Dmitri Kuzmin

Dmitri Kuzmin
Technische Universität Dortmund | TUD · Department of Mathematics

About

169
Publications
22,152
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,299
Citations

Publications

Publications (169)
Preprint
Full-text available
We show that finite element discretizations of incompressible flow problems can be designed to ensure preservation/dissipation of kinetic energy not only globally but also locally. In the context of equal-order (piecewise-linear) interpolations, we prove the validity of a semi-discrete energy inequality for a quadrature-based approximation to the n...
Preprint
We propose a combination of machine learning and flux limiting for property-preserving subgrid scale modeling in the context of flux-limited finite volume methods for the one-dimensional shallow-water equations. The numerical fluxes of a conservative target scheme are fitted to the coarse-mesh averages of a monotone fine-grid discretization using a...
Preprint
We propose a way to maintain strong consistency and facilitate error analysis in the context of dissipation-based WENO stabilization for continuous and discontinuous Galerkin discretizations of conservation laws. Following Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) and Vedral (arXiv preprint arXiv:2309.12019), we use WENO shock detectors...
Preprint
In this work, we use the monolithic convex limiting (MCL) methodology to enforce relevant inequality constraints in implicit finite element discretizations of the compressible Euler equations. In this context, preservation of invariant domains follows from positivity preservation for intermediate states of the density and internal energy. To avoid...
Article
Full-text available
We extend the monolithic convex limiting (MCL) methodology to nodal discontinuous Galerkin spectral-element methods (DGSEMS). The use of Legendre-Gauss-Lobatto (LGL) quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolutio...
Preprint
Full-text available
We address the numerical treatment of source terms in algebraic flux correction schemes for steady convection-diffusion-reaction (CDR) equations. The proposed algorithm constrains a continuous piecewise-linear finite element approximation using a monolithic convex limiting (MCL) strategy. Failure to discretize the convective derivatives and source...
Preprint
We investigate the consistency and convergence of flux-corrected finite element approximations in the context of nonlinear hyperbolic conservation laws. In particular, we focus on a monolithic convex limiting approach and prove a Lax--Wendroff-type theorem for the corresponding semi-discrete problem. A key component of our analysis is the use of a...
Article
We consider the Fokker–Planck equation (FPE) for the orientation probability density of fiber suspensions. Using the continuous Galerkin method, we express the numerical solution in terms of Lagrange basis functions that are associated with N nodes of a computational mesh for a domain in the 3D physical space and M nodes of a mesh for the surface o...
Preprint
Full-text available
We extend the monolithic convex limiting (MCL) methodology to nodal discontinuous Galerkin spectral element methods (DGSEM). The use of Legendre-Gauss-Lobatto (LGL) quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain preserving high-resolution...
Preprint
We present a new perspective on the use of weighted essentially nonoscillatory (WENO) reconstructions in high-order methods for scalar hyperbolic conservation laws. The main focus of this work is on nonlinear stabilization of continuous Galerkin (CG) approximations. The proposed methodology also provides an interesting alternative to WENO-based lim...
Preprint
Full-text available
A well-designed numerical method for the shallow water equations (SWE) should ensure well-balancedness, nonnegativity of water heights, and entropy stability. For a continuous finite element discretization of a nonlinear hyperbolic system without source terms, positivity preservation and entropy stability can be enforced using the framework of alge...
Article
We explore a new way to handle flux boundary conditions imposed on level sets. The proposed approach is a diffuse interface version of the shifted boundary method (SBM) for continuous Galerkin discretizations of conservation laws in embedded domains. We impose the interface conditions weakly and approximate surface integrals by volume integrals. Th...
Article
We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and P...
Article
Full-text available
We introduce a general framework for enforcing local or global maximum principles in high-order space-time discretizations of a scalar hyperbolic conservation law. We begin with sufficient conditions for a space discretization to be bound preserving (BP) and satisfy a semi-discrete maximum principle. Next, we propose a global monolithic convex (GMC...
Article
The algebraic flux correction (AFC) schemes presented in this work constrain a standard continuous finite element discretization of a nonlinear hyperbolic problem to satisfy relevant maximum principles and entropy stability conditions. The desired properties are enforced by applying a limiter to antidiffusive fluxes that represent the difference be...
Preprint
We explore a new way to handle flux boundary conditions imposed on level sets. The proposed approach is a diffuse interface version of the shifted boundary method (SBM) for continuous Galerkin discretizations of conservation laws in embedded domains. We impose the interface conditions weakly and approximate surface integrals by volume integrals. Th...
