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Despite being recognized as a key baseline dataset for many applications, especially those
relating to biogeochemical cycles, land cover products in their current form are limiting.
Typically they lack the thematic detail necessary for driving the models that depend upon
them. This study has demonstrated the ability to produce a highly detailed (both spatially
and thematically) land cover/land use dataset over Russia – by combining existing datasets
into a hybrid information system. The resulting dataset contains detailed subclasses of land
cover and attributes necessary for biogeochemical modeling. In lieu of suitable validation
data, a confidence map was produced creating six classes of confidence in the agreement
between the various remote sensing and statistical datasets. In specific regions, a significant
difference between the remote sensing products and the official statistics was observed. For
example, in the northwest of Russia the statistics appear to be underreporting the amount of
forest land which has likely been increasing in recent decades because of encroachment of
forests on abandoned marginal agricultural land.
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1. Introduction

Land cover is recognized as one of the fundamental terrestrial datasets required in biospheric
studies across the globe. In many aspects, land cover information provides the foundation for
environmental monitoring (FAO 2002) and diverse ecosystem studies (e.g., land use com-
petition, food security). In recent years, major advances have taken place and researchers
now have several global 1 km products available to choose from, each with approximately
20 thematic classes (McCallum, Obersteiner, Nilsson, and Shvidenko 2006). Additionally, a
500 m global product exists from the moderate-resolution imaging spectroradiometer
(MODIS) (Friedl et al. 2002) and a 300 m global product (GlobCover) from the medium-
resolution imaging spectrometer (MERIS) has recently been made available (Bicheron et al.
2008). In addition to global datasets, continental and regional products exist around the
globe (Bartalev, Belward, Erchov, and Isaev 2003).

However, for many applications, especially those relating to biogeochemical cycles,
these products in their current form are limiting. In particular, practically all existing land
cover datasets temporally and thematically inhibit progress in accurate modeling of the
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terrestrial biosphere. Temporally, the majority of datasets are restricted to a certain time
period with no updates planned (MODIS being the exception). Thematically, the lack of
detail among the land cover classes identified prevents the use of valuable inventory and
statistical data. Tree species in particular, are difficult to classify from remote sensing data
alone and therefore the majority of land cover products produced to date stop short of
delineating tree species and related attributes. However, forest science has accumulated
many data and semi-empirical models of forest growth and productivity. These models
contain such attributes as tree species, age, site index, etc., but cannot be readily combined
with remote sensing products.

The objective of this study is to develop a methodology to create a hybrid land cover
dataset for Russia (the world’s largest country) as an information base for a terrestrial biota
full (and verified) greenhouse gas account (Shvidenko and Nilsson 2007). Such require-
ments necessitate the detailed quantification of land classes (e.g., for forests – dominant
species, age, growing stock, net primary production, etc.). The major idea of the hybrid
dataset approach involves integration of all relevant information to explore synergies, in
particular the merging and harmonization of land and forest inventories, ecological monitor-
ing data, remote sensing data, and in situ information. The base year was adopted as 2005
owing to available data sources. Additionally, we consider this methodology as suitable for
application at the global level, dependent upon the availability of required input data.

2. Methodology

2.1. Data description

Initial efforts involved a survey of the available data to determine which datasets would be
suitable for inclusion in this process (Table 1). All spatial datasets collected for the study were
processed in a geographic information system (GIS) and converted to 1 km raster resolution.

2.1.1. Remote sensing datasets

Choice of a land cover dataset for this exercise was crucial. After careful deliberation, it was
decided to use the global land cover 2000 (GLC) dataset (Bartholome and Belward 2005) for
several reasons: (1) it was produced by regional experts, specifically for northern Eurasia
(Bartalev et al. 2003); and (2) 1 km resolution was deemed sufficient, both in terms of detail
and computational speed. Other products, including MODIS and GlobCover, were not
selected at this point as they were not developed specifically for northern Eurasia and their
higher resolution was not required for this study. It would be possible, however, to apply this
methodology using either of these datasets.

The GLC dataset is based on daily data from the VEGETATION sensor onboard the
SPOT4 satellite. A total of 19 regional assessments were combined to produce the global
dataset. The GLC utilizes a global classification based on the land cover classification
system (LCCS) legend of 23 classes with a 1 km resolution. Based on 1265 sample sites
interpreted over the globe, an overall accuracy of 68.6% was determined (Mayaux et al.
2006). The accuracy of the regional product for northern Eurasia is assumed to be better than
the global estimate (Bartalev et al. 2003).

