

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

28

A New Machine Learning based Approach for Text Spam
Filtering Technique

Dipmalya Sen
Department of CSE

B.P.P.I.M.T, Kolkata, India

Chandan Das
Department of AEIE

BCREC, Durgapur, India

Sarit Chakraborty
Department of CSE

B.P.P.I.M.T
Member, IEEE, Kolkata, India

ABSTRACT
Electronic mail (e-mail) has become an essential element in

our daily activities in recent past. Volume of email traffic is

increasing many a fold in last couple of decades. Out of all

such e-mails around 80% are unwanted mails, called as

unsolicited bulk email (UBE) or spam mails. With the drastic

increase in the use of electronic mail, there has also been an

escalation in the problem of dealing with spam mails. In spite

of availability of many commercial text based spam filters,

users still suffer from the problem of spam mail, which

unnecessarily accumulated in their inbox.

In this work, we have proposed a spam detection algorithm

based on Machine Learning approach. We have used the

concept of Cumulative Weighted Sum (CWS) seeking to

achieve a greater rate of accuracy in detecting spam mails.

Three different techniques are also proposed for calculating

CWS value. Our method is able to detect most of the spam

and provides an accurate and dynamic filtration for such

mails. Experimental results of our technique with different

benchmark datasets are quite significant and gives much

improved performance than the available text spam filters.

Keywords

E-mail, Spam, Ham, Machine learning, Naïve-Bayes,

Cumulative-Weighted Sum

1. INTRODUCTION
The most effective and formal method of communication in

current days is Electronic mail commonly known as „E mail‟.
More than 500 million people in the world have internet

access and the popularity of email technology has grown

rapidly in recent years [7]. But, the day to day increase in the

number of spam mails has caused a big reason of

dissatisfaction amongst the users. Spam mails not only

hamper the user‟s mailing experience but also in many cases

become the source of computer virus or malware as well and

negative impact on the user‟s professional as well as personal

life.

Until recent past, this problem was only stuck to text-based

spam mail. Presently spammers have taken a new approach;

where apart from sending the spams by text form they send it

via image files like .jpg, .png, or .gif formats [5-6]. To prevent

these spammers and to give the users a better mailing

experience, a number of methodology have been proposed till

date [1-3], which include algorithms like Support Vector

Machines, Naive-Bayesian [10-11], Decision tree classifiers

based methods [7-9] and other machine learning techniques

[4]. Many spam filtering software have also been developed

over the years. But, still the problem of spam mail is present

as it was. In most of the cases, a few organizations take this

spam mail as an important tool for advertising. Mostly, they

send fake links showing a lust for offers or prizes and draw

visitors, and in other occasions, it is mostly pranks.

There are many solutions to spam filtering, e.g., the blacklist

and white-list filtering techniques [14], decision tree based

approaches [7], [8], [9] and machine learning based methods

[4], [15]. Among various solutions, machine learning based

ones are receiving more attention due to its high accuracy rate

for spam detection.

For detecting text spam mails, initially we have chosen a

trivial list of sample keywords with a pre-assigned weightage

for each key. As soon as, the user allows access to the

application, the proposed machine-learning algorithm will

start scanning different parameters at the client site and

analysed the available data like the user inbox, sent items,

contacts and alongside the browsing history etc. Based on

these parameters the data analysed the keywords list will get

updated. This procedure will be then followed by fixation of

weightage to each mail based on the algorithm of Cumulative

Weighted Sum and check whether the weightage crosses the

granted threshold limit. If it does, then the mail can be

considered as spam else non-spam (ham).

A complete client-based spam-detection method is proposed

in this work. The model when implemented as application

software can be attached as a plug-in to any browser. By

allowing the application to access one‟s e-mail, this will

automatically detect spam mails and give the user a better

mailing experience with customizable user needs.

2. PRELIMINERIES
Spam mails or unsolicited mails can be categorized into two

major types- i.) Content or text-based spam mail [12-13] and

ii.) Image based spam mails [5-6].

2.1 Text Spam mails
The most general types of mails that are sent across the

internet are mainly in the text format. These include mostly

advertisements and offers in text format. This format of spam

mails is sent through mostly as SMS and E-mails.