Preprint
Full-text available
We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and $\...
Preprint
To ensure preservation of local or global bounds for numerical solutions of conservation laws, we constrain a baseline finite element discretization using optimization-based (OB) flux correction. The main novelty of the proposed methodology lies in the use of flux potentials as control variables and targets of inequality-constrained optimization pr...
Preprint
Full-text available
The algebraic flux correction (AFC) schemes presented in this work constrain a standard continuous finite element discretization of a nonlinear hyperbolic problem to satisfy relevant maximum principles and entropy stability conditions. The desired properties are enforced by applying a limiter to antidiffusive fluxes that represent the difference be...
Preprint
Full-text available
We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error of the spatial semi-discretization. Moreover, we...
Article
We introduce new intersection-distribution-based remapping tools for indirect staggered arbitrary Lagrangian-Eulerian (ALE) simulations of multi-material shock hydrodynamics on arbitrary meshes. In addition to conserving momentum and total energy, the three-stage remapper proposed in this work preserves non-negativity of the internal energy. At the...
Article
In this work, we discuss and develop multidimensional limiting techniques for discontinuous Galerkin (DG) discretizations of scalar hyperbolic problems. To ensure that each cell average satisfies a local discrete maximum principle (DMP), we impose inequality constraints on the local Lax–Friedrichs fluxes of a piecewise-linear (P1) approximation. Si...
Article
In this work, we modify a continuous Galerkin discretization of a scalar hyperbolic conservation law using new algebraic correction procedures. Discrete entropy conditions are used to determine the minimal amount of entropy stabilization and constrain antidiffusive corrections of a property-preserving low-order scheme. The addition of a second-orde...
Article
This paper addresses the design of linear and nonlinear stabilization procedures for high-order continuous Galerkin (CG) finite element discretizations of scalar conservation laws. We prove that the standard CG method is entropy conservative for the square entropy. In general, the rate of entropy production/dissipation depends on the residual of th...
Preprint
Full-text available
We introduce new intersection-distribution-based remapping tools for indirect staggered arbitrary Lagrangian-Eulerian (ALE) simulations of multi-material shock hydrodynamics on arbitrary meshes. In addition to conserving momentum and total energy, the three-stage remapper proposed in this work preserves non-negativity of the internal energy. At the...
Article
The methodology proposed in this paper bridges the gap between entropy stable and positivity-preserving discontinuous Galerkin (DG) methods for nonlinear hyperbolic problems. The entropy stability property and, optionally, preservation of local bounds for cell averages are enforced using flux limiters based on entropy conditions and discrete maximu...
Article
We present a new intersection-distribution-based remapping method between arbitrary polygonal meshes for indirect staggered multi-material arbitrary Lagrangian-Eulerian hydrodynamics. All cell-centered material quantities are conservatively remapped using intersections between the Lagrangian (old, source) mesh and the rezoned (new, target) mesh. Th...
Preprint
We consider a Gierer-Meinhardt system on a surface coupled with a parabolic PDE in the bulk, the domain confined by this surface. Such a model was recently proposed and analyzed for two-dimensional bulk domains by Gomez, Ward and Wei (SIAM J. Appl. Dyn. Syst. 18, 2019). We prove the well-posedness of the bulk-surface system in arbitrary space dimen...
Preprint
We introduce a general framework for enforcing local or global inequality constraints in high-order time-stepping methods for a scalar hyperbolic conservation law. The proposed methodology blends an arbitrary Runge-Kutta scheme and a bound-preserving (BP) first-order approximation using two kinds of limiting techniques. The first one is a predictor...
Preprint
Full-text available
In this work, we discuss and develop multidimensional limiting techniques for discontinuous Galerkin (DG) discretizations of scalar hyperbolic problems. To ensure that each cell average satisfies a local discrete maximum principle (DMP), we impose inequality constraints on the local Lax-Friedrichs fluxes of a piecewise-linear (P1) approximation. Si...
Preprint
Full-text available
We present a new intersection-distribution-based remapping method between arbitrary polygonal meshes for indirect staggered multi-material arbitrary Lagrangian-Eulerian hydrodynamics. All cell-centered material quantities are conservatively remapped using intersections between the Lagrangian (old, source) mesh and the rezoned (new, target) mesh. Th...