The vegetation continuous fields (VCF) product is an annual representation of percent
tree, herbaceous/shrublands, and barren cover. The three layers combine to represent 100%
ground cover. It was generated from monthly composites of 500 m MODIS data (Hansen
et al. 2002). This dataset was aggregated to 1 km resolution using a median filter. Product
accuracy of the percent tree product has been estimated from: (1) accuracy of training data;
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and (2) from limited in situ field validation datasets. Overall accuracy yielded a standard
error of estimate of 15.6% from training data and 11.5% from two field test areas.

The MODIS VCF product is the second crucial satellite-based dataset required for this
methodology. The VCF provides the necessary flexibility, allowing us to prioritize the
assignment of statistical data to land-cover data. Data can first be assigned to pixels falling
into a certain land cover class, with high percent tree values. If more area appears in the
statistics than in the land cover dataset, this can be assigned using the VCF.

Additionally, natural disturbance plays a large role in shaping the landscape of northern
Eurasia. In particular, wildfire is responsible for large areas of annual land cover change and
needs to be included in such a dataset. Wildfire data were acquired based on the advanced
very high resolution radiometer (AVHRR) (hot spots) with control of burnt area by the
LANDSAT thematic mappper (Sukhinin 2008). These data were aggregated by adminis-
trative region and year and are assumed substantially more reliable than official fire statistics
(Shvidenko and Goldammer 2001).

2.1.2. GIS datasets

One of two key GIS datasets used to assign data from different statistical inventories, the
administrative region coverage contains 91 polygons (87 regions and 4 water bodies). The
original dataset dates from 1993 (Stolbovoi andMcCallum 2002) and was rasterized to 1 km.
The second key dataset in the assignment of statistics is the Forest Enterprise dataset for the
year 2005. This was created at IIASAwith the aid of hardcopy and digital products, with a
total of about 2000 polygons.

A soil database was one of the key components for selecting the appropriate area of
arable land and wetlands. It contains a total of 292 unique soil types across the country with
21,988 polygons. The digitized soil map was developed by V.V. Dokuchaev Soil Science
Institute (Moscow) in 1996 based on a hard copy of the soil map of Russia (1:2.5 Mil scale),
edited by (Fridland 1989).

Table 1. Datasets used in creation of the hybrid Russian land-cover dataset.

Dataset Resolution Date Reference

Remote sensing
Global land cover (GLC2000) 1 km 2000 Bartholome and Belward (2005)
Vegetation continuous fields
(forest and herbaceous)

500 m 2001 Hansen et al. (2002)

Vegetation fire (AVHRR and
LANDSAT)

35 m and 1 km 2000–2007 Sukhinin (2008)

GIS
Soil 1:2.5 Mil 1988 Dokuchaev Soil Science

Institute, Moscow
Administrative regions 1:2.5 Mil 1993 Stolbovoi and McCallum (2002)
Forest enterprises 1:2.5 Mil 2005 IIASA in-house database
Vegetation 1:4 Mil 1990 Stolbovoi and McCallum (2002)
Bioclimatic zones 1:4 Mil 1990 Stolbovoi and McCallum (2002)
Rivers/lakes and roads/railways 1:1 Mil 1990 IIASA in-house database
Statistics
State Land Account 87 regions 2005 FACRE’RF (2006)
State Forest Account 1914 forest

enterprises
2003 FFS’RF (2003)

Disturbances in forests 87 regions 1991–2005 FFS’RF (2006)
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Avegetation dataset was also utilized to provide broad vegetation classes and bioclimatic
zones (derived from the dataset titled Vegetation of the former USSR), produced at a scale of
1:4 Mil (Stolbovoi and McCallum 2002). The dataset includes georeferencing of 101
vegetation classes (e.g., ‘Spruce, fir–spruce and spruce–fir forest with mosaic grass-low
bush and grass–spruce cover’ or ‘Northern semi-shrub and bunchgrass steppe’). Bioclimatic
zones were derived from the vegetation database. A total of eight zones (polar desert; tundra;
forest tundra, northern and sparse taiga; middle taiga; southern taiga; temperate forests;
steppe; and deserts and semi-deserts) were identified, and rasterized to 1 km.

