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Abstract

The prediction of network traffic characteristics helps in understanding this complex phenomenon and enables a number of practical
applications, ranging from network planning and provisioning to management, with security implications as well. A significant
corpus of work has so far focused on aggregated behavior, e.g., considering traffic volumes observed over a given time interval.
Very limited attempts can instead be found tackling prediction at packet-level granularity. This much harder problem (whose
solution extends trivially to the aggregated prediction) allows a finer-grained knowledge and wider possibilities of exploitation. The
recent investigation and success of sophisticated Deep Learning algorithms is now providing mature tools to face this challenging
but promising goal.

In this work, we investigate and specialize a set of architectures selected among Convolutional, Recurrent, and Composite Neural
Networks, to predict mobile-app traffic at the finest (packet-level) granularity. We discuss and experimentally evaluate the prediction
effectiveness of the provided approaches also assessing the benefits of a number of design choices such as memory size or multi-
modality, investigating performance trends at packet level focusing on the head and the tail of biflows. We compare the results
with both Markovian and classic Machine Learning approaches, showing increased performance with respect to state-of-the-art
predictors (high-order Markov chains and Random Forest Regressor). For the sake of reproducibility and relevance to modern
traffic, all evaluations are conducted leveraging two real human-generated mobile traffic datasets including different categories of
mobile apps. The experimental results witness remarkable variability in prediction performance among different apps categories.
The work also provides valuable analysis results and tools to compare different predictors and strike the best balance among the
performance measures.

Keywords: Android apps, encrypted traffic, deep learning, mobile apps, multimodal learning, multitask learning, traffic prediction.

1. Introduction

The clear understanding of the processes occurring in net-
works is paramount for multiple stakeholders, including oper-
ators, who aim at the full visibility required by both network
management and security [1, 2]. Modeling and predicting net-
work traffic is of the utmost importance to understand traffic
peculiarities and properly manage it based on its characteris-
tics. These tools are fundamental to enforce traffic engineering,
perform network planning, optimization, provisioning & main-
tenance, carry out resource allocation and load balancing, man-
age the QoS, profile user activities, identify anomalies, emulate
real traffic for testing purposes, etc.

In practice, the processes to develop such tools have to face
the challenges introduced by the nature of the traffic that flows
across today’s networks. In fact, operators have experienced in
the last years tremendous growth of the traffic to be managed in
their networks, mostly generated by mobile devices [3].

For instance, according to the latest Ericsson mobility re-
port [4], between Q3 2019 and Q3 2020 (a time-frame including
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the spread of the current pandemic situation), mobile data traffic
grew 50%, driven by both the rising number of smartphone sub-
scriptions and the increasing average data volume per subscrip-
tion fueled primarily by video content. The report forecasts
that mobile subscriptions will reach 8.8 billions by 2026, cor-
responding to a mobile data traffic of 226 exabytes per month
against the 50 exabytes at the end of 2020. In more detail, it
is forecasted that the share of video traffic, currently account-
ing for 66% of all mobile data traffic, will increase to 77% in
2026. Such a huge trend exacerbates the need for accurate mod-
eling and predictability of network traffic generated by mobile
devices at fine grain.

However, recent contributions to mobile-traffic prediction
mainly focused on traffic at an aggregate scale, both in time (in
the order of minutes) and in the nature of traffic (mixing traf-
fic sources, connections, and services) [5, 6, 7, 8]. Opposed to
this, a number of problems could benefit from a finer granular-
ity, where the finest is represented by packet-level. According
to the literature, such an approach results particularly attractive
because of its conciseness, flexibility, and its fundamental na-
ture [9]. Additionally, the corresponding applications include
all current uses for coarser-grain (aggregated) predictions as a
special case. This viewpoint is also motivated by the recent in-
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terest of a global network solution provider1. In fact, research
activities in packet-level modeling and prediction are aimed at
providing the tools to respond to the real-time needs dictated
by rapidly-changing traffic and network conditions. Indeed,
per-packet analysis is able to capture traffic peculiarities and
variations at micro-scale, which would not be visible when per-
forming analysis in an aggregated fashion. Notably, this level of
granularity also reflects modern Software-Defined Networking
approaches, which manage traffic rules (match-action) at packet
level and aim at per-packet consistency2 in network manage-
ment [10].

Such fine granularity requires more advanced approaches
than those usually applied for aggregated network traffic. In
fact, the implementation of effective approaches for packet-
level traffic characterization and modeling must overcome a
number of significant challenges. These issues encompass
traffic encryption (with the broad adoption of TLS or other
protocols, such as gQUIC), extreme dynamicity and com-
plexity of mobile traffic (with apps weekly updated, potential
device/OS/app-version diversity [11, 12], etc.), as well as the
lack of public datasets to work with [13].

By extensive research of the related scientific literature, we
found recent works aiming at predicting mobile traffic volumes
in a given geographical area and dealing with traffic aggregates:
despite addressing recent mobile data traffic prediction with
advanced methods, these works refer to significantly different
phenomenon and problem. We were not able to find a recent
proposal or evaluation for packet-level prediction of traffic gen-
erated by mobile (and video) apps. Hence, this timely and hard
problem remains an open challenge, and even well-established
modeling approaches must be re-evaluated and adapted (or pos-
sibly superseded) facing this new scenario.

In this work, we aim at investigating the adoption of cutting-
edge Deep Learning (DL) methodologies to address the prob-
lem of predicting at fine grain (i.e. at packet level) the net-
work traffic generated by mobile devices. In detail, we focus
on traffic produced by both generic mobile apps (such as those
for social, music and audio, and shopping) as well as mobile
video apps (video on-demand, video call, short video sharing,
and cloud VR) according to the growing interest collected by
these apps in the last period. Prompted by the interest of a
global network solutions provider, we investigate the applica-
bility of multitask DL architectures to packet-level prediction
of network traffic generated by mobile apps, as collected in
two human-generated and reliably-annotated datasets. Extract-
ing from traffic traces multimodal features that are accessible
also in the common case of encrypted traffic (e.g., informa-
tion about payload length, inter-arrival times, and TCP flags)
we feed a number of state-of-the-art architectures covering the
most promising approaches for time series prediction such as
Convolutional Neural Networks, Recurrent Neural Networks,
and more complex architectures. By designing and deploying
a thorough evaluation setup, the prediction performance of the

1NDA prevents the disclosure of further details.
2Each packet flowing through the network will be processed according to

a single network configuration.

proposed DL-based approaches is compared against state-of-
art Markovian and Machine Learning (ML) strategies. As we
find that no silver-bullet solution emerges, we discuss the differ-
ent aspects of the problem (app specificity, biflow initial/ending
part) and of the solutions (architecture complexity, memory
depth, training procedure, differential Markov analysis), so as
to provide the most information and guidance in selecting the
approach.

Hence, the contributions of this paper can be summarized as
follows:

• we predict the traffic generated by mobile apps at packet-
level by means of multitask Deep Learning architec-
tures, investigating the impact of packet directions, pay-
load lengths, and inter-arrival times. Indeed, the adop-
tion of multitask learning enables the solution of multi-
ple prediction problems (associated to corresponding traf-
fic parameters) via the design of a single DL architecture.
Hence, to justify this choice from the performance view-
point, we preliminarly evaluate the benefits of different
design choices leading to single-modal single-task, multi-
modal single-task, and multimodal multitask architectures
in terms of prediction performance as well as model com-
plexity;

• the proposed family of approaches is compared with a rel-
evant set of baselines, ranging from naïve ones to those
based on (i) multimodal high-order Markov Chains and
(ii) Machine Learning;

• we evaluate the impact of the memory-window size on pre-
diction performance, and we also investigate the possible
advantage obtained in using exogenous inputs taken from
the traffic data, such as the TCP window sizes, the TCP
flags, and the payloads of the transport-layer;

• we analyze the performance of the devised predictors at
fine scale, focusing on performance trends on the head and
the tail of the traffic object considered (i.e. the biflow);

• we provide a first attempt of interpretability of the con-
sidered multitask DL predictors, by means of distillations
toward fixed-order Markov Chains [14];

• we perform all analyses on the public dataset Mirage-
2019 and the newly-collected Mirage-Video (to be re-
leased), adopting the same guidelines as specified in [13],
to foster reproducibility.

The paper is organized as follows. Section 2 surveys works
closely related to mobile-app network traffic analysis and pre-
diction, positioning our work against past contributions. Sec. 3
describes the considered traffic prediction methodology; the
considered experimental setup is described in Sec. 4. Sec. 5
reports the experimental evaluation performed along with in-
depth design investigation; finally, Sec. 6 provides conclusions
and future perspectives.
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Table 1: Network traffic prediction techniques adopted in related
works.

Acronym Technique

ARIMA AutoRegressive Integrated Moving Average
ARMA AutoRegressive Moving Average
ARAR AutoRegressive AutoRegressive
AVP Average Value Predictor
CV Current Value
CNN Convolutional Neural Network
ConvLSTM Convolutional LSTM
DCRNN Diffusion Convolutional Recurrent Neural Network
DQN Deep Q-Network
DSANet Dual Self-Attention Network
ESN-DLRS Echo State Network with Double Loop Reservoir Structure
FARIMA Fractional Auto-Regressive Integrated Moving Average
GRU Gated Recurrent Unit
HMM Hidden Markov Model
HW Holt–Winters
JNN Jordan Neural Network
k-NNR K-Nearest Neighbors Regressor
LR Linear Regressor
LSTM Long Short-Term Memory
MA Moving Average
MMG Markov Modulated Gamma
MC Markov Chain
MLP MultiLayer Perceptron
MS-GPR Multi-Step Gaussian Process Regression
PMF Persistence Model Forecast
RFR Random Forest Regressor
RBF Radial-Basis Function
RCLSTM Random Connectivity LSTM
RNN Recurrent Neural Network
SAE Stacked AutoEncoder
STL Seasonal-Trend decomposition procedure based on Loess
SVR Support Vector Regressor
ZP Zero Predictor

2. Related Work

Forecasting the evolution of network traffic has significantly
attracted the interest of the scientific community, which ad-
dressed prediction tasks in different flavors and with respect to
a number of different practical networking problems. A selec-
tion of the most-related works are summarized in Tab. 2, where
we highlight their main characteristics. Accordingly, hereafter
we discuss them and a more ample set of related works in terms
of the prediction granularity (Sec. 2.1), the application context
(Sec. 2.2), and the methodology (Sec. 2.3); the section ends
with the positioning of our work with regards to the discussed
literature (Sec. 2.4).