Preprint
This paper addresses the design of linear and nonlinear stabilization procedures for high-order continuous Galerkin (CG) finite element discretizations of scalar conservation laws. We prove that the standard CG method is entropy conservative for the square entropy. In general, the rate of entropy production/dissipation depends on the residual of th...
Preprint
The methodology proposed in this paper bridges the gap between entropy stable and positivity-preserving discontinuous Galerkin (DG) methods for nonlinear hyperbolic problems. The entropy stability property and, optionally, preservation of local bounds for the cell averages are enforced using flux limiters based on entropy conditions and discrete ma...
Article
This work introduces a new type of constrained algebraic stabilization for continuous piecewise-linear finite element approximations to the equations of ideal magnetohydrodynamics (MHD). At the first step of the proposed flux-corrected transport (FCT) algorithm, the Galerkin element matrices are modified by adding graph viscosity proportional to th...
Article
Using the theoretical framework of algebraic flux correction and invariant domain preserving schemes, we introduce a monolithic approach to convex limiting in continuous finite element schemes for linear advection equations, nonlinear scalar conservation laws, and hyperbolic systems. In contrast to flux-corrected transport (FCT) algorithms that app...
Article
In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborh...
Preprint
In this work, we modify a continuous Galerkin discretization of a scalar hyperbolic conservation law using new algebraic correction procedures. Discrete entropy conditions are used to determine the minimal amount of entropy stabilization and constrain antidiffusive corrections of a property-preserving low-order scheme. The addition of a second-orde...
Article
This paper is focused on the aspects of limiting in residual distribution (RD) schemes for high-order finite element approximations to advection problems. Both continuous and discontinuous Galerkin methods are considered in this work. Discrete maximum principles are enforced using algebraic manipulations of element contributions to the global nonli...
Article
In this work, a stabilized continuous Galerkin (CG) method for magnetohydrodynamics (MHD) is presented. Ideal, compressible inviscid MHD equations are discretized in space on unstructured meshes using piecewise linear or bilinear finite element bases to get a semi-discrete scheme. Stabilization is then introduced to the semi-discrete method in a st...
Article
This work extends the concepts of algebraic flux correction and convex limiting to continuous high-order Bernstein finite element discretizations of scalar hyperbolic problems. Using an array of adjustable diffusive fluxes, the standard Galerkin approximation is transformed into a nonlinear high-resolution scheme which has the compact sparsity patt...
Chapter
Full-text available
In the present paper, we use modified shallow water equations (SWE) to reconstruct the bottom topography (also called bathymetry) of a flow domain without resorting to traditional inverse modeling techniques such as adjoint methods. The discretization in space is performed using a piecewise linear discontinuous Galerkin (DG) approximation of the fr...
Chapter
In this paper, we stabilize and limit continuous Galerkin discretizations of a linear transport equation using an algebraic approach to derivation of artificial diffusion operators. Building on recent advances in the analysis and design of edge-based algebraic flux correction schemes for singularly perturbed convection-diffusion problems, we derive...
Preprint
In this work, we introduce algebraic flux correction schemes for enriched (P 1 ⊕ P 0 and Q 1 ⊕ P 0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the n...
Article
Many mathematical models of computational fluid dynamics involve transport of conserved quantities, which must lie in a certain range to be physically meaningful. The analytical or numerical solution u of a scalar conservation law is said to be bound-preserving if global bounds u∗ and u∗ exist such that u∗≤u≤u∗ holds in the domain of definition. Th...
Article
In this work, we introduce a new residual distribution (RD) framework for the design of bound-preserving high-resolution finite element schemes. The continuous and discontinuous Galerkin discretizations of the linear advection equation are modified to construct local extremum diminishing (LED) approximations. To that end, we perform mass lumping an...
Article
Full-text available
This paper is focused on efficient Monte Carlo simulations of Brownian diffusion aspects in particle-based numerical methods for solving transport equations on a sphere (or a circle). Using the heat equation as a model problem, random walks are designed to emulate the action of the Laplace-Beltrami operator without evolving or reconstructing the pr...
Preprint
This work extends the concepts of algebraic flux correction and convex limiting to continuous high-order Bernstein finite element discretizations of scalar hyperbolic problems. Using an array of adjustable diffusive fluxes, the standard Galerkin approximation is transformed into a nonlinear high-resolution scheme which has the compact sparsity patt...
Article
In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. Th...