In order to account for data not captured in the above datasets because of small areas of
individual polygons, but which could have substantial areas aggregated by administrative
regions (e.g., linear features; small water bodies; harvested areas, etc.), we relied on the
Russian 1:1 Mil Planimetric dataset to account for ‘virtual polygons.’ This dataset is based
on original cartographic work from the State Committee for Geology and Cartography,
USSR, and other sources. All existing railway lines and roads were buffered with 15 m,
creating 30 m wide polygons. Because of the enormous amount of small rivers, only rivers
.10 km in length were considered, and buffered 20 m to create 40 m wide polygons. Lakes
smaller in size than 400 ha were also included. All of these virtual polygons (not presented
on the map, but taken into account for the area balance and further calculations) were then
tabulated per administrative region. If we did not account for virtual polygons, we would
overestimate the areas of some land-cover classes.

2.1.3. Data of different inventories and statistics

The State Forest Account (SFA) is the only source of aggregated forest inventory data for
Russia. The last available account dates from 2003. It contains statistics for approximately
2000 forest enterprises. The SFA data contain areas and growing stock by dominant forest
species distributed by age, site index, and relative stocking. There are approximately 45 sets
of records for each enterprise on average. More information is available online (Shvidenko,
Schepaschenko, Mccallum, and Nilsson 2007).

The State Land Account (SLA) is provided annually by the State Committee of Land
Resources of Russia based on land statistics. Originally, the SLA is provided by adminis-
trative districts (about 3000 for Russia) and contains areas by (approximately 50) land
classes. Publicly available data are by administrative regions. The SLA contains a two-
dimensional official Russian land-use and land-cover hierarchical classification. The latter
includes seven primary land-use categories: (1) agricultural lands; (2) populated areas; (3)
lands for industry, energy, transport, communications, aerospace activities, defense, etc.; (4)
special protective territories; (5) forest fund; (6) water fund; and (7) state reserves. Land-
cover classes are defined by their dominant use and are based on natural and historical
characteristics. They include agricultural classes (arable; fallow; forage production (hay-
fields and pastures); and perennial vegetation) and non-agricultural land classes (lands under
surface water including bogs; forest lands and lands under tree and shrub vegetation; built-up
land; lands under roads; disturbed land – mining operations, earthmoving, etc.; and other
land – ravines, sand, dumps, etc.) (FACRE’RF 2006).

Comparison was made between total forest area within the SFA and GLC (Figure 1).
Overall agreement was high (r2 = 0.93), however in general GLC predicts more forest area
per enterprise than the SFA (approximately 20%). For individual forest enterprises (,2000),
variability is rather high. Based on this assessment, the data of the SFA were basically
deemed to be representative of Russian forests.
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2.2. Land-cover assignment

The land-cover assignment was performed on a per-pixel (1 km) basis across the entire
country. The distribution of land surface by land classes is provided based upon the relevant
combination of remote sensing products, GIS data, and statistics from different sources,
applying the general principle that the most accurate and updated information has priority in
assignment (Figure 2).

In the first stage, we allocated the total area presented in the land account by land
category (forest, agriculture, wetland, shrub/grassland, burnt area, water, and unproductive),
to the GIS and remote sensing resultant database by administrative units. The purpose of this
first step is to ensure that broad classes (i.e., forest, agriculture, etc.) are correctly assigned,
before moving to the second stage (pixel assignment). The criteria were as follows (Table 2).

The second stage involved calculating the quantitative correspondence of statistics (forest
and land account) and spatial (remote sensing,GIS) datawithin each land-cover class.We have
calculated a suitability index (Sts) for each pixel pair (grid of territory (t) and statistics record
(s)) within the territory unit (forest enterprise, administrative region) and land-cover class.

Sts ¼
1

q

Xq
j¼1
ðxnormtj � xnormsj Þ

2

 !1=2
;where

q number of parameter;
xnormtj ; xnormsj normalized value of parameter j for territory pixel t and j;

xnormj ¼ xj � xjmin

xjmax � xjmin
; where

xjmax, xjmin are maximum and minimum values of parameter j within the certain area (forest
enterprise, administrative unit).

Data on a nominal scale, that is, GLC land-cover classes were ranked with respect to a
certain vegetation class in the statistics. For example, the most suitable GLC class for pine

Figure 1. Comparison of forest area by individual forest enterprises from the State Forest Account
and GLC2000.
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forest is ‘Tree Cover, Needle-leaved, Evergreen’, thus this would receive a high rank. Pine
forest could also fit into ‘Tree Cover, Mixed Leaf Type’ or might be found in the ‘Tree Cover,
Broadleaved, Deciduous’ GLC class (and would receive a lower rank). In accordance with
SFA instructions, mixed forest is considered as coniferous if the coniferous growing stock is
more than 50%.