2.1. Coarse-grained (Aggregated) Prediction

A remarkable amount of works design techniques aimed at
predicting the evolution of traffic aggregates (e.g., volumes or
packet rates) over time. In these cases, such studies do not focus
on fine-grained inputs to be fed to the proposed models (column
FG-In in Tab. 2), but rather implement pre-processing strategies
to obtain traffic aggregates at different time-resolutions rang-
ing from ≤ 1s [16, 19], to few seconds [15, 19, 24], min-

utes [5, 17, 20, 22, 27], or even hours and days [5, 17, 28].
Such coarse-grained inputs are exploited for a wide range of
prediction problems, varying in both the pursued goals and
the adopted approaches. Indeed, predicting aggregated traffic
predates fine-grain predictions, and even new (DL) approaches
have been first applied to this arguably simpler problem. The
most recent works dealing with prediction of mobile traffic con-
sider geographic distribution of data volumes as observed at
base stations, e.g. in terms of number of data calls, aggre-
gated with caps at 5MB or 15 minutes duration [5, 6, 7], or
at the 3G/4G antennas for 5-minute intervals, differentiating
the data transfer (i.e. the sum of upstream and downstream
traffic) by application category [8]. An early work along this
line is provided by Oliveira et al. [17], comparing performance
of simple Neural Network approaches (MLP and Jordan Neu-
ral Network) to Deep ones (SAE and deep MLP), showing the
best results for the JNN (hence, not one of the DL models). A
complex approach (a meta-learning adversarial scheme) is pro-
posed by He et al. [32] for short-term prediction of aggregated
traffic volume, to inform cellular downlink scheduling and sleep
scheduling in user mobile device. Notably, a number of works
address the problem in relation to traffic matrices [21, 27, 30].
In the latter cases, the geographical (or topological) distribution
of sources and destinations is also taken into account. Hence,
the prediction problem benefits from a spatially-characterized
information, other than leveraging the (sole) temporal informa-
tion.

While we have taken into account the proposed methods for
our analysis, we cannot directly compare with this body of re-
sults due to the different context and nature of the predicted
values.

2.2. Fine-grained Prediction and Video Traffic
Other works aim at predicting the evolution of finer-grained

aspects characterizing the traffic (i.e. not aggregated). To the
best of our knowledge, fine-grained prediction proposals mostly
consider video traffic, and specifically video-frame characteris-
tics (i.e. application-layer elements) to be predicted [16, 18, 23].
Some works make assumptions about—or try to model—
the video-encoding scheme adopted (e.g., considering that the
video is generally split into segments each containing a few
seconds of content) or the download strategies the clients im-
plement [34]. Some proposals analyze the video traffic at frame
(application) level, also making assumptions also about the spe-
cific group-of-picture (GOP) patterns adopted for the encoding
of the video flow [18, 23, 35, 36, 37].

On the other hand, video traffic is often investigated also
in an aggregated fashion. In more general terms, in line with
the increasing adoption of the Internet to convey multime-
dia traffic, many efforts were prompted to characterize and
profile video traffic (e.g., identifying the specific streaming
phase) [38, 39] and methodologies for predicting the character-
istics of adaptive-streaming traffic in real time were extensively
investigated in a large body of works [35, 36, 37, 40]. These
works are generally aimed at understanding the peculiarities
of this traffic (e.g., the streaming strategies adopted [19, 38]),
to support traffic engineering and network planning activities.
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Table 2: Related works performing prediction of different network traffic parameters and by means of different techniques. The works are reported
in chronological order. The last row summarizes the present paper. Meaning of columns and acronyms is reported hereinafter.
Mobile: Mobile traffic data. Video: Video traffic data.
Fine-Grain Inputs (FG-In). Fine-Grain Outputs (FG-Out). Exogenous Inputs (Ex-In). Multi-Task (MT). Open Data (OD).
Experimental Validation (EV): Emulation (E), Real (R), Simulation (S).
Parameters: Call Detail Record (CDR), Inter-Arrival Time (IAT), Packet Direction (DIR), Packet Size (PS), Payload Length (PL).
Techniques: for acronyms’ definition refer to Tab. 1; + symbol indicates hybrid architectures.
 present, # lacking, G# partial.

Paper Mobile Video FG-In FG-Out Ex-In MT EV OD Parameters Techniques

A. Dainotti et al., 2008, Elsevier ComNet [9] # #   #  R  PS & IAT HMM

M. Barabas et al., 2011, Proc. IEEE ICCP [15] # # # # #  R  Traffic Volume MLP

C. Katris and S. Daskalaki, 2015, Elsevier ESWA [16] #  G# G# # # R  Traffic Volume
Frame Size

FARIMA,
RBF, MLP

T.P. Oliveira et al., 2016, Inderscience IJBDI [17] # # # # # # R  Traffic Volume MLP, JNN, SAE

S. Tanwir et al., 2016, Proc. IEEE ICNC [18] #    # # R  Frame Size HMM, MMG

A. Biernacki, 2017, Springer Multimed Tools Appl [19] #  # # # # E # Video Bw ARIMA, FARIMA,
MLP, RBF

X. Cao et al., 2017, IEEE Access [20] #  # # # # R # Traffic Volume
2D-CNN+GRU,
ARIMA, SVR,

RNN, GRU

C. Huang et al., 2017, Proc. IEEE PIMRC [5] † # # # #  R  † Data CDR count
LSTM, 3D-CNN,
3D-CNN+LSTM,

ARIMA, MLP

A. Azzouni et al., 2018, Proc. IEEE NOMS [21] # # # # # # R  Traffic Volume LSTM, MLP,
ARMA, ARAR, HW

A. Bayati et al., 2018, IEEE COMML [22] # # # # # # R  Traffic Volume
MS-GPR,

ARIMA, FARIMA,
LSTM, ConvLSTM

A. Kalampogia and P. Koutsakis, 2018, IEEE TMM [23] #    # # R  B-frame Size LR, MC

N. Ramakrishnan and T. Soni, 2018, Proc. IEEE ICMLA [24] # # # # # # E/R G# Traffic Volume
Packet Distr

GRU, LSTM, RNN,
CV, MA, ARIMA

J. Zhou et al., 2018, IEEE Access [25] # # # # # # R  Traffic Volume ESN-DLRS

D. Andreoletti et al., 2019, Proc. IEEE NI [26] # # # # # # R  Traffic Volume
DCRNN,

MLP, LSTM, CNN,
CNN+LSTM

Y. Hua et al., 2019, IEEE ComMag [27] # # # # # # R  Traffic Volume RCLSTM, LSTM,
ARIMA, SVR, MLP

Y. Huo et al., 2019, Proc. IEICE APNOMS [28] # # # # # # R  Traffic Volume STL+Seq2Seq-LSTM

A. Lazaris et al., 2019, Proc. IFIP/IEEE IM [29] # # # # # # R  Traffic Volume Clustering+LSTM

V. Le et al., 2019, Proc. IEEE/IFIP IM [30] # # # # # # R  Traffic Volume ConvLSTM,
ARIMA, LSTM

N. Segolene et al., 2019, IEEE Access [31] # # # # # # S/R G# Traffic Volume LSTM, ARIMA

Q. He et al., 2020, IEEE JSAC [32] #  # # # # R # Dw Bytes PMF, ZP, AVP,
LSTM, DQN

G. Aceto et al., 2021, IEEE TNSM [14]  #   #  R  DIR, PL, & IAT HMM, MC,
LR, k-NNR, RFR

L. Nie et al., 2021, IEEE TII [33] # # # # #  R  Traffic Volume LSTM

This Paper       R  DIR, PL, & IAT
CNN, LSTM, GRU,
SeriesNet, DSANet,

MC, LR, k-NNR, RFR

† The work is included as it proposes advanced DL methods, although applied to a different mobile traffic prediction problem (geographic distribution of data calls).
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In some cases, the proposals specifically aim at informing the
dynamic resource allocation mechanisms (e.g., for bandwidth)
or to support adaptive video-streaming and congestion-control
algorithms [37, 41]. Multiple-layers analyses have been con-
ducted as well: Katris and Daskalaki [16] investigate the effec-
tiveness of forecasting models regardless the specific abstrac-
tion layer, i.e. considering video-frame sizes as well as aggre-
gated volumes and throughput. Differently, Du et al. [41] take
into account traffic intensity and channel state in order to allo-
cate satellite transmitting power.

In other cases, the proposed traffic estimators only focus on
data link and network layers information. For instance, Tsili-
mantos et al. [39] consider parameters such as streaming rate,
volumes, burst patterns or flow duration to support traffic pro-
filing methods. Other works—rather than aiming at modeling
and predicting the sequences of video-frame sizes over time—
address the prediction problem focusing on the throughput of
the video flows [19, 23, 40].

To the best of our knowledge, a more limited body of works
address prediction at fine grain focusing just on network-layer
(i.e. non application-related) aspects, based on packet-level
analysis. Dainotti et al. [9] propose application-specific HMMs
to concisely model Internet traffic sources based on inter-packet
time and packet size. Their proposal is evaluated using real traf-
fic and specifically considering SMTP, HTTP, online gaming,
and online messaging. More recently, Aceto et al. [14] propose
HMMs and Markov Chains to characterize and predict network
traffic generated by mobile apps. While the work also proposes
a reconstructing heuristic to infer the application-layer message
size, the input used to train the model and perform a prediction
are all strictly related to network layer (namely being the pay-
load size, the inter-arrival time, and the packet direction).

2.3. Prediction Approaches
Focusing on the prediction strategies adopted by these works,

from Tab. 2 it is evident that the interest of the scientific com-
munity is more and more captured by the rise of ML- and
DL-based methodologies. While statistical approaches such
as ARMA, ARIMA, or FARIMA [5, 16, 19, 21, 22, 30, 31],
RFR [14], or SVR [20, 27] are adopted, they are more of-
ten considered as a performance baseline to evaluate ML and
DL. Among the latter, CNN [5, 20, 26], LSTM [5, 21, 22, 24,
26, 27, 28, 29, 30, 31, 32], and GRU [20, 24] or their com-
binations [5, 20, 26] are often reported to achieve better per-
formance than selected baselines. Accordingly, we build on
these performance results and investigate these promising ap-
proaches. Table 1 summarizes the techniques adopted for traf-
fic prediction found in the reviewed literature together with the
associated acronyms, for convenience.

Based on our literature survey, only a limited number of ex-
amples exist where either emulation [19, 24] or simulation [31]
is adopted (column EV in Tab. 2). Most of the proposals are
evaluated leveraging real data. Due to the critical role played
by data that are fundamental not only in validating and com-
paring the proposals, the considered works mostly rely on open
datasets (column OD in Tab. 2). This notwithstanding, works
that go against this general trend can be found [19, 20, 32].

2.4. Positioning of Our Work

In our study, we aim at the finest-grained prediction: packet-
level. Accordingly, rather than aggregated volumes or rates
(e.g., [32]), our proposal aims at forecasting per-packet traf-
fic characteristics such as (i) packet directions, (ii) payload
lengths, and (iii) inter-arrival times. Note that the aggregated
prediction problem is a coarser one and that following our pro-
posed approach, aggregated predictions could be derived by
post-processing the outputs obtained via the proposed models.

In terms of granularity and viewpoint, the closest works
to ours (as discussed in Sec. 2.2) are represented by [9, 14].
Specifically, the former work focuses on the (preliminary) as-
pect of traffic modeling of unidirectional flows (i.e. neglecting
the advantage obtained by taking into account request-response
interaction) by means of HMMs on desktop-generated (i.e. non
mobile-app generated) traffic.