Article
The partition of unity finite element method (PUFEM) proposed in this paper makes it possible to blend space and time approximations of different orders in a continuous manner. The lack of abrupt changes in the local mesh size h and polynomial degree p simplifies implementation and eliminates the need for using sophisticated hierarchical data struc...
Preprint
Full-text available
Many mathematical models of computational fluid dynamics involve transport of conserved quantities which must lie in a certain range to be physically meaningful. The analytical or numerical solution u of a scalar conservation law is said to satisfy a maximum principle (MP) if global bounds umin and umax exist such that umin ≤ u ≤ umax holds in the...
Article
Second and higher order numerical approximations of conservation laws for vector fields call for the use of limiting techniques based on generalized monotonicity criteria. In this paper, we introduce a family of directional vertex-based slope limiters for tensor-valued gradients of formally second-order accurate piecewise-linear discontinuous Galer...
Article
We introduce a new level set method for representing evolving interfaces. In the case of divergence-free velocity fields, the new method satisfies a conservation principle. Conservation is important for many applications such as modeling two-phase incompressible flow. In the present implementation, the conserved quantity is defined as the integral...
Article
We present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total...
Article
This paper presents a bottom-up approach to derivation of orientation tensor closures for fiber suspension flow models. To begin with, we consider polynomial approximations based on the two-dimensional (2D) versions of the linear, quadratic, natural, and orthotropic smooth closures for reconstruction of the fourth-order orientation tensor. A numeri...
Technical Report
We present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configura- tion. The density, momentum, and tota...
Article
We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation...
Article
This paper presents new linearity-preserving nodal limiters for enforcing discrete maximum principles in continuous (linear or bilinear) finite element approximations to transport problems with steep fronts. In the process of algebraic flux correction, the oscillatory antidiffusive part of a high-order base discretization is decomposed into a set o...
Article
In this paper, we present an anisotropic version of a vertex-based slope limiter for discontinuous Galerkin methods. The limiting procedure is carried out locally on each mesh element utilizing the bounds defined at each vertex by the largest and smallest mean value from all elements containing the vertex. The application of this slope limiter guar...
Article
This paper presents some new tools for enforcing discrete maximum principles and/or positivity preservation in continuous piecewise-linear finite element approximations to convection-dominated transport problems. Using a linear first-order advection equation as a model problem, we construct element-level bilinear forms associated with first-order a...
Article
This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net....
Article
This paper presents an implicit finite element (FE) scheme for solving the equations of ideal magnetohydrodynamics in 1D and 2D. The continuous Galerkin approximation is constrained using a flux-corrected transport (FCT) algorithm. The underlying low-order scheme is constructed using a Rusanov-type artificial viscosity operator based on scalar diss...
Article
In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerk...
Article
A new optimal control problem that incorporates the residual of the Eikonal equation into its objective is presented. The formulation of the state equation is based on the level set transport equation but extended by an additional source term, correcting the solution so as to minimize the objective functional. The method enforces the constraint so...
Article
This work addresses the design of failsafe flux limiters for systems of conserved quantities and derived variables in numerical schemes for the equations of gas dynamics. Building on Zalesak's multidimensional flux-corrected transport (FCT) algorithm, we construct a new positivity-preserving limiter for the density, total energy, and pressure. The...
Article
Full-text available
Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The underlying high-order transport scheme is constructed by injecting the partially-continuous field i...
Article
We present a method for solution of linear systems resulting from discontinuous Galerkin (DG) approximations. The two-level algorithm is based on a hierarchical scale separation scheme (HSS) such that the linear system is solved globally only for the cell mean values which represent the coarse scales of the DG solution. The system matrix of this co...
Article
In this paper, we introduce a reduced discontinuous Galerkin method in which the space of continuous piecewise-linear functions (CG1) is enriched with discontinuous piecewisequadratics (DG2). The resultant finite element approximation is continuous at the vertices of the mesh and discontinuous across edges/faces. We analyze the properties of the CG...
Article
Full-text available
In this paper, we present a conservative, positivity-preserving, high-resolution nonlinear ALE-flux-corrected transport (FCT) scheme for reactive transport models in moving domains. The mathematical model is a convection–diffusion equation with a nonlinear flux equation on the moving channel wall. The reactive transport is assumed to have dominant...
Article
In this paper, we present the CG1–DG2 method for convection–diffusion equations. The space of continuous piecewise-linear functions is enriched with discontinuous quadratics so that the resultant finite element approximation is continuous at the vertices of the mesh but may have jumps across the edges. Three different approaches to the discretizati...