Table 2. Description of data combination used to assign area to land classes.

Land category Separation criteria Area assignment

Forest GLC: Tree cover and SFA, VCF
(1) VCF_trees �21% for Forest Tundra and Northern taiga
(2) VCF_trees �35% for Middle taiga and other
zones to the south

Agriculture GLC: cropland, herbaceous cover; VCF_Herbaceous
�50%; appropriate soils

SLA

Wetland Appropriate soils; GLC: shrub and herbaceous cover;
VCF_trees 13%

SLA, SFA, Soil

Open woodland (1) VCF_trees: 13–20% for Forest Tundra and Northern taiga VCFSFA
(2) VCF_trees: 13–34% for Forest Tundra and Northern taiga

Water GLC: water; (VCF_trees + VCF_herbaceous) ,50% GLC, VCF
Unproductive (1) GLC: non-vegetation; (VCF_trees + VCF_herbaceous)

,50%
GLC, VCF

(2) (VCF_trees + VCF_herbaceous) ,10%
Burnt LANDSAT SFA, LANDSAT
Grassland/
shrubland

Residuals area, classified by Vegetation map

SFA, State Forest Account; SLA, State Land Account; GLC, global land cover; VCF, vegetation continuous fields.

Figure 2. Flowchart outlining the process of integration of GIS, remote sensing, and statistical data to
produce a hybrid land-cover dataset.
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The resultant suitability index S varies from 0 to 1. It can be interpreted as a distance
between objects (grid of territory and statistics record) within the space of parameters. The
lower the index value, the more suitable is the current piece of territory for the given
statistical data. This method corresponds to the methods of land suitability assessment
(Dokuchaev 1951, FAO 1976).

The final stage involved the optimization of distribution statistics data on the territory
based on the suitability index (second stage) results. Each forest and land account record in
the statistics was assigned to the most suitable grid within each enterprise. The following
describe in detail the major land categories of land-cover assignment.

2.2.1. Forest

SFA data were assigned to the 1 km grid using the following parameters: GLC to place
species from the SFA in the most appropriate GLC classes; VCF to assign the highly stocked
forests to cells with a high VCF_trees; and Soil and vegetation zone maps to assign the most
productive forests to the best soil and climate zones.

For example, let us calculate suitability index (Table 3) for the following: statistic record
(pine forest, site index (SI) = II, relative stocking (RS) = 0.6) and the spatial data (GLC = ‘Tree
Cover, Mixed Leaf Type’, VCF_trees = 50, Soil = ‘Cambic Podzol,’ Zone = ‘Northern taiga’).

Total area, presented in the SFA, was assigned to land cover. Both remote sensing
products (VCF, GLC) sometimes identified forested area which exceeds the forested area
found in the SFA, for some administrative units. Generally these areas correspond to
territories with obsolete forest inventory data (time since inventory more than 15 years) or
areas of abandoned intensive agriculture. We distinguish these kinds of forests using GLC
‘vegetation’ classes and VCF_trees �21% (for Tundra, Forest Tundra, and Sparse &
Northern Taiga) and VCF_trees �35% (for forests situated southward of the middle taiga
zones). For these areas, we assign the most representative SFA records within the respective
administrative units and forest enterprises. The productivity parameters (i.e., growing stock,
NPP) of such forests were corrected in accordance with the VCF_trees level.

2.2.2. Agriculture

The SLA contains the following agricultural land categories by administrative regions:
arable land; hayfield; pasture; and fallow. An ‘abandoned arable land’ category was also
introduced in accordance with estimates done by the Russian Academy of Agricultural

Table 3. An example of calculating suitability index.

Parameter Value or rank
Range (for a certain forest

enterprise) Normalized value Index

VCF_trees/
Relative
stocking

50 40–80 0.25 0.25
0.6 0.5–0.7 0.50

Soil 1 (rank for forest) 1–5 0 0.25
Site index 2 1.5–3.5 0.25
Zone 2 (rank for forest) 1–2 1 0.75
Site index 2 1.50–3.5 0.25
GLC 2 (rank for pine) 1–3 0.5 0.5
Total 0.44
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Sciences in 2007 and the Federal Service of State Statistics (Kevesh 2008). We reduced the
area of arable land presented in the SLA by the abandoned land area, taking into account the
area of currently cultivated land. We used the following parameters to distribute agricultural
land: GLC (cropland, cultivated area, herbaceous cover, and mosaics); VCF_Herbaceous
(maximum value exceeds 50%); and the Soil map (soil was ranked in order of potential
agricultural productivity). The highest priority has been ascribed to arable land, then to
abandoned arable, and then other agricultural land.