Conversely, the focus of the recent work [14] is on bidirec-
tional flows generated by mobile apps, similarly to this paper.
Nonetheless, the above work is mainly devoted to traffic mod-
eling and characterization, and therein the prediction task is
only tangentially touched. Indeed, Markov and ML models pro-
posed therein are only preliminarily evaluated for the prediction
task on Mirage-2019. On the contrary, in this work we focus
entirely on the prediction task, and we propose novel multitask
DL approaches to accomplish this objective. Still, for the sake
of a complete comparison, the predictors originating from the
models in [14] are included in the baselines later introduced in
Sec. 4.3. Furthermore, the prediction performance is analyzed
in depth via a per-packet-index evaluation. Finally, a larger ex-
perimental evaluation is performed on two datasets, one com-
prising generic mobile apps (Mirage-2019) and another collect-
ing mobile video apps (Mirage-Video).

While focusing on the prediction of packet directions, pay-
load lengths, or inter-arrival times, in addition to consider the
historical time series of the parameters we aim to predict, dif-
ferently than all the listed literature (column Ex-In in Tab. 2),
we also evaluate the benefits deriving from the adoption of ex-
ogenous inputs (such as TCP flags and TCP window size, or
transport-layer payload).

Considering the centrality of video traffic and related appli-
cations in today’s networks, we (also) investigate and evaluate
prediction strategies for video traffic prediction. Indeed, video
traffic characteristics have been investigated at several levels of
abstraction and considering diverse granularity levels. Differ-
ently than proposals that exploit application-layer information
to model and predict video traffic (e.g., [16]), our methodol-
ogy does not rely on information other than that related to the
IP layer, which is always available also in case typical encryp-
tion strategies are put in place. The proposed approach (simi-
larly to [39]), is not based on any specific assumption related to
the content of the datagrams composing network flows, is more
general, and can be applied to network traffic regardless of the
specific application generating the traffic.
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multivariate time series of length Ni extracted from the biflow Bi; W is
the size of the memory window (input), n+1 is the index of the vector
value to be predicted (output).

3. Traffic Prediction Methodology

The objective of this work is to predict network traffic gen-
erated by a mobile app at the finest (packet-level) granularity.
The approaches we adopted for traffic prediction leverage real
mobile-app traffic datasets. In detail, labeled traffic is required
(i.e. information about the specific app that generated the traffic
is needed) to support the training of the models and evaluate
their prediction capability. Beyond this, the proposed method-
ology is agnostic with respect to the specific traffic to be pre-
dicted and can be thus generally applied as is to other traffic
(e.g., newer mobile-app traffic). For our experimentation, we
took advantage of two traffic datasets of mobile apps (a general-
ist one and one specific for video apps) obtained via the Mirage
architecture [13], as detailed in later Sec. 4.1.

Figure 1 depicts the workflow based on the proposed method-
ology for the prediction of mobile-app traffic via DL ap-
proaches. After collecting the traffic generated by handheld

devices, it is pre-processed in order to extract the traffic pa-
rameters of interest (see Sec. 3.2) and build the data structure
to feed the models (see Sec. 3.3). Details about the consid-
ered DL models are provided in Sec. 3.4. Before describing
the blocks constituting the proposed architecture, we provide
the formulation of the specific problem we aim to resolve in the
next Sec. 3.1.

3.1. Formulation of the Prediction Problem

Traffic prediction can be conducted at different granularity
levels that reflect how network packets are aggregated, namely
which is the Traffic Object (TO) constituting the elementary unit
for the prediction task [14]. In detail, we aggregate packets
in bi-directional flows (biflows), defined by the quintuple (IP
src, IP dst, port src, port dst, protocol) consid-
ering both directions of communication (i.e. the source and the
destination pairs are interchangeable).

Considering the sequence of packets of the biflow, the traffic
parameters associated to each packet constitute a multivariate
time series, whose temporal index is the packet order-of-arrival.
Given a biflow up to its n-th packet, the objective of this work is
to predict P traffic parameters associated to the (n+1)-th packet.
These parameters are collected in the vector xn+1 and constitute
the outputs of the considered DL architectures. The above pre-
dictions are based on the observation of previous values of the
same traffic parameters (the latest observation represented as xn

for the n-th packet). More in general, the observations refer to
a memory window of size W, which gathers the observations
of the parameters for the W most recent packets. These obser-
vations, namely xn, . . . , xn−(W−1), are used as inputs of the ar-
chitectures. The size of the memory window W determines the
memory that the model needs to retain to make a prediction. On
one hand, a higher value of W typically implies higher com-
plexity (as the total number of input values is proportional to
W), with repercussions on memory consumption, training time,
and execution time. On the other hand, an increase of the pre-
diction window can provide benefit in prediction performance,
by allowing the capitalization of longer-range dependence in
the considered traffic parameters. In addition, we also evalu-
ate the benefits obtained when considering exogenous inputs,
namely E further traffic parameters for each packet observed so
far (collected in the vector en for the n-th packet) given as input
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Figure 3: Architectures of considered DL-based approaches for traffic prediction: (a) Convolutional Neural Network (CNN), (b) Recurrent Neural
Network (RNN), (c) DSANet, and (d) SeriesNet. All the architectures are terminated by one dense layer (with sigmoid activation) for each feature
to predict. Hyperparameters of each layer are reported in Tab. 3.

to aid the DL model in the prediction task, but not included in
the set of parameters to be predicted.

Accordingly, the design of a modelM for prediction in our
case specializes into:

x̂n+1 =M(xn, xn−1, . . . xn−(W−1)︸                    ︷︷                    ︸
prev. traffic parameters

, en, en−1, . . . en−(W−1)︸                  ︷︷                  ︸
exogenous inputs

) (1)

Given the multivariate nature of the prediction task considered,
we investigate multitask architectures [42] that jointly address
multiple prediction tasks, one for each of the parameters P con-
sidered.

3.2. Traffic Parameters Extraction and Pre-processing

In this work, we aim at predicting P = 3 traffic parameters.
In detail, we consider the direction (DIR), the payload length
(PL), and the inter-arrival time (IAT) of the packets belonging
to the same biflow, following a common choice for fine-grained
network traffic description [43]. Specifically, the DIR is a bi-
nary value indicating if the packet is downstream or upstream,
whereas the PL is the size (in bytes) of the transport-layer pay-
load. Finally, the IAT (in microseconds) is the time between
the arrival of two consecutive packets. We recall that the above
parameters at preceding instants are also used as inputs in the
memory of length W (see Eq. (1)).

Additionally, as anticipated in Sec. 3.1, for each packet we
consider as (optional) exogenous inputs: the TCP window size
(TWIN) being the size of the TCP congestion window3, the TCP
flags (FLG) encoded as an eight-bit vector denoting the presence
(1) or absence (0) of each flag4, and the L4 payload (PAY) being

3The window size is multiplied by a scaling factor negotiated between
the sender and the receiver (RFC 1323: https://rfc-editor.org/rfc/
rfc1323.txt) and it is set to 0 for UDP packets.

4The TCP flags are—in order—FIN, SYN, ACK, RST, PSH, URG, ECE,
and CWR (RFC 3168: https://tools.ietf.org/html/rfc3168).

the transport-layer raw payload of the first 32 packets of each
biflow arranged in a byte-wise fashion.

Going into details, traffic parameters are extracted from raw-
packet sequences of each biflow which are preliminarly pre-
processed to effectively feed the DL models. Firstly, we remove
zero-payload packets that are assumed to be non-informative
since they only reflect transport-layer mechanisms (e.g., TCP
handshake, pure acknowledgments, etc.) rather than application
behaviors. Consequently, we compute the IATs on the resulting
packet sequences. For the IAT, the minimum granularity is set
to 1µs. Secondly, to remove the effects of outliers in measuring
times, we saturate all the IATs to the 99th-percentile values of
their distributions. In more detail, for the Mirage-2019 dataset,
the 99th-percentile value equals 1.75s, whereas for Mirage-
Video this corresponds to 36.97ms (see later Sec. 4.1). This
represents a first indicator of the peculiarity of mobile-app traf-
fic when used for video-intensive applications and the need for
having two separate datasets for the experimentation.

To effectively exploit DL models we apply scaling proce-
dures to both the main P traffic parameters and the E exoge-
nous inputs. It is worth noticing that parameters represented
as binary values or vectors (i.e. DIR and FLG, respectively) do
not need a scaling procedure. Conversely, we use a min-max
scaler with [min,max] = [0, 1] to scale the PL and IAT within
this range, whereas for the scaling of the TWIN we apply the
quantile transformer. Such a method transforms the TWIN pa-
rameter to follow a uniform distribution, tending to spread out
the most frequent values and reducing the impact of (marginal)
outliers.5 Finally, the PAY parameter (transport-layer payload)
is normalized by dividing each byte value by 255.

5We underline that we have tested the quantile transformer also on PL and
IAT without experiencing any difference in experimental results.
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3.3. Input-Output Construction

Irrespective of the specific ML/DL model, when dealing with
time series a common methodology is applied to construct the
input for the predictor and the respective output for its training
and validation. To this aim, we propose a windowing approach
based on a sliding memory window of size of W and with a unit
stride, as shown in Fig. 2 (detail in the lower half).

Furthermore, the proposed windowing approach is based
on incremental windowing [44]; namely, it leverages
incrementally-sized sets of samples until reaching the pre-
scribed maximum size W of the memory window, after which
the window size remains constant. In this way, the predictions
can be made as soon as the first sample is available, in contrast
to a fixed windowing that relies on a fixed number of samples
inside the memory window and thus needs to collect a num-
ber of samples equal to W before performing a prediction. In
other words, the incremental-windowing approach extends the
fixed-windowing one, enabling to model also the “border ef-
fects” (viz. predict early behaviors). Consequently, to allow
our models to perform an early prediction and also to cope with
biflows having length shorter than W, we apply a (left) zero-
padding up to W samples (see top of Fig. 2). Note that zero
padding is applied to PAY also in the case the windows spans
over packets beyond the 32nd.

As a result, for the generic time instant n, this procedure re-
sults in an input matrix In (of size (E + P)×W) and a prediction
vector xn+1 (of size P, representing the desired output), con-
structed applying the windowing approach described above to
each of the biflows within the considered set (e.g., those that are
generated by the same app). The bottom of Fig. 2 depicts the
resulting structures highlighting with different colors the traffic
parameters, corresponding to one prediction sample. Accord-
ingly, for the ith biflow, with corresponding length Ni, this pro-
cedure generates Ni − 1 prediction samples.

3.4. Deep Learning-based Approaches for Traffic Prediction

In this section, we describe the DL models used to perform
traffic prediction and their training procedure. In particular,
these DL models can be divided into three macro-categories,
namely (i) convolutional, (ii) recurrent, (iii) and composite neu-
ral architectures. We provide the details on both architectures
of DL models employed and related hyperparameters in Fig. 3
and Tab. 3, respectively.