Article
In this paper, we discuss the numerical treatment of three-dimensional mixture models for (semi-)dilute and concentrated suspensions of particles in incompressible fluids. The generalized Navier-Stokes system and the continuity equation for the volume fraction of the disperse phase are discretized using an implicit high-resolution finite element sc...
Article
This paper presents two different versions of an optimal control method for enforcing mass conservation in level set algorithms. The proposed PDE-constrained optimization procedure corrects a numerical solution to the level set transport equation so as to satisfy a conservation law for the corresponding Heaviside function. In the original version o...
Conference Paper
This paper presents an \(hp\)-adaptive flux-corrected transport algorithm based on the reference solution approach. It features a finite element approximation with unconstrained high-order elements in smooth regions and constrained \(Q1\) elements in the neighborhood of steep fronts. The difference between the reference solution and its projection...
Article
This paper presents a new conservative level set method for numerical simulation of evolving interfaces. A PDE-constrained optimization problem is formulated and solved in an iterative fashion. The proposed optimal control procedure constrains the level set function to satisfy a conservation law for the corresponding Heaviside function. The target...
Article
In this paper, we present a collection of algorithmic tools for constraining high-order discontinuous Galerkin (DG) approximations to hyperbolic conservation laws. We begin with a review of hierarchical slope limiting techniques for explicit DG methods. A new interpretation of these techniques leads to an unconditionally stable implicit algorithm f...
Article
Full-text available
This paper presents a postprocessing technique for estimating the local regularity of numerical solutions in high-resolution finite element schemes. A derivative of degree p ≥ 0 is considered to be smooth if a discontinuous linear reconstruction does not create new maxima or minima. The intended use of this criterion is the identification of smooth...
Article
The use of high‐order polynomials in discontinuous Galerkin (DG) approximations to convection‐dominated transport problems tends to cause a violation of the maximum principle in regions where the derivatives of the solution are large. In this paper, we express the DG solution in terms of Taylor basis functions associated with the cell average and d...
Article
Numerical simulation of incompressible multiphase flows with immiscible fluids is still a challenging field, particularly for 3D configurations undergoing complex topological changes. In this paper, we discuss a 3D FEM approach with high-order Stokes elements (Q 2 /P 1 ) for velocity and pressure on general hexahedral meshes. A discontinuous Galerk...
Article
Convection of a scalar quantity by a compressible velocity field may give rise to unbounded solutions or nonphysical overshoots at the continuous and discrete level. In this paper, we are concerned with solving continuity equa-tions that govern the evolution of volume fractions in Eulerian models of disperse two-phase flows. An implicit Galerkin fi...
Article
SUMMARYA semi-implicit finite element scheme and a Newton-like solver are developed for the stationary compressible Euler equations. Since the Galerkin discretization of the inviscid fluxes is potentially oscillatory and unstable, the troublesome antidiffusive part is constrained within the framework of algebraic flux correction. A generalization o...
Article
This paper presents an $hp$ -adaptive flux-corrected transport algorithm for continuous finite elements. The proposed approach is based on a continuous Galerkin approximation with unconstrained higher-order elements in smooth regions and constrained $P_1/Q_1$ elements in the neighborhood of steep fronts. Smooth elements are found using a hierar...
Article
This paper presents a new approach to reinitialization in finite element methods for the level set transport equation. The proposed variational formulation is derived by solving a minimization problem. A penalty term is introduced to preserve the shape of the free interface in the process of redistancing. In contrast to hyperbolic PDE reinitializat...
Article
This paper is concerned with the development of general-purpose algebraic flux correction schemes for continuous (linear and multilinear) finite elements. In order to enforce the discrete maximum principle (DMP), we modify the standard Galerkin discretization of a scalar transport equation by adding diffusive and antidiffusive fluxes. The result is...
Chapter
Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity opera...
Chapter
This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusi...
Article
In this paper, we present numerical techniques for one-way coupling of CFD and Popu-lation Balance Equations (PBE) based on the incompressible flow solver FeatFlow which is extended with Chien's Low-Reynolds number k − ε turbulence model, and breakage and coalescence closures. The presented implementation ensures strictly conservative treatment of...
Article
Full-text available
To use the manifold possibilities that arc spraying offers to deposit wear resistance layers, knowledge of the particle formation and their behavior is necessary. This work is focused on studying the particle properties during arc spraying with cored wires. Different cored wires under various spraying parameters are investigated by means of a high...

Network

Cited By