2.2.3. Wetlands

Initially a probability table was created based on expert opinion, ranking soil types by their
occurrence in major wetland types. Soils with a considerable peat layer (thickness .30 cm)
as well as wet meadow and tundra soils were ranked with high probability. Some of the
selected area according to wetland probability was classified as forest based on remote
sensing data (GLC, VCF). The SLA typically overestimates wetland area because of a
specific definition of this class in the Russia wetland classification, including partly shrub
lands and fallow land. The SFA typically underestimates regional wetland area, because: (1)
it deals with the forest fund only; and (2) by definition, the SFA identifies only treeless bogs
(e.g., peatlands with tree cover stocking that satisfies the requirements of the Russian forest
inventory manual, FFS’RF 1995, to be identified as forested areas). Therefore, the final
wetlands area was assigned in the range of both land and forestry statistics based on the
available appropriate soils. Finally, nine wetland classes were chosen and assigned accord-
ing to vegetation zone, landscape peculiarities, and soil type: polygon mires; palsa mires;
aapa mires; raised string bogs; pine bogs; reed and sedge fens; marshes; flood plain wet-
lands; and eutrophic fens.

2.2.4. Open woodland

SFA data by administrative region were used to define the minimum area of open woodland
(sparse forests according to the Forest Inventory Manual definition, FFS’RF 1995) using the
correlation between canopy closure and relative stocking of stands by tree species and
vegetation zone. This area was distributed over remaining land with percent tree cover
(VCF) in the range of 13–35%. For some regions and vegetation zones, areas of open
woodland proved to be higher than the area indicated by the SFA, particularly for the regions
outside of the forest fund area (Sparse & Northern Taiga, Forest Tundra, Tundra). For such
regions, the entire area with a VCF_trees level in the range of 13–20% was shifted to open
woodland.

2.2.5. Burnt area

Burnt area is presented in the SFA by forest enterprise. Fire statistics in Russia are
notoriously uncertain (and typically underestimated) – however, burnt area measurements
made from remote sensing are assumed to be rather accurate. We combined burnt area in the
SFAwith that from remote sensing, and assigned it to the appropriate GLC class (10 – tree
cover, burnt). The remaining area was distributed according to areas of low VCF_trees
value, not previously assigned to other vegetation classes.
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2.2.6. Shrub and grassland

The assignment of shrub and grassland was the final step in the assignment of vegetative
land cover. There are no appropriate statistics recorded for this land class. Thus, we used
remote sensing data (VCF, GLC) to define the area. The vegetation dataset was used to
classify shrub and grassland types (50 classes in total).

2.2.7. Water

The GLC water class was used to assign water to the resultant coverage. Additionally, we
calculate virtual polygons: small water bodies and rivers which are not captured by remote
sensing at the resolution of 1 km. It was necessary to balance the area of the territory and for
posterior assessment of vegetation productivity. We used the 1:1 Mil Russian planimetric
dataset to provide virtual polygon assessment.

2.2.8. Unproductive

Unproductive polygons for our dataset were derived from the GLC coverage. We used the
GLC non-vegetation classes: ‘Bare Areas’, ‘Snow and Ice,’ and ‘Artificial surfaces and
associated areas.’ Infrastructure in the form of roads and railways were accounted for by
administrative region with the use of virtual polygons.

3. Results and discussion

Application of the methodology described above has resulted in the new hybrid land-cover/
land-use map of Russia at 1 km resolution (Figure 3). A total of six major land-cover types
were identified, namely: forest, agriculture, wetlands, shrubs/grasses, water, and unproductive
land. These are further subdivided into the following classes: forest – each grid links to the SFA
database (the SFA data contain areas and growing stock by seven dominant forest species
distributed by age, site index, and relative stocking), containing 86,613 records; agriculture –
five classes, parameterized by 87 administrative units; wetlands – eight classes, parameterized
by 83 zones/regions; and shrub/grassland – 50 classes, parameterized by 300 zones/regions.