Convolutional Neural Networks (CNNs). The CNNs are DL
models inspired by the functioning of human-being visual
cortex that have found huge applicability in image analysis,
natural-language processing, and, more recently, in traffic anal-
ysis [45]. A CNN consists of a sequence of convolutional lay-
ers, encompassing transition-invariant filters with a certain “re-
ceptive field” that represents their (limited) extent. These filters
are convolved with the input to automatically extract features
from an input region whose dimensions depend on the recep-
tive field. To reduce model complexity and mitigate overfitting,
in a CNN architecture, each convolutional layer is commonly
followed by a pooling layer that performs a down-sampling of

the intermediate representation output of the convolution. Com-
mon choices are max-pooling and average-pooling. Herein,
we consider the CNN architecture depicted in Fig. 3a, whose
hyperparameters (cf. Tab. 3) are set based on state-of-the-art
works [45, 46].

Recurrent Neural Networks (RNNs). The RNNs are DL archi-
tectures, characterized by loopy connections, that recall the val-
ues over time (via a state vector h[t]) of an input sequence
of length T . The most common variants of RNNs are the
Long Short-Term Memory (LSTM) and the Gated Recurrent
Unit (GRU) networks. Both offer a solution to the “short-
term memory” limitation of RNNs—as they can model dy-
namic temporal-behaviors with long-term dependencies—and
can be defined in a bidirectional variant, in which their internal
representation is split into forward and backward directions6.
LSTM and GRU networks are made of elementary components
(the units) having internal mechanisms (the gates) that can reg-
ulate the information flow by learning which values in a time-
sequence are important to recall or forget. The main difference
between LSTM and GRU is that the latter has a simpler struc-
ture than the former (i.e. two vs. three gates), and consequently
it has fewer parameters to train. In the next analyses, we employ
the LSTM and GRU shown in Fig. 3b and detailed in Tab. 3.

Composite Neural Networks. In addition to CNNs and RNNs,
we also investigate DSANet [47] and SeriesNet [48], being
state-of-the-art composite neural networks successfully used
for multivariate time-series forecasting in banking and financial
domains.

The dual self-attention network (DSANet) is a composite DL
architecture proposed in [47] for forecasting multivariate time
series that exhibit dynamically-periodic or non-periodic behav-
iors. Specifically, DSANet utilizes two parallel 1D-CNN-based
components: (i) global temporal convolution and (ii) local tem-
poral convolution that are in charge of embedding each uni-
variate time series composing the multivariate input into two
representation vectors with global (viz. long-term) and local
(viz. short-term) temporal patterns, respectively. Each repre-
sentation of such a univariate time series is given as input to a
self-attention module [49] with residual connections to capture
the dependencies between the extracted representations. The
specific architecture of DSANet is illustrated in Fig. 3c. The
hyperparameters7 are given in Tab. 3.

The SeriesNet [48] is a DL model based on Dilated Causal
Convolutions (DCCs), originally proposed in [50]. Causal con-
volutions ensure that the model does not depend on future time-
steps (i.e. the model preserves the input ordering), whereas
dilated convolutions significantly extend the receptive field of

6We compared the performance of unidirectional and bidirectional ver-
sions (not shown for brevity), and having found equivalent outcomes, we se-
lected the simplest (unidirectional) one.

7Hyperparameters have been tuned based on common values suggested in
state-of-the-art works [47] and validated with a set of experiments not shown
for the sake of brevity.

8



filters by skipping input values with a certain step8. In our anal-
yses, we employ an extended version (with the stacking of two
LSTM layers) of the original SeriesNet proposed in [48], whose
architecture is depicted in Fig. 3d, while the hyperparameters of
each layer are reported in Tab. 3.

Multitask Loss Specification and Training Procedure. DL
methods share the property that the training phase is performed
in an iterative fashion leveraging the stochastic gradient de-
scent (first-order) optimization algorithm (which approximates
the optimal solution) for finding the minimum of a cost (or loss)
function. The training phase is performed leveraging a subset
of size NB of the biflows associated to the considered app, and
constituting the training set T . The latter is formally defined as

T ,
NB⋃
i=1

{
In(Bi), xn+1(Bi)

}Ni

n=1
(2)

In other terms, the training set corresponds to the union of NB

sets, with the ith set containing all the prediction samples as-
sociated to the biflow Bi (of length Ni), obtained according to
the procedure described in Sec. 3.3. For the sake of a com-
pact notation, in what follows we denote the overall number of
samples within T with N. We recall that the considered predic-
tion setup differs from those commonly employed in time-series
prediction which leverage part of past observations to update
the model or to learn a time-series-specific one. Such a setup
would probably get better performance, but its real-world im-
plementation is practically infeasible in online context due to
the complexity related to the fine-grained prediction task and
the sophisticated prediction model considered. On the basis of
these considerations, we have chosen the biflow-based cross-
validation granularity.

Moreover, given the multitask nature of the employed archi-
tectures, the loss function to optimize (viz. minimize) depends
on the specific parameter to predict (viz. the prediction task
to address). In this work, we are concerned with the prediction
of P traffic parameters of the next packet—constituting the out-
puts of the considered DL architectures—collected in the vector
xn+1. Accordingly, we aim to minimize a weighted sum of the
losses of the P prediction tasks considered, namely:

L

(
θshared,

{
θp

}P

p=1

)
,

P∑
p=1

λpLp

(
θshared, θp

)
(3)

Since our architecture is in charge of solving multiple learning
tasks at once, the weight λp represents the preference level of
the pth task in the multitask objective function to be optimized.
In detail, we optimize these weights resulting in λ1 = λ2 = 0.45
and λ3 = 0.10, where p = 1, p = 2, and p = 3 are associated to
the DIR, PL, and IAT prediction tasks, respectively, thus focus-
ing less on the latter. In the above equation θshared collects the
set of parameters associated to the layers shared by the differ-
ent tasks, whereas θp collects the parameters associated to the
task-specific layers of the pth task.

8In a dilated convolution, the filter is applied over an area larger than its
size, corresponding to a zero-dilation of the original filter.

In detail, we aim to minimize the binary cross-entropy loss
function for the prediction of binary DIR:

Lbce
dir (·) , −

1
N

B∑
i=1

Ni−1∑
n=0

xn+1
dir (Bi) log(pn+1

dir (Bi))

+(1 − xn+1
dir (Bi)) log(1 − pn+1

dir (Bi))
}

(4)

Differently, for the prediction of the pth non-binary parameter,
such as PL and IAT, the considered DL predictors are trained to
minimize the Mean Squared Error (MSE) loss, namely:

Lmse
p (·) ,

1
N

B∑
i=1

Ni−1∑
n=1

(x̂n+1
p (Bi) − xn+1

p (Bi))2 (5)

In both Eqs. (4) and (5), we recall that N denotes the total num-
ber of training samples, i.e. the cardinality of T , and Ni the
number of packets of the ith biflow Bi. Additionally, xn+1

dir (Bi)
denotes the DIR traffic parameter associated to the (n + 1)th

packet of the biflow Bi, whereas pn+1
dir (Bi) denotes the predic-

tion probability associated to x̂n+1
dir (Bi) = DW = 1. Simi-

larly, xn+1
p (Bi) denotes the pth traffic parameter associated to the

(n + 1)th time instant of the biflow Bi, whereas x̂n+1
p (Bi) denotes

the corresponding prediction.
We perform the optimization by employing the Adam opti-

mizer [51] with a batch size of 32, a learning rate of 10−3, and
exponential decay rates for the estimates of the first-order and
second-order moments equal to 0.9 and 0.999 (Keras default
values), respectively. Overall, each DL architecture is trained
for 150 epochs. Also, to prevent overfitting we leverage the
early-stopping technique with a patience of 4 epochs and a min-
imum delta of 10−4 measured on the training loss.

4. Experimental Setup

In this section, we define the experimental setup adopted to
conduct our experimental evaluation. We first give the details
on the collected datasets in Sec. 4.1. Then, the evaluation setup
and metrics employed to assess prediction performance are re-
ported in Sec. 4.2. Finally, Sec. 4.3 describes the baselines
against which the DL predictors are compared.

4.1. Datasets Description
The experimental evaluation performed herein relies on two

mobile-app traffic datasets9: Mirage-2019 and Mirage-Video.
The former collects traffic generated by generic mobile apps
(i.e. the set encompasses diversified use cases and purposes),
whereas the latter includes traffic gathered by mobile-apps gen-
erating different kinds of video traffic. Both datasets have been
collected employing the Mirage architecture [13] in the AR-
CLAB laboratory of the University of Napoli “Federico II” by
more than 280 human experimenters that have collaborated on a

9Mirage-2019 is currently available at http://traffic.comics.
unina.it/mirage for reproducibility. Differently, Mirage-Video is planned
to be released in the near future.
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Table 3: Hyperparameters of DL-based architectures for traffic prediction depicted in Fig. 3.

DL Model #TP [k] Layer Details

CNN 441

Conv1
Max Pooling1
Conv2
Max Pooling2
Dense1

Filters: 32, Kernel size: 5, Activation: ReLU
Pool size: 3
Filters: 64, Kernel size: 5, Activation: ReLU
Pool size: 3
Neurons: 128, Activation: ReLU

RNN 164/124 LSTM/GRU Type: Unidirectional, Units: 200, Activation: Sigmoid

DSANet 201

Conv1
Conv2
Max Pooling1
Self-Attention1
Dense1
Self-Attention2
Dense2
Dense3
Dense4

Filters: 30, Kernel size: 10, Activation: ReLU
Filters: 7, Kernel size: 5, Activation: ReLU
Pool size: 3
N: 4, h: 3, dmodel: 7, d f f : 4
Neurons: 128, Activation: ReLU
N: 4, h: 3, dmodel: 7, d f f : 4
Neurons: 128, Activation: ReLU
Neurons: 200, Activation: ReLU
Neurons: 200, Activation: ReLU

SeriesNet 532

DCC1
Conv1
Conv2
LSTM1
LSTM2
Dense1
Dense2

N: 7, Filters: 32, Kernel size: 2, Dilation: 2i, Activation: SELU
N: 7, Filters: 1, Kernel size: 1, Activation: Linear
Filters: 1, Kernel size: 1, Activation: Linear
Type: Unidirectional, Units: 200, Activation: Sigmoid
Type: Unidirectional, Units: 200, Activation: Sigmoid
Neurons: 128, Activation: ReLU
Neurons: 128, Activation: ReLU

#TP stands for Number of Trainable Parameters.
For all DL models, the Convolutional (Conv) layers are one-dimensional.
DSANet: in the N stacked Self-Attention layers (encompassing a multi-head attention and a position-wise feed-forward

network), h denotes the number of attention layers (heads) in multi-head attention, dmodel denotes the dimension of queries,
keys, and values of multi-head attention, and d f f denotes the inner layer dimensionality of the position-wise feed-forward
network [48, 49]. A 10% dropout is applied to each sub-layer composing the convolutional-based components.
SeriesNet: in the DCC layer, the dilation value is set to 2i, with i ∈ {0,N − 1} and N denoting the number of stacked DCC

layers. SELU stands for Scaled Exponential Linear Unit. An 80% dropout is applied after the last two stacked DCC layers
to deal with time series with shorter lengths.

volunteer basis. We have employed three mobile devices (i) Xi-
aomi Mi5, (ii) Google Nexus 7, and (iii) Samsung Galaxy A5
with Android 6.0.1 to collect the traffic generated by generic
and video mobile-apps during the time periods May 2017 - May
2019 and Jun. 2019 - Mar. 2020, respectively.

