ body−(r)},

where fr,k 6∈ LitDep(P) and tr is a rule such that:

(1) head(tr) = head(r),
(2) body+(tr) = body+(r) \ {a | a ∈ body+(r)} ∪ F{r},
(3) body−(tr) = body−(r) \ {a | a ∈ body−(r)}.
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Before introducing the following result, recall
that, given a U-program P and a U-interpretation
〈I, D〉, P 〈I,D〉 is an independent program, i.e. it
can be seen as an ASP program. As a consequence,
(P 〈I,D〉)I denotes the GL-tranformation of P 〈I,D〉

w.r.t. I.

Lemma 1. Given a U-program P and a U-interpre-
tation 〈I, D〉, for each rule s′ ∈ (Dep(P)〈I,D〉)I it
holds that I is a model of {s′} iff Ī = I〈I,D〉∪F{r}
is a model of (ΓD({r}))Ī , where r ∈ Dep(P) ∧
({r}〈I,D〉)I = {s′}.

Proof. (⇒). In the following, we denote {r}〈I,D〉

by {s}.
By virtue of Fact 1, ∀s′ ∈ (Dep(P)〈I,D〉)I ∃r ∈

Dep(P) | ({r}〈I,D〉)I = {s′}. Now, according to
the hypothesis, body+(s′) ⊆ I ⇒ head(s′) ⊆ I. We
have to prove that Ī is a model of (ΓD({r}))Ī .

By virtue of Fact 2, (ΓD({r}))Ī = (Q ∪ Rr ∪
{tr})Ī , where Q = {imp(a) ← | a ∈ D}. Then, we
must prove that Ī is a model of both (i) QĪ , (ii)
(Rr)Ī and (iii) {tr}Ī .

To prove items (i) and (ii) is trivial.
Now we prove item (iii): First, we denote {tr}Ī

by {t′}. Observe that, according to the definition
of the GL-transformation, body+(s′) = body+(s),
body+(t′) = body+(tr) and head(s′) = head(s) =
head(t′) = head(tr) = head(r).

Moreover, by virtue of both Facts 1 and 2, it
holds that body+(tr) ⊆ body+(s) ∪ F{r}. Thus, if
body+(s) ⊆ I, then body+(tr) ⊆ body+(s)∪F{r} ⊆
I ∪ F{r} ⊆ Ī ⇒ head(tr) = head(s) ⊆ I ⊆ Ī.
Hence, it holds that body+(t′) ⊆ Ī ⇒ head(t′) ⊆ Ī,
i.e. Ī is a model of {tr}Ī .

(⇐). Assume that, by contradiction, ∃s′ ∈
(Dep(P)〈I,D〉)I | {s′} = ({r}〈I,D〉)I and I is not
a model of {s′}. Thus, it is body+(s′) ⊆ I ⇒
head(s′) 6⊆ I.

By virtue of both Facts 1 and 2, it is easy to
see that body+(t′) ⊆ Ī ⇒ body+(s′) ⊆ I, where
{t′} denotes {tr}Ī . According to the hypothesis
and by virtue of Fact 2 it holds that body+(tr) ⊆
Ī ⇒ head(tr) ⊆ Ī. Thus, since head(s′) = head(t′),
it holds that, according to the definition of Ī,
head(t′) ⊆ Ī ⇒ body+(s′) ⊆ I ⇒ head(s′) ⊆ I.

Now, we have reached a contradiction. 2

Lemma 2. Given a U-program P and a U-interpre-
tation 〈I, D〉, I is a model of (Dep(P)〈I,D〉)I

iff ∃F ⊆ FP | Ī = I〈I,D〉 ∪ F is a model of
(ΓD(Dep(P)))Ī .

Proof. (⇒). Assume J = {r ∈ Dep(P) |
{r}〈I,D〉 6= ∅} and Y = {(⋃r∈J ΓD({r}))Ī}, by
virtue of Lemma 1 there exists F =

⋃
r∈J F{r}

such that F ⊆ FP ∧ Ī is a model of Y , where
Ī = I〈I,D〉∪F . Now we have to prove that ∀u ∈ Z,
where Z = (ΓD(Dep(P)))Ī \ Y , if body+(u) ⊆ Ī,
then head+(u) ⊆ Ī.