A principal problem of merging and harmonizing substantially different datasets deals
with the compatibility of definitions and classification schemes used. Taking into account
the need for proper implementation of available data, we applied the Russian definitions
wherever possible. However, in the case of Russia, many important definitions do not
correspond to those agreed internationally and additionally; inconsistencies between
national definitions of different datasets (e.g., SFA and SLA) are common. However,
indicators that are measured on ground (e.g., by forest inventory) and by remote sensing
are often not compatible.

Overall, we used decision rules and regional empirical models for harmonizing the
definitions if relevant. We present our explanation for some forest definitions, while similar
problems arose for other land classes. Because of Russian forest inventory manuals, forests
are defined as tree communities with relative stocking�0.35 for young stands and�0.25 for
other development stages (immature, middle-aged, and mature stands). Relative stocking is
understood as the ratio between basal areas of individual stands and reference data for fully
stocked stands. The Food and Agricultural Organization (FAO) definition of forest (which is
also used in a number of global datasets) does not use relative stocking, but instead uses
canopy closure (as a ratio between the sum of horizontal projections of tree crowns to the

Journal of Land Use Science 253

 



area covered by forest), and the minimal threshold is set at 10% (FAO 2000). Canopy closure
is used in the majority of remote sensing products, but not uniformly. For example, VCF
accounts for crown gaps (Hansen et al. 2002), whereas the FAO definition does not. In order
to merge these definitions, we used aggregated empirical models linking canopy closure and
relative stocking which are available for Russian forests (Sukhikh 2005).

3.1. Evaluation

Evaluation of the Russian hybrid land-cover dataset is rather difficult, owing to the fact that
the majority of available material of relevance has been used in the creation of the dataset
itself. In addition, the resultant coverage is highly detailed (i.e., forest species and 1 km
resolution), making comparison to existing coarser datasets somewhat irrelevant. We have
therefore attempted to assess spatially the level of confidence in the assignment (Figure 4),
based on the assessed agreement between the input datasets.

The first class (52% of area) infers a high degree of confidence in the agreement among
the remote sensing products and the statistics. A vegetated GLC class, combined with
maximum VCF classes, was matched with corresponding statistical data. For example,
larch forest presented in the SFA for a certain administrative unit was assigned to the
‘needle-leaved deciduous’ GLC class with VCF_trees level exceeding 70%. The second
confidence class (18% of area) was assigned to territories where groups of GLC classes
(forest, agriculture, herbaceous, shrubs) and a rather high level of VCF (.50%) were used.

For the third class (24% of area), the GLC group of classes ‘vegetation’ was used along
with rather high levels of VCF (.50%). For example, we assign ‘forest’ to the GLC class
‘Shrub cover’ (not forest, but still vegetation) with VCF_trees exceeding 50%. In general,
these represent insufficient GLC parameterization and remote areas with obsolete (outdated in
situ) statistical data. Additionally, we can see this class in mountains and densely populated

Figure 3. The new hybrid land-cover/forest species map of Russia.
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areas with complex vegetation mosaics. In such mosaic areas, a 1 km grid cannot perform
better. The fourth class (4% of area) implies ‘vegetation’ on the GLC coverage and low VCF
levels (10–50%). This is mostly sparse vegetation with typical forms of disagreement such as
wetland–grassland inWest Siberia and forest-tundra ecotones in East Siberia and the Far East.

Disagreement between the two remote sensing products (GLC and VCF) is shown in the
fifth class (1% of area) where GLC reported ‘non-vegetation’ (bare areas, snow and ice, artificial
surfaces), but VCF reported ‘vegetation’ (VCF_trees + VCF_herbaceous . 50%). The majority
of the area belongs to semi-desert or tundra zones. For example, a large portion of this class
(36 · 106 ha) is situated in Kalmyk Republic and Astrahan oblast, comprised of dry steppe and
semi-dessert zone. In GLC, it is indicated as ‘bare areas,’ but VCF shows herbaceous cover in
the range of 61–98%. In accordance with the SLA data, we assigned ‘pasture’ to this area. The
fifth class also appears in mountains and on the outskirts of large cities.

Forest statistics incompleteness is shown in class 6 (1% of area). The remote sensing
products report forest area, but the SFA contain far fewer forests for the respective regions.
Most of the area lies in the European southern taiga (assumed to be abandoned agricultural
area which is afforested) or in the north (outside of managed forest area) (Figure 5). Figure 6
shows an example of afforested land in Pskov oblast, illustrating a reason for the significant
difference between the Russian SFA statistics and the remote sensing products in this part of
the country.