Along with each mobile-traffic trace in PCAP format, the
Mirage architecture also collects a system log-file with ground-
truth information. The latter allows to reliably label each biflow
with the corresponding Android-package name matching the
related 5-tuple. Specifically, we consider both network-related
system-calls (via strace) and established network-connections
(via netstat), and associate each <IP:port> in the socket de-
scriptor with the name of the Android package that has made
the call or to which the socket belongs (i.e. that is listening on
the <IP:port> pair of the socket). Every capture session in both
datasets refers to the latest version of the app at the time of the
capture.

On the whole, the Mirage-2019 dataset [13] gathers the traf-
fic generated by 40 Android apps belonging to 16 different cat-
egories (according to the Google Play Store10). In detail, the
experimenters have mimicked the everyday usage of apps to

10https://play.google.com/store/apps

explore their most-common functionalities (e.g., login, regis-
tration, usual activities, etc.). Altogether, Mirage-2019 consists
of more than 4600 (biflow-labeled) traffic traces each generated
in a capture session of 5 ÷ 10 mins. For brevity, the following
analysis focuses only on a subset comprising 15 apps. This was
meant to avoid redundancy in the analyses and to guarantee va-
riety to the mobile apps of Mirage-2019, i.e. by considering
apps belonging to different categories.

On the other hand, Mirage-Video encompasses the traffic
of 14 Android video apps characterized by different purposes,
functionalities, and video contents, namely: cloud VR (e.g.,
DiscoveryVR, FulldiveVR, and VRRollerCoaster), short
video (e.g., Instagram, Snapchat, and TikTok), video chat
(e.g., Messenger, Skype, Whatsapp, and Zoom), and video
on demand (e.g., Facebook, Netflix, Prime Video, and
Youtube) apps. In this case, the duration of capture ses-
sions depends on the type and content of videos played (e.g.,
a sequence of one-minute-long short videos, a two-hour-long
movie on demand, etc.). It is worth to notice that for what
concerns Mirage-Video, users have specifically leveraged the
video-based functionalities of the app during the capture, also
when apps would have been allowed for other usages.

Figure 4 provides a characterization of Mirage-2019 (top)
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(c) Distribution of biflow lengths.

Figure 4: Number of biflows (a), number of per-app packets (b), and distribution of the number of packets per biflow (c) for the applications in
both Mirage-2019 and Mirage-Video. The values displayed in (a), (b), and (c) do not include zero-length biflows and zero-payload packets. In
(c), the whiskers represent the 1st and 99th percentiles, and the black diamond depicts the mean value.

and Mirage-Video (bottom), focusing on the sets of apps em-
ployed in the next analyses. In detail, Fig. 4a and Fig. 4b re-
port the number of biflows and packets for each app, respec-
tively. Comparing the values for different apps, it is evident
that these values remarkably depend on the specific app consid-
ered: for 14 apps out of the 29 considered, the dataset contains
more than 2000 biflows. The number of biflows available for
each app ranges from 55 (for Zoom) to 5389 (for Flipboard).
On the other hand, the dataset contains at least 10000 packets
for all the apps but Youtube. In fact, certain apps are character-
ized by fewer but longer biflows (e.g., Dropbox, DiscoveryVR,
and Zoom) or vice-versa (e.g., Diretta and TikTok). In or-
der to further investigate these discrepancies, Fig. 4c reports
the distribution of the number of packets in a biflow, for each
app. This analysis highlights that despite the variability in bi-
flow lengths depends on the specific app (see different spans for
inter-quartile ranges in Fig. 4c) the traffic collected for most of
the apps results in biflows ranging from 100 to 1000 packets,
on average. In more detail, a number of apps for which a re-
duced number of biflows is available (such as DiscoveryVR,
FulldiveVR, and Zoom) are associated to longer biflows, on
average. On the one hand, this explains the discrepancies in
values shown in Fig. 4a and Fig. 4b. On the other hand, it wit-
nesses the richness in terms of variety of network behaviors that
different apps in the datasets assume.

4.2. Evaluation Setup and Metrics
We evaluate the performance of mobile-traffic prediction via

a ten-fold cross-validation setup, that uses (for each fold) 90%
of the biflows belonging to a given app for building the train-
ing set and the remaining 10% for test set construction (i.e.
for evaluation purposes), representing a solid assessment proce-
dure. Consequently, the overall performance of each considered
model is obtained by collecting the (possibly-different) results
pertaining to the ten different folds and performing summary

statistics (i.e. average and standard deviation) of the evaluation
metrics considered.

Regarding performance measures, we use the G-mean as a
compact measure to evaluate the prediction performance of the
(binary-valued) DIR traffic parameter, namely:

G-mean ,
√
ρdw

dir ρ
up
dir (6)

with ρdw
dir , Pr(x̂dir = DW | xdir = DW) and ρup

dir , Pr(x̂dir =

UP | xdir = UP). In this case, xdir is associated to the se-
quence of DIRs assumed by real traffic and x̂dir the sequence
of DIRs provided by the prediction model, whereas DW and
UP indicate downstream and upstream direction, respectively.
The probabilities of correctly predicting the direction of down-
stream (ρdw

dir) and upstream packets (ρup
dir) are simply estimated

as the fraction of correct downstream and upstream prediction
events (for direction), respectively, divided by the total number
of predictions N̄.

Differently, to assess the predictive capabilities of PL and
IAT, we leverage the Root Mean Squared Error (RMSE) de-
fined as:

RMSEp ,

√√√√
1
N̄

N̄B∑
j=1

N̄ j−1∑
n=1

[
x̂n+1

p (B̄ j) − xn+1
p (B̄ j)

]2
(7)

where N̄ denotes the total number of predictions (the cardinality
of the test set), x̂n+1

p (B̄ j) the value of the pth traffic parameter
(with p ∈ {PL, IAT}) observed for packet n + 1 from the jth

biflow B̄ j (of length N̄ j), and xn+1
p (B̄ j) the corresponding value

provided by the prediction model.

4.3. Considered Baselines
DL-based approaches described in Sec. 3.4 are compared

with different baselines belonging to the (a) Markovian and
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(b) Machine Learning families. Additionally, we show also the
results obtained with the (naïve) current-value baseline (here-
inafter simply referred to as Baseline), whose predictions are
x̂n+1

base , xn, that is it predicts the next observation value with the
current one.

Markovian Approaches. We consider (multimodal) high-order
Markov Chains (MCs), that—once trained via a maximum-
likelihood procedure—leverage the predictive distribution
Pr(xn+1 | xn, . . . , x0) to make the predictions.11 The latter is
obtained from the joint initial distribution Pr(xW−1, . . . , x0)—
for n = −1, . . . ,W − 2—or from the transition distribution
Pr(xn+1 | xn, . . . , xn−(W−1))—for n ≥ (W − 1)—with W being the
order of the MC. The actual predictions x̂n+1 are obtained from
the predictive distribution via the posterior mean12, which min-
imizes the Mean Squared Error:

x̂n+1
mmse ,

S∑
j=1

s j Pr(xn+1 = s j | xn, . . . xn−(W−1)) (8)

with S being the Cartesian product of the individual modality
spaces.

Machine Learning (ML) Approaches. We also investigate the
performance of three state-of-the-art ML-based regressors:

• Linear Regressor (LR): it models the relationship between
a set of input variables collected in the random vector x
(i.e. the observations within the memory window) and the
dependent output variable y (i.e. the predicted features of
the next observation), using a linear relationship. Typi-
cally, to determine the best fit, the least-squares method is
employed, thereby minimizing the sum of squares of the
deviations between each point and the multiple-regression
line.

• k-Nearest Neighbors Regressor (k-NNR): it is an ML algo-
rithm that performs predictions based on the assumption
that similar (input) elements are closer together (i.e. lead
to almost the same output). Specifically, the k-NNR uses
the k-nearest neighbors found within the training set on
the basis of a certain distance metric (e.g., Minkowski dis-
tance) to predict unknown samples. The prediction is then
obtained as the (weighted) average value of the relevant
neighbors.

• Random Forest Regressor (RFR): it is an ensemble of T
decision trees, therefore constituting a “forest” of simpler
estimators. The forest is built at training time exploiting
the ideas of bagging and random-feature selection to mit-
igate over-fitting. Specifically, each tree is trained on (i)

11The Markov property allows the use of a sliding window consisting of the
last W observations (cf. Sec. 3.3), that are used as input to the algorithm.

12We remark that a posterior mode estimator, corresponding to a maximum
a-posteriori approach, can be also considered (as in [14]). However, the poste-
rior mode was shown to perform worse than the mean in our preliminary results,
not shown for brevity. For this reason, we did not report it in the subsequent
analysis.

different bootstrap realizations of the training set and (ii)
with some additional randomization during the tree con-
struction to minimize the mean squared error between the
predictions and the actual values. After training, the pre-
diction is made by taking the (weighted) average of the
responses of the T trees.

5. Experimental Evaluation

In this section, we report experimental evaluation performed
leveraging Mirage-2019 and Mirage-Video datasets. More
specifically, in Sec. 5.1, we preliminarily assess the validity of
using multitask architectures and multiple monitoring parame-
ters (i.e. multimodal multitask predictors). Then, in Sec. 5.2,
we evaluate the impact of the memory-window size W on the
overall performance. Accordingly, in Sec. 5.3, we provide
a performance comparison for the considered prediction ap-
proaches on the two datasets. Such performance analysis is
complemented by a complexity viewpoint in Sec. 5.4.

The second part of the present section delves with more in-
depth design and analysis. Accordingly, we investigate the po-
tential advantage given by the additional use of exogenous in-
puts in Sec. 5.5. The performance of the resulting predictors is
then investigated at fine scale, by focusing on the head and tail
of biflows in Sec. 5.6. Finally, an interpretability analysis of the
behavior of the predictors is provided in Sec. 5.7.

5.1. Single-task vs Multitask Predictors

First of all, we focus on the actual need for using a multitask
DL predictor for forecasting the three considered relevant traffic
parameters: DIR, PL, and IAT. Accordingly, in Fig. 5 we report
the prediction performance of one of the considered multitask
DL architectures (namely a CNN13 with a memory-window size
of W = 30) on two relevant apps taken from Mirage-2019 and
Mirage-Video, namely Dropbox (top row) and TikTok (bottom
row), respectively.

The proposed multitask CNN architecture (referred shortly
to as MMMT, i.e. multimodal multitask), is compared against two
relevant architectural baselines:

1. three single-task CNN architectures each predicting one
traffic parameter based only on the last W = 30 samples
of the same parameter (e.g., predicting next DIR based on
the last W values of DIR observed). The first baseline is
referred to as single-modal single-task (SMST);

2. three single-task CNN architectures, each predicting one
traffic parameter based on the last W = 30 input parame-
ters (e.g., predicting next DIR based on the last W values
of (DIR, PL, IAT) observed). The second baseline is re-
ferred to as multimodal single-task (MMST).