First, observe that ∀u ∈ Z there exists r ∈
Dep(P) such that {r}〈I,D〉 = ∅. Then, by virtue
of Fact 1, there exists fr,k ∈ body+(u) such that
there exists ck ∈ (body−(r) ∩ D). Moreover, by
virtue of Fact 2, since ck ∈ D, then fr,k 6∈ Ī. As a
consequence, body+(u) 6⊆ Ī.

(⇐). Assume the ASP programs J = {r ∈
Dep(P) | {r}〈I,D〉 6= ∅} and Y = {(⋃r∈J ΓD({r}))Ī},
by virtue of Lemma 1, if Ī is a model of Y ,
then I is a model of JI . Now, observe that
Dep(P)〈I,D〉 = J . As a consequence it holds
that Y = (ΓD(Dep(P)))Ī . Thus, since Ī is a
model of (ΓD(Dep(P)))Ī , then Ī is a model of
(Dep(P)〈I,D〉)Ī . 2

Lemma 3. Given a U-program P and a U-interpre-
tation 〈I,D〉, I is a model of (P〈I,D〉)I iff ∃F ⊆
FP | Ī = I〈I,D〉 ∪ F is a model of (ΓD(P))Ī .

Proof. Since P = Ind(P)∪Dep(P), it is also, ac-
cording to the definition of the GL-transformation
of P w.r.t. I, it holds that PI = (Ind(P ))I ∪
(Dep(P ))I .

Now, it is ΓD(P) = Γ(Ind(P )) ∪ ΓD(Dep(P )).
Thus, the GL-transformation of ΓD(P) w.r.t. I is
(ΓD(P))I = (Γ(Ind(P )))I ∪ (ΓD(Dep(P )))I .

Since the following hold: (1) I ⊆ Ī and (2)
(according to the definition of Γ()) Γ(Ind(P)) =
Ind(P), then it is easy to see that I is a model of
(Ind(P))I iff Ī is a model of (Γ(Ind(P)))Ī .

Moreover, by virtue of Lemma 2, I is a model
of (Dep(P))I iff Ī is a model of (Γ(Dep(P)))Ī .
Thus I is a model of PI = (Ind(P))I ∪ (Dep(P))I

iff Ī is a model of (ΓD(P))Ī = (Γ(Ind(P)))Ī ∪
(Γ(Dep(P)))Ī . 2

Now we can state the equivalence between the
set of U-answer sets of a U-program P and the set
ASf (ΓD(P)).

Theorem 1. Given a U-program P and a U-
interpretation 〈I, D〉 for P, 〈I, D〉 is a U-answer
set of P iff I〈I,D〉 ∈ ASf (ΓD(P)).
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Proof.
First, (i) observe that according to Definition 8,

a given U-interpretation 〈I, D〉 is a U-answer set
of P if I ∈ AS(P〈I,D〉), and (ii) recall that
ASf (ΓD(P)) is the set including all answer sets
of ΓD(P) where all literals fr,k (∀r, k) have been
removed.

Now, it is easy to see that to prove Theorem 1
is equivalent to prove that given a U-program P
and a U-interpretation 〈I, D〉, I ∈ AS(P〈I,D〉) iff
∃F ⊆ FP | Ī ∈ AS(ΓD(P)), where Ī = I〈I,D〉∪F .

(⇒). Assume, by contradiction, that ∀F ⊆
FP , Ī 6∈ AS(ΓD(P)).

Then, it holds that either

(i) Ī is not a model of (ΓD(P))Ī , or
(ii) ∃J ⊂ Ī | J is a model of (ΓD(P))J .

In case (i), by virtue of Lemma 3, it holds
that I is not a model of (P〈I,D〉)I , and then
I 6∈ AS(P〈I,D〉). Thus we have reached a contra-
diction.

In case (ii) it must be the case that F ⊆ J
because it is ∀F ⊆ FP , Ī 6∈ AS(ΓD(P)). Also it
must be {imp(a) | a ∈ D} ⊆ J , because D is fixed.

Then it holds that J = I〈I′,D〉∪F such that I ′ ⊂
I and, by virtue of Lemma 3, it is the case that
I ′ is a model of (P〈I′,D〉)I′ , then it must be that
I 6∈ AS(P〈I,D〉), which contradicts the hypothesis.

(⇐). Assume, by contradiction, that the follow-
ing holds: I 6∈ AS(P〈I,D〉).