4. Conclusions

There is a critical need for accurate land-cover information for resource assessment, bio-
physical modeling, greenhouse gas studies, and for the estimation of possible terrestrial
responses and feedbacks to climate change (Frey and Smith 2007). Over the past two
decades, evidence has accumulated of significant contributions of extratropical Northern
Hemisphere land areas to the global uptake of anthropogenic CO2 (Schimel et al. 2001).

High agreement

1 2 3 4 5 6

Low agreement

Figure 4. Agreement/confidence classes of the hybrid land-cover map (1 = higher agreement/con-
fidence; 6 = lower agreement/confidence – classes 1 and 2 omitted for clarity).
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High agreement

1 2 3 4 5 6

Low agreement

Figure 5. Areas of inconsistency between inventory statistics and remote sensing data in Northwest
Russia. Areas in green assumed to be abandoned agricultural area which is naturally afforested and areas
in blue assumed to represent obsolete inventory statistics or areas outside of the managed forest area.

Figure 6. # Google Earth 2009. # 2009 Geocentre Consulting Image, # 2009 Digital Globe,
# Tele Atlas. A potential example of forest encroachment occurring on abandoned agricultural land in
Pskov Oblast in Northwest Russia (56�18¢40.24†N, 28�53¢13.65†E). The old drainage system is no
longer maintained and arable land shifts to wet grassland and finally to forest.
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Without accurate baseline measures of crucial datasets such as land use and land cover,
we will have little hope of monitoring the effects of global change on vegetation over large
regions. A variety of global information sets exist with data on land use and land cover,
although none of these alone satisfy the requirements of the above-mentioned aims.

This study has demonstrated the ability to produce a highly detailed (both spatially and
thematically) land-cover/land-use dataset over Russia – the largest country on the planet, by
combining existing datasets into a hybrid information system. Every source of information has
its advantages and shortcomings. Remote sensing supplies the most up-to-date information,
but a lack of parameterization and interpretation. Land statistics are the best parameterized
product, but lack spatial distribution and are partially out-of-date. GIS datasets are explicit
spatially, well parameterized, but also sometimes out-of-date. The new land-cover product
uses the advantages of all sources, supplies up-to-date geographically explicit and well-
parameterized information, thus allowing for reduction of source’s uncertainty. Validation
efforts are now underway. In order to fully validate the hybrid map, representative areas of
forest inventory data from each of the oblasts would be necessary, allowing for the creation of
confusionmatrices. In lieu of such data, a confidencemapwas produced creating six classes of
confidence in the agreement between the various remote sensing and statistical datasets.

One interesting result from this exercise was the significant difference between the remote
sensing products and the Forest State Account for the Northwest of Russia. In this region, the
statistics appear to be underreporting the amount of forest land, which has been likely
increasing in recent decades because of forest encroachment of abandoned agricultural land.

Future efforts include further validation of the hybrid land-cover dataset for Russia, and
its use for assessment of the terrestrial biota full greenhouse gas budget for northern Eurasia.
The algorithm presented in this study is flexible, allowing for the inclusion of additional
existing datasets or newly created datasets in the future (i.e., elevation, lidar biomass, and
more). The main advantage of the methodology is the ability to link on-ground data and
models to the remote sensing products. Additional dataset attributes not described here but
included in the hybrid dataset include live biomass, growing stock volume, gross growth, net
growth, mortality, net primary production, coarse woody debris, and others.

In addition to regional and continental applications, the possibility of applying this
methodology over the globe now exists, with the majority of input datasets used being global.
The method allows use of not only the fixed set of data, but all existing relevant information.
We consider some other remote sensing products (e.g., GlobCover, elevation models, lidar
data, and others) as very promising for use in this methodology. In addition, it would be
possible to place weights on datasets (i.e., favoring data with low uncertainty) or recently
updated statistics. Adoption of such techniques by the FAO might provide a useful enhance-
ment to their provision of global forest statistics. With land-cover statistics typically updated
every five years (e.g., Russia), this methodology could be repeated. In combination with
annual GLC products (i.e., MODIS); new products could be operationally produced on an
annual basis in an automated fashion. However, global implementation of the discussed
technology requires substantial efforts: it is impossible to implement based on only a few
remote sensing indicators (common practice for many global products) with insufficient use of
ground truth data.
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