13We refer only to CNN for conciseness. Similar considerations can be
made for the other DL predictors considered.
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Figure 5: Comparison between different design implementations of CNN architectures: single-modal single-task (SMST), multi-modal single-task
(MMST), and multi-modal multi-task (MMMT) architectures over DIR, PL, and IAT in terms of prediction performance, number of epochs, and training
time.

For both apps, we analyze: (a) the prediction performance
regarding each traffic parameter predicted (i.e. in terms of G-
mean for DIR and RMSE for PL/IAT) and (b) the complexity
associated to each solution (reporting the cumulative number
of epochs for which the solution is trained and the overall train-
ing time). Indeed, the above analysis is intended to assess the
benefit granted by multitask learning in training/using a single
DL architecture to predict multiple traffic parameters. This is
in contraposition with respect to the aforementioned two base-
lines, both requiring a number of DL architectures equal to the
number of traffic parameters to be predicted. Accordingly, this
constitutes a sharp difference in terms of the relevant compu-
tational complexity. However, while successful capitalization
of multitask learning is expected to outperform SMST base-
lines also in terms of prediction performance (because of the
use of multi-modality of the inputs), the corresponding com-
parison with MMST is less obvious and worth investigating.

Indeed, results highlight that the SMST solution tends to per-
form the worse (in terms of prediction performance) over the
three considered traffic parameters, due to the input separation
in the three SMST architectures. This is especially true for IAT
prediction and DIR prediction on TikTok. Additionally, the
adoption of an MMST solution (i.e. a full separate architecture
for the prediction of each parameter) does not lead to an ap-
preciable prediction-performance improvement with respect to
MMMT (i.e. a single architecture performing a joint multitask
prediction). However, the adoption of a MMMT predictor is par-
ticularly appealing from the complexity viewpoint, due to the
significantly-lower training time involved, witnessed by a lower
number of total epochs required for training one architecture in
the place of three.

Main Remarks: On average, SMST architectures are outper-
formed by both MMST and MMMT solutions which fruitfully ben-
efit from multi-modality and expose better performance in DIR,
PL, and IAT prediction (i.e. result in higher G-mean and lower
RMSE). In addition, MMMT architectures are specifically appeal-
ing from the complexity viewpoint, with reduced training time
w.r.t. to MMST. Indeed, the training phase for the latter architec-

tures is accomplished via a higher number of epochs due to the
need for using a different DL architecture to predict each traffic
parameter (viz. task).

5.2. Impact of the Memory-Window Size
In this section, we provide an investigation of the impact of

the memory-window size W on the performance of DL archi-
tectures, considering a CNN model as an example and taking
into account four apps (namely two generic, i.e. Dropbox and
Flipboard, and two video, i.e. Snapchat and TikTok). This
analysis is useful to properly tune the memory window, in order
to select a common value that gives suitable performance over
all the apps.

The results, depicted in Fig. 6, show the G-mean for DIR
and the RMSE for both PL and IAT, by varying the memory-
window size W ∈ {5, 10, 30, 60}. By inspecting Fig. 6a, we can
notice that the G-mean on DIR shows a saturation of perfor-
mance gain once reached the W = 30 memory-window size for
Dropbox, TikTok, and Snapchat. Flipboard represents an
exception, presenting the opposite behavior with the G-mean
that drops reaching W = 30 and rises with W = 60. Focus-
ing on PL RMSE in Fig. 6b, performance gains saturate (again)
with a memory-window size of 30, when considering Dropbox,
Flipboard, and TikTok, while a counterintuitive behavior is
shown by Snapchat, which exhibits an RMSE growth up to
W = 30 at which it reaches a plateau. Finally, when consider-
ing the IAT performance in terms of RMSE (Fig. 6c), it results
to be practically insensitive to W.

In conclusion, a conservative choice can be drawn from the
highlighted results, which is the selection of W = 30 as the tar-
get memory-window size for all the considered apps of both
datasets, because of the trade-off between the complexity of
the model (which grows with the size of memory window) and
the effectiveness of a prediction being capable to model enough
history of biflows, and because the DIR output gains from this
choice on most of the considered apps.

Main Remarks: In spite of rare non-straightforward trends,
best performance figures are observed by adopting a memory of
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Figure 6: Comparison of CNN prediction performance against memory-window size W for DIR, PL, and IAT.

size W = 30. The latter choice also represents the best trade-off

between model complexity and prediction performance.

5.3. Overall Picture of Prediction Performance

In this section, we provide an overall view of the prediction
performance achieved over all the apps of the two datasets con-
sidered. Accordingly, Fig. 7 shows the prediction performance
of multitask DL models on DIR, PL, and IAT for mobile apps
belonging to the Mirage-2019 dataset when a memory-window
size W = 30 is employed. Similarly, Fig. 8 shows the prediction
performance of multitask DL models on mobile video apps be-
longing to Mirage-Video in the same setup. In both cases, the
performance of the baselines described in Sec. 4.3 is reported
for the sake of a complete assessment and comparison. To ease
the reading, for each app and traffic parameter we highlight the
best performing predictor with a “?” marker.

Referring to the DIR parameter (Fig. 7a), for 10 out of 15
considered apps in Mirage-2019, multitask DL architectures
are able to outperform all the considered baselines, namely the
(current-value) Baseline, ML approaches, and Markovian ap-
proaches. Remarkably, when multitask DL architectures do not
perform the best, MCs represent the highest-performing alter-
native in 4 out of 15 apps, thus confirming their appeal in mod-
eling and prediction of mobile traffic [14]. A more pronounced
result holds for the apps taken from Mirage-Video (Fig. 8a),
for which multitask DL architectures are always able to surpass
the considered baselines. Interestingly, for 12 out of 14 apps,
SeriesNet is able to outperform all the other predictors. In the
two remaining cases (i.e. PrimeVideo and TikTok), the high-
est performance is achieved by a multitask GRU. By looking
at the app-averaged performance (AVERAGE, reported on the
leftmost group of both Figs. 7a and 8a), it is apparent that on
Mirage-2019 (resp. Mirage-Video) dataset the best DIR pre-
dictor is a multitask GRU (resp. SeriesNet).

Differently, concerning PL (Figs. 7b and 8b) and IAT
(Figs. 7c and 8c) parameters, the situation is more varied, with
many apps (in both Mirage-2019 and Mirage-Video datasets)
leading to an ML-based predictor (namely, the RFR) perform-
ing the best. Specifically, although the PL average performance
of the best multitask DL predictor is not far from that of the
RFR, in the case of IAT, multitask DL architectures incur only
in a slight RMSE degradation, with GRU model being always

among the best three predictors for both PL and IAT, on aver-
age.

Main Remarks: The best predictor varies with both the app
and the parameter to predict. Concerning DIR, on average,
(multitask) DL architectures outperform the others (the best
DL architecture achieves approximately +3% G-mean w.r.t. the
best baseline, on average). On the other hand, RFR provides
the best performance for PL and IAT prediction, on average,
with DL approaches reporting marginal degradation (+5 B and
+8.7 ms RMSE for PL and IAT, respectively).

5.4. Investigation of Computational Complexity
To assess the difference in complexity among the different

DL methods, we analyze the training time, the number of train-
ing epochs, and the number of trainable parameters for each
approach. We recall that training epochs are capped to a max-
imum of 150, but early-stopping causes an end of this phase
if convergence on the loss is achieved (cf. Sec. 3.4): a higher
number of epochs needed to converge can be associated with a
higher complexity of the architecture. Similarly, a higher num-
ber of trainable parameters is also an index of more complex
architectures.14 It is worth to notice that, since different types
of elementary layer (e.g., recurrent vs. convolutional) also con-
tribute to the above aspect, we center the discussion on com-
plexity using overall (re-)training time to provide more directly
actionable information.

In Fig. 9 we report these metrics and the corresponding pre-
diction performance for DIR, PL, and IAT. The considered DL
methods are sorted by increasing training time, and values refer
to a non-video app (Flipboard, Fig. 9a) and a short-video one
(TikTok, Fig. 9b). Several considerations can be derived from
these results. First, it is evident that the training time varies sig-
nificantly across the different DL methods, and between the two
apps (belonging to two different categories), ranging from ≈ 6

14We highlight that the number of trainable parameters is intrinsically re-
lated to the specific architecture of the DL model employed (see Fig. 3 and
Tab. 3) and naturally changes with the model itself (i.e. it is a metric to evalu-
ate the complexity of the DL model). Nevertheless, to foster a fair comparison
between the different architectures, we set identical tunable parameters con-
cerning all controllable aspects of models’ training procedure, namely: total
number of epochs, optimizer, batch size, learning rate, and early-stopping pa-
rameters (cf. Sec. 3.4 for details).
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Figure 7: Prediction performance of DL models on mobile apps belonging to Mirage-2019 on DIR (a), PL (b), and IAT (c). The best performing
predictor for each app and traffic parameter is highlighted via a “?” marker.

minutes for CNN on TikTok, to almost 690 minutes for GRU
on Flipboard. However, GRU on Flipboard (resp. CNN on
TikTok) does not show the highest (resp. lowest) number of
training epochs when compared to the other DL models trained
on the same app. Similarly, the number of trainable parameters
is not in a monotonic relationship with the training time for ei-
ther app. In addition, the observed prediction performance does
not grow monotonically with training time, number of epochs,
or trainable parameters. For instance, the worst DIR prediction
performance on Flipboard is attained by SeriesNet, which
is associated with the largest number of trainable parameters;
also, although CNN and SeriesNet expose remarkable different
training time, their DIR prediction performance is practically
equivalent when considering TikTok.

Main Remarks: Higher complexity does not necessarily re-
late with better performance. Since the best multitask DL archi-
tecture varies with the application / predicted traffic parameter,
this outcome opens the possibility for selecting architectures
based on the specific goal, investigating the existing trends and
identifying the proper solution based on better (per-parameter)
prediction performance and/or shorter (re-)training time.

5.5. Prediction Performance with Optional Inputs

In this section, we assess the possible improvements in terms
of DIR (Fig. 10), PL (Fig. 11), and IAT (Fig. 12) led by con-
sidering in the prediction task the use of exogenous inputs. For
the sake of brevity, we focus on the performance of Snapchat,
TikTok, Dropbox, and Flipboard. Specifically, we investi-
gate the possible advantage from introducing exogenous inputs,
namely: TWIN, FLG, and PAY (as described in Sec. 3.2). For
brevity, we focus only on three multitask DL predictors: CNN,
LSTM, and GRU. Herein, we investigate four different addi-
tions of exogenous inputs: (i) TWIN, (ii) FLG, (iii) PAY, and (iv)
TWIN + FLG. These (groups of) inputs are adopted in addition
to the non-exogenous ones (DIR, PL, and IAT), which are col-
lectively reported as 3F in the figures.