Thus it holds that either

(i) I is not a model of (P〈I,D〉)I , or
(ii) ∃J ⊂ I | J is a model of (P〈J,D〉)J ,

Concerning item (i), it is easy to see that Ī 6∈
AS(ΓD(P)), which contradicts the hypothesis.

Concerning item (ii), by virtue of Lemma 3 J̄ =
(I〈J,D〉 ∪ F ) ⊂ Ī is a model of (ΓD(P))J̄ .

Thus Ī 6∈ AS(ΓD(P)), which contradicts the hy-
pothesis. 2

5. Effectiveness of our Approach

The aim of this section is to show that our pro-
posal gives a concrete benefit to the encoding ca-
pability of the ASP programmer in real cases. We
start by observing that, as the translation above
uses status information about imperceptibleness in

the form of the predicate imp(s), for a given sen-
sor s, one could think that an encoding that uses
directly ASP and assumes the availability of such
a predicate leads the programmer to the same con-
clusion as the usage of U-programs. If so, our pro-
posal would be trivial. Fortunately, this is not the
case. Indeed, in general, the direct-ASP encoding
using the predicate imp, produces programs lit-
tle declarative. Thus, in other words, the language
extension here proposed provides the programmer
with an abstraction layer more than plain ASP,
oriented to the case of possible imperceptible sen-
sors. We show the above claim by a simple exam-
ple, but the reader can easily generalize this ar-
gumentation by considering all (possibly complex)
cases in which a number of underlined literals oc-
cur in the bodies of the rules. The example is the
U-program P = {r′′1} shown in Section 2.2 (note
that rules r2 and r3 are not relevant in this context
since they are not U-rules):

r′′1 : stop engine ← gps, lighthouse

It is easy to see that any direct ASP encoding
using the predicate imp, basically consists in some
slight variation of the translation of the program P
done according to Algorithm 1, that is the program
Γ(P):

stop engine← fr′′1 ,1, fr′′1 ,2

fr′′1 ,1 ← lighthouse
fr′′1 ,1 ← imp(lighthouse), not ¬lighthouse
fr′′1 ,2 ← gps
fr′′1 ,2 ← imp(gps), not ¬gps

Evidently, Γ(P) is not only intolerably less
declarative than P, but also time-wasting to be
written. Moreover, we observe that the size of the
translation grows with the number of underlined
literals occurring in P. Therefore, the above con-
siderations allow us to confirm the effectiveness of
our approach.

6. Related Work

The issue of action oriented perception by an
agent/robot (possibly with noise from sensors) has
been investigated by many authors from the area
of Cognitive Robotics. Most of them focus on the
integration of sensing actions into the situation
calculus [17], event calculus [20,21] or similar logic-
based frameworks [4,5].
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A general introduction to perception can be
found in [17].

Cognitive Robotics has typically adopted one of
two views of perception [21]. On the one hand,
perception is considered as a black-box process,
whereby a sensing action turns raw data from sen-
sors into fluents [13].

On the other hand, perception is a passive pro-
cess, whereby the robot’s model of the world is up-
dated as a side-effect of its physical actions [20].
From the perspective of logic-based agents/robots,
the issue of perception in a noisy environment has
been covered in [19,18,1,20].

In [19], a logic program gives the consequence of
choices made by agents that sense and act within
the framework of independent choice logic. Though
sensors may be noisy, unreliable or broken, agents
consider only their output values and false posi-
tives are modelled by means of probabilities. In
[18], a model for noisy sensors and actuators, based
both on logic programming and a continuous ver-
sion of probabilistic Horn abduction, is sketched.
In [1], uncertainty is modelled by assigning a prob-
ability to the agent’s beliefs about the state of the
world. In [20], noise from sensors and actuators is
captured using non-determinism, then abduction
is used to supply possible explanations of incoming
sensor data.

7. Conclusions

In this paper we extend ASP programs for tak-
ing into account possible perception failure of sen-
sors. We have shown by examples that the lan-
guage is very suitable for the above purpose. More-
over, we have defined the semantics of our lan-
guage in an answer-set fashion and we have given a
linear-time algorithm, allowing us to translate any
U-program into an equivalent ASP program. This
makes our programs easily executable on existing
systems that efficiently implement answer set pro-
gramming.
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