As a general comment, the use of the considered combina-
tions of exogenous inputs provide some prediction gains (al-
though not significant) and results vary from app to app, also
depending on the peculiar DL architecture and the specific traf-
fic parameter (the best configurations are marked with a “?” in
the figures). Concerning the DIR prediction (Fig. 10), the only
app that does not benefit from any addition of exogenous inputs

15



Average
Messenger

Skype
Whatsapp Zoom

DiscoveryVR
FulldiveVR

VRRollercoaster
Facebook

Netflix
PrimeVideo

Youtube
Instagram

Snapchat
TikTok

0

20

40

60

80

100

G-
m

ea
n 

[%
]

Baseline LR K NNR RFR MC CNN LSTM GRU DSANET SERIESNET ML MC DL Best Model

(a) DIR

Average
Messenger

Skype
Whatsapp Zoom

DiscoveryVR
FulldiveVR

VRRollercoaster
Facebook

Netflix
PrimeVideo

Youtube
Instagram

Snapchat
TikTok

0

250

500

750

1000

1250

RM
SE

 [B
]

Baseline LR K NNR RFR MC CNN LSTM GRU DSANET SERIESNET ML MC DL Best Model

(b) PL

Average
Messenger

Skype
Whatsapp Zoom

DiscoveryVR
FulldiveVR

VRRollercoaster
Facebook

Netflix
PrimeVideo

Youtube
Instagram

Snapchat
TikTok

0

5

10

15

20

25

RM
SE

 [m
s]

Baseline LR K NNR RFR MC CNN LSTM GRU DSANET SERIESNET ML MC DL Best Model

(c) IAT

Figure 8: Prediction performance of DL models on mobile video apps belonging to Mirage-Video on DIR (a), PL (b), and IAT (c). The best
performing predictor for each app and traffic parameter is highlighted via a “?” marker.

is Dropbox, whereas for the other three apps the situation is
more varied. For instance, the sole use of TWIN provides im-
proved prediction performance for Snapchat on CNN/LSTM,
while the use of FLG (alone or in combination with TWIN) is
able to improve the G-Mean of TikTok. Conversely, the use
of PAY is beneficial to the GRU in the case of Snapchat and
TikTok.

Differently, concerning PL prediction (Fig. 11), it is inter-
esting to note that the use of TWIN + FLG is able to provide
an RMSE reduction for all the three considered multitask DL
architectures on TikTok. A similar observation applies to
Flipboard when considering PAY effects on CNN and GRU
architectures. Finally, focusing on IAT prediction (Fig. 12), a
notable pattern can be observed for TikTok, where the sole use
of TWIN is able to reduce the RMSE in the prediction of IATs. A
similar observation can be drawn for Flipboard, where TWIN
is beneficial for both CNN and LSTM, whereas the GRU per-
formance are improved by the use of PAY.

Main Remarks: While the addition of exogenous inputs does
not significantly enhance the prediction performance in gen-
eral, for specific choices of mobile app and architecture it is

worth considering. 3F+TWIN+FLG proved to be the most effec-
tive in the considered examples.

5.6. Per-packet-index Performance

In this section, we provide a fine-grained investigation of pre-
diction performance metrics (i.e. G-mean for DIR and RMSE
for PL and IAT). We refer to this analysis as per-packet-index
performance, because the evaluated metrics are computed con-
sidering packets lying at the same position in biflows, i.e. shar-
ing the same index (or falling within the same interval of in-
dexes). The idea of this analysis is to evaluate whether and
how prediction performance varies along a biflow, i.e. if pack-
ets appearing at specific positions in the biflows are responsible
for worse or better performance. The main intent is to detect
possible consistent discrepancies between the beginning of the
biflows (where “introductory” information exchanges are likely
to happen) and the rest, as well as at remarking the peculiarities
of the results attained for the ending packets of biflows (where
a “closing” exchange of messages could be present).

Accordingly, the analysis focuses on (i) the head of the bi-
flows (i.e. the first 128 packets) and (ii) their tail (i.e. the last
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Figure 9: Comparison of complexity of DL predictors in terms of training time, number of epochs, and number of trainable parameters (sorted
by the first); below, the corresponding performance is reported for DIR, PL, and IAT. Values refer to a non-video application (a) Flipboard and
a short-video one (b) TikTok.
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Figure 10: Prediction performance for DIR when feeding the DL mod-
els with optional inputs (i.e. TWIN, FLG, and PAY).
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Figure 11: Prediction performance for PL when feeding the DL models
with optional inputs (i.e. TWIN, FLG, and PAY).
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Figure 12: Prediction performance for IAT when feeding the DL mod-
els with optional inputs (i.e. TWIN, FLG, and PAY).

16 packets). In the former case, we show aggregated perfor-
mance each 2 packets until the 32nd and each 8 for the remain-
ing until the 128th, along with (a) the overall G-mean/RMSE,
(b) the G-mean/RMSE of the first 32 packets, and (c) the G-
mean/RMSE of the remaining packets until the end of each bi-
flow. In the latter case, we show per-packet performance index-
by-index (viz. without aggregation). Note that these specific
visualization choices are loosely informed by previous experi-
ments and do not heavily affect the nature of the outcomes and
their discussion.

For brevity we report the results attained for two generic and
two video apps, i.e. Dropbox and Flipboard, and Snapchat
and TikTok, respectively, and conducted by modeling P = 3
inputs (i.e. DIR, PL, and IAT) with GRU. Results are depicted
in Figs. 13 and 14 and Figs. 15 and 16, for head and tail, respec-
tively. Is is worth to underline that the index of packets starts
from 2 because the second packet in the biflow is the first we are
able to provide a prediction for (based on the very first packet
of the same biflow). Consistently with previous analyses, the
results are averaged over the 10-folds for each index or interval
of indexes.

We highlight that the tail analysis requires also to properly
filter the traffic data: to ensure that biflows are aligned on the
last effective packet (viz. biflows are “complete”) we leverage
a simple heuristic based on the presence of FIN or RST TCP
flags at the end of each biflow, by discarding biflows that do
not contain any of these flags. Hence, we conservatively dis-
card all the “incomplete” TCP biflows and the UDP biflows. Is
worth to underline that this filtering phase results in discarding
6.59% of biflows, by considering the four analyzed apps on the
whole; specifically, 10.31% of Dropbox, 3.64% of Flipboard,
16.38% of Snapchat, and 8.52% of TikTok.

Going into details, Fig. 13 shows the performance metrics
of the two generic apps, namely Dropbox (on the left) and
Flipboard (on the right). By looking at Figs. 13a and 13b, the
prediction performance of DIR shows an application-specific
behavior: Dropbox reports a slightly lower G-mean for the first
32 packets with respect to the remaining, whereas Flipboard

DIR for the first 32 packets is easier to predict compared with
the remaining. In general, focusing on the first 32 packets, it is
evident that the G-mean is higher for DIR prediction of the first
10 packets, for both apps.

On the other hand, when considering PL and IAT prediction
performance (shown in Figs. 13c and 13d, and in Figs. 13e
and 13f, respectively) the behavior of the two apps is quite sim-
ilar, with the RMSE on the first 32 packets being at least twice
(viz. worse) than the RMSE for the packets in the rest of the
biflow, i.e. the relative reduction of RMSE for the first 32 pack-
ets with respect to the remaining ones ranges from ≈ 50% for
Dropbox PL and Flipboard PL and IAT, to ≈ 75% showed by
Dropbox IAT. More in detail, focusing on the first 32 packets,
those exhibiting the lowest RMSE on the PL are in the index
interval 6 − 7 for Dropbox, whereas the hardest PLs to predict
are in the index interval 4 − 5 for Flipboard. Also, for both
apps the lowest RMSE on the IAT is achieved on the first 10
packets.

Figure 14 shows the results of the same analysis on video
apps, namely Snapchat and TikTok. Firstly, we can notice
that Fig. 14 confirms that TikTok is characterized by short bi-
flows, i.e. up to 64 packets, in line with the characterization
provided in Fig. 4c. Then, also in this case, when considering
the G-mean of DIR, the behaviors vary with the specific app,
with Snapchat (Fig. 14a) showing better performance on the
first 32 packets and TikTok (Fig. 14b) reporting the opposite
outcome. Conversely, when considering PL and IAT RMSE,
the lowest errors are achieved for the packets beyond the 32nd.
In particular, Snapchat PL presents an error peak for the first
two packets.

Finally, Figs. 15 and 16 analyze the per-packet index perfor-
mance for biflow tails. Figure 15 highlights the degradation of
performance starting from the second-to-last index, when con-
sidering DIR, PL, and IAT for both generic apps. Interestingly,
this trend does not apply when considering video apps (Fig. 16),
where the performance are quite balanced over the last 16 pack-
ets, with the exception of PL prediction performance on TikTok
shown in Fig. 16d, where the RMSE trend becomes descending
(corresponding to a performance improvement) starting from
the second-to-last index.

The present analysis highlights the need for adding additional
information for the first 32 packets in order to fill the perfor-
mance gap we find in RMSE of PL and IAT. To investigate this
need, in Fig. 17, we illustrate the per-packet index performance
referred to the GRU model trained with the addition of the PAY
exogenous input, which we recall consists of the transport-layer
payload of the first 32 packets. We underline that the nature of
this input, as described in Sec. 3.2, mainly impacts the packets
which fall within the interval of indexes 2 − 62, because out of
this interval the contribution of PAY input is of sole padding.15

We focus on the same two video apps of previous per-packet
index analyses, namely Snapchat (on the left) and TikTok (on
the right). Firstly, we can observe only a negative impact on
the DIR G-mean of the packets beyond the 32nd for TikTok,

15Given a window-memory size of W = 30, the packets after the 62nd have
a PAY exogenous input of sole padding.
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(a) DIR Dropbox.
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(b) DIR Flipboard.
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(c) PL Dropbox.
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(d) PL Flipboard.
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(e) IAT Dropbox.
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(f) IAT Flipboard.

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 10
4

11
0

11
6

12
2

12
8

Packet Index

0

100

200

Nu
m

be
r o

f P
ac

ke
ts Fine-grain

Aggregated

(g) Per-index # packets Dropbox.
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(h) Per-index # packets Flipboard.

Figure 13: Per-packet index performance analysis for G-mean of DIR and RMSE of PL and IAT of the first 128 packets using a GRU model. The
first 32 packets are aggregated with step 2, the remaining until the 128th with step 8. Horizontal lines report the overall RMSE, the RMSE of the
first 32 packets (RMSE2−32), and the RMSE of the remaining packets until the end of each biflow (RMSE33−END). Analysis is conducted for two
generic applications, namely Dropbox (on the left) and Flipboard (on the right). The last row shows the packet count over aggregates. Results
are shown in the format avg ± std obtained over a 10-fold cross-validation procedure.
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(a) Snapchat DIR.

2 10 18 26 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Packet Index

40

60

80

100

G-
m

ea
n 

[%
]

G-mean G-mean2 32 G-mean33 END

(b) TikTok DIR.
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(c) Snapchat PL.
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(d) TikTok PL.
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(e) Snapchat IAT.
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(f) TikTok IAT.

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 10
4

11
0

11
6

12
2

12
8

Packet Index

0

25

50

75

100

Nu
m

be
r o

f P
ac

ke
ts Fine-grain

Aggregated

(g) Snapchat per-index # packets.
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(h) TikTok per-index # packets Flipboard.

Figure 14: Per-packet-index performance analysis for G-mean of DIR and RMSE of PL and IAT of the first 128 packets using a GRU model. The
first 32 packets are aggregated with step 2, the remaining until the 128th with step 8. Horizontal lines report the overall RMSE, the RMSE of the
first 32 packets (RMSE2−32), and the RMSE of the remaining packets until the end of each biflow (RMSE33−END). Analysis is conducted for two
video applications, namely Snapchat (on the left) and TikTok (on the right). The last row shows the packet count over aggregates. Results are
shown in the format avg ± std obtained over a 10-fold cross-validation procedure.
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(a) DIR Dropbox.
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(b) DIR Flipboard.
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(c) PL Dropbox.
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(d) PL Flipboard.
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(e) IAT Dropbox.
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(f) IAT Flipboard.

Figure 15: Per-packet-index performance analysis for G-mean of DIR and RMSE of PL and IAT of the last 16 packets without aggregation using a
GRU model. Analysis is conducted for two generic applications, namely Dropbox (on the left) and Flipboard (on the right). Results are shown
in the format avg ± std obtained over a 10-fold cross-validation procedure.

with an absolute drop < 5%. Conversely, the multiple positive
effects of the exogenous input translate in: (i) ≈ 2% absolute
gain on DIR G-mean of the first 32 packets when considering
both Snapchat and TikTok; (ii) ≈ 10B and ≈ 35B absolute
reduction of PL RMSE of the first 32 packets when considering
Snapchat and TikTok, respectively; (iii) ≈ 1.5ms absolute re-
duction of IAT RMSE of the packets following the 32nd when
considering TikTok.

Main Remarks: Based on the investigated traffic, prediction
performance typically improves after the 32nd packet, when pre-
dicting PL or IAT. Differently, concerning DIR prediction, app-
dependent performance behaviors have been observed. On the
other hand, focusing on the last 16 packets of each biflow, a
decreasing performance trend is typically observed in corre-
spondence of the very last packets, for all the parameters.

5.7. Distillation Analysis
Finally, we carry out a differential Markovian analysis to di-

rectly compare the best multitask DL models against the best
baselines belonging to ML and Markovian families, highlight-
ing the differences in their behaviors, focusing on Dropbox
(Fig. 18) and TikTok (Fig. 19) for brevity. To this aim we dis-
till small-order Markov Chain models of the best baselines (i.e.

high-order MC and RFR), compare them with that of the GRU
(resp. SeriesNet), and analyze the discrepancies in their predic-
tive behaviors on Dropbox (resp. TikTok).

In these figures we report the difference of the distilled tran-
sition distributions obtained for the two methods. Accordingly,
in such a representation the values close to zero witness simi-
lar distributions, whereas positive (resp. negative) values report
higher occurrences for the best baselines (resp. GRU) in Fig. 18.
A similar reasoning applies to the distillation results in Fig. 19
when replacing the GRU with the SeriesNet.

Considering DIR prediction on Dropbox, Fig. 18a shows that
the strongest departure of GRU from the MC is for the “UDD”
case (one upstream packet and two consecutive downstream
packets), where the multitask GRU predicts an upstream packet
with a probability 47% higher than MC. Quite significant are
also the cases associated to “DDU” and “DUD”, where the
multitask GRU predicts an upstream packet with a probabil-
ity 33% and 31%, respectively, lower than MC. Conversely, the
difference in the DIR predictive behavior between the multitask
GRU and the RFR (shown in Fig. 18d) is more contained, with
the highest difference also pertaining to “UDD” (as in the MC
case), but with an upstream packet predicted with a probability
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(a) Snapchat DIR.
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(b) TikTok DIR.
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(c) Snapchat PL.
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(d) TikTok PL.
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(e) Snapchat IAT.
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(f) TikTok IAT.

Figure 16: Per-packet index performance analysis for G-mean of DIR and RMSE of PL and IAT of the last 16 packets without aggregation, using
a GRU model. Analysis is conducted for two video applications, namely Snapchat (on the left) and TikTok (on the right). Results are shown in
the format avg ± std obtained over a 10-fold cross-validation procedure.

6.8% lower than the RFR. A similar situation can be observed
in Figs. 19a and 19d, referring to TikTok. Indeed, the multi-
task SeriesNet has a predictive DIR behavior much more dif-
ferent than MC with respect to the RFR. More specifically, the
strongest departure of SeriesNet from the MC is for the “UDU”
case (alternating sequence ending with an upstream packet),
where the multitask DL approach predicts an upstream packet
with a probability 35.8% lower than the MC. Differently, when
comparing SeriesNet behavior with RFR, the strongest depar-
ture corresponds to the “DDD” case, where the multitask DL
approach predicts an upstream packet with a probability 11.9%
higher than the RFR.

Concerning PL and IAT, when the specific multitask DL ap-
proach is compared with the RFR, there is an appreciable differ-
ence in predictive behavior of both traffic parameters. Indeed,
the latter tends to predict next PL and IAT more frequently as
the previous one, as highlighted by the main diagonal line in
Figs. 18e, 18f, 19e, and 19f. This observation indeed applies
to both GRU and SeriesNet on Dropbox and TikTok, respec-
tively. On the other hand, for what it concerns the comparison
of the multitask DL approach with MC, different behaviors can
be observed. Specifically referring to PL (Fig. 18b), it is appar-

ent on Dropbox that MC tends to predict more frequently close-
to-zero values and a specific value corresponding to ≈ 700B,
whereas for TikTok, MC PL (Fig. 19b) predictions are more
clustered toward a cloud of low PL values. A similar behavior
applies to IAT (Figs. 18c and 19c), where either low or very
high values are more frequently predicted by MC, whereas the
GRU/SeriesNet tend to predict consecutive similar IAT values.

Main Remarks: The outcome of the distillation analysis—
aimed at comparing the best DL model against RFR and high-
order MC in terms of transitions distribution—can be summa-
rized as follows. Concerning DIR, the best DL model is more
similar to RFR than to MC. On the other hand, concerning PL
and IAT, the behavior of the best DL model exposes remarkable
differences w.r.t. both RFR and MC, whose peculiarities depend
on the specific app.

6. Conclusions and Future Directions

In this paper, we address the challenging problem of pre-
dicting the highly complex, dynamic, encrypted network traffic
generated by mobile devices. In detail, we focus on packet-level
prediction, leveraging two human-generated and recent datasets
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(a) Snapchat DIR.
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(b) TikTok DIR.
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(c) Snapchat PL.
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(d) TikTok PL.
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(e) Snapchat IAT.
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(f) TikTok IAT.

Figure 17: Per-packet index performance analysis for G-mean of DIR and RMSE of PL and IAT of the first 128 packets, when adding the PAY
exogenous input to the GRU model. The first 32 packets are aggregated with step 2, the remaining until the 128th with step 8. Horizontal lines
report the overall RMSE, the RMSE of the first 32 packets (RMSE2−32), and the RMSE of the remaining packets until the end of each biflow
(RMSE33−END). Analysis is conducted for two video applications, namely Snapchat (on the left) and TikTok (on the right). The last row shows
the packet count over aggregates. Results are shown in the format avg ± std obtained over a 10-fold cross-validation procedure.
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Figure 18: Differential Markov analysis of GRU predictive behavior against MC (top row) and RFR (bottom row) for the Dropbox application. The
discrepancy is expressed through the difference of the distilled 3rd-order transition distributions for DIR (a), and 1st-order transition distributions
for PL (b) and IAT (c). Positive values represent probabilities higher for SeriesNet when compared to MC or RFR ones, negative values vice-versa.

of mobile traffic, and using the methodological toolset of Deep
Learning. One dataset, publicly released, includes generic mo-
bile apps, while a newly-collected one (to be released) focuses
on video apps belonging to different categories. Predicting
the finest-grain features of network traffic (direction, payload
length, and inter-arrival time of single packets) allows for the
widest applicability, but is specifically challenging, also in re-
lation to the considered traffic nature. Therefore, we resorted
to a variety of DL approaches, exploring also different architec-
tures (multitask and multimodal, besides single-task and single-
modal ones). The experimental results are assessed varying the
architecture (leveraging Markov Models, classic ML, and DL),
the input representation (memory size and exogenous inputs),
and considering different viewpoints (per-app and per-packet-
position prediction performance, as well as model and train-
ing complexity). Using two differently-composed dataset, we
assess the performance for both generic and video apps. The
outcomes reveal notable variability in prediction performance
among different apps and app categories (no silver bullet for
this difficult problem). On average, (multitask) DL architec-
tures outperformed the other ones in predicting packet direction
(approximately +3% G-mean), and reported marginal perfor-
mance degradation w.r.t. RFR when predicting payload length
and inter-arrival time (+5 B and +8.7 ms RMSE, respectively).
Per-packet analysis witnessed that the performance of the pre-
diction of payload-length and inter-arrival time typically im-

proved after the 32nd packet. Distillation analysis was helpful
in interpreting and relating the behaviors of the models. The
provided in-depth evaluation, besides confirming and quanti-
fying in a solid methodological framework the heterogeneous
behavior of mobile apps, provides valuable analysis tools to
compare different predictors and strike the best balance among
the different performance measures. The tested architectures
proved to benefit from multi-modality, with multimodal-multi-
task architectures being specifically appealing when also con-
sidering complexity. In more detail, 30-sample memory allows
to achieve the best performance in most of the cases. In general,
higher complexity does not imply better performance. Last, it
was observed that exogenous inputs are worth to be considered
(with the addition of TCP window size and TCP flags to non-
exogenous inputs being the most promising configuration in the
considered examples) only for specific scenarios as their appli-
cation does not remarkably enhance prediction performance, on
average.

In future works, the effectiveness of the considered pre-
dictors will be assessed on other datasets and their underly-
ing models exploited in the context of synthetic traffic gen-
eration. Additionally, we plan to investigate more sophis-
ticated DL architectures—optimized via automatic tuning of
hyperparameters—which can jointly exploit multitask learning
and the natural multi-modality of network traffic data, possibly
attempting to solve prediction and classification tasks simul-
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Figure 19: Differential Markov analysis of SeriesNet predictive behavior against MC (top row) and RFR (bottom row) for the TikTok application.
The discrepancy is expressed through the difference of the distilled 3rd-order transition distributions for DIR (a), and 1st-order transition distri-
butions for PL (b) and IAT (c). Positive values represent probabilities higher for SeriesNet when compared to MC or RFR ones, negative values
vice-versa.

taneously. The analysis of biflow-level prediction at different
time granularities is also of interest, as well as the investiga-
tion of predictors for longer future horizons. As the proposed
approaches are designed and applied at the finest granularity
(packet level), they are relevant to a wide spectrum of appli-
cations (e.g., traffic engineering, routing): thus, further work
along these specific lines is envisioned as well. Finally, al-
though the present work puts some contributions toward the
interpretability of the considered DL architectures, the aided-
design of predictors based on sophisticated explainable AI tech-
niques is also foreseen [52].
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