2.2 Image Spam mails
In recent times, spammers have adopted this new technique,

so that the mails can go undetected through any text spam

filters. Advertisements, Offers, Lotteries and other mails that

were been sent via text in the past days are now being sent in

the form of images. Image spam exploded in 2006 and by

early 2007 it had reached a peak of over 50% of total spam

received and its menace is still going. Some typical image-

based spam are shown in Fig. 1

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

29

Fig. 1: A typical example of image-based spam mail

3. METHODOLOGY
The proposed method in this paper for spam mail detection is

based on Machine Learning concepts. The focus of our work

is given for superior user experience and customizable spam-

detection mechanism according to the specific needs of a user.

The detailed analysis of our method named as User‟s-based

Machine Learning Algorithm (UMLA) is as follows:

3.1. User-based Machine Learning

Algorithm
For detecting a text-based or image-based spam mail, the

primary criterion is the content of the mails we are dealing

with. Then to detect whether the content is good or bad,

legitimate or illegal, having some perceived value or useless

based on the user‟s point of view has been taken into

consideration. We have to tally whether the keywords in the

mail‟s content match with the set of keywords predefined in

our algorithm‟s list. This set of keywords are not static in

nature, rather it depends on six different parameters as below:

 The user‟s choice of words in his own sent-mails

 The contact list of the user‟s email account

 The user‟s browsing history

 The accounts opened from the browser

 The user‟s inbox and drafts

 User‟s profile e.g. Age, Sex, Ethnicity, Locations of

living etc.

From the six-tuple analysis as above, the algorithm will

update the pre-assigned keyword list and re-assign the

keywords along with their weightage. Let us now, elaborate

the six-tuple based method of analysis:

1. The choice / uses of words vary from user to user. The

word that may be irrelevant to a particular user might have

some relevance to some other user. So, to get a complete

overview of the user‟s choice, the algorithm primarily checks

the sent mails of the users. After scanning the sent mails, if

the keyword counter detects the abundance of a particular

keyword which was primarily present in the default keyword

list, then there will be two choices, firstly, to reduce the

weightage of that particular keyword or secondly, to remove

the keyword from the keyword list.

For example, let us assume a user, who is a property dealer /

developer. Primarily, the keyword list had words like

“Offers”, “Sale”, “Discount”, etc. as blacklisted words. But

for this user, from analysis, it was seen that the words

“Discount” and “Sale” are being used by the user himself in

many occasions. So, it as per the algorithm, depending on the

number of occurrences of these keywords, the spam-

weightage of these words will either be diminished or

removed from the black-list. This process will continue

periodically and if it is seen that the user has decreased or

ceased the use of such words, then depending on the current

usage, those keywords can again be added to the spam-list.

Thus the list gets re-checked and re-formed in every 30 days‟

time period dynamically. This dynamicity of the entire

process is one of the significant feature of our algorithm

proposed and gives much accurate spam detection according

to user‟s need.

2. The next most important analysis before fixing weight to

any mail is analyzing the contact list of the user. If a mail is

being sent from someone who belongs to the contact list of

the user, then it is assumed that the sender‟s mail is non-spam

and it is a trusted source. Hence, this analysis would reduce

the effort of scanning the mail.

3. To detect whether a mail is spam or not, another necessary

step is to check the user‟s browsing history. This is where the

Browser Intelligence System (BIS) comes into picture. Our

proposed algorithm will go through the browser‟s history,

bookmarks and the most visited websites for last three

months. If from analysis, it is observed that some mail is

coming from a domain, which the user visits on a regular

basis, then the algorithm will put that domain or website into

the trusted list and the mail from that website will be treated

as non-spam.

For example, let us assume a user visits www.xyz.com on

almost a regular basis (≥ some threshold value ϒ and time

duration taken as 30 days), and that website sends the user

mails with domain xyz.com. Under this scenario, the mail will

not be treated as a spam mail by default. But, since the

algorithm is dynamic, if the user stops visiting that website for

a long time and if mails from that website remain unseen, then

those mails will go to spam mail folder if those are spam

indeed considering other criteria.

4. The next application of the Browser Intelligence System is

done by checking all the accounts that are opened from that

browser or the user uses the same email id for other websites.

If this happens, then the algorithm will put that domain or

website into the trusted list, and all the mails from that

website will be treated as legitimate mails.

For example, let us assume the user uses his email id for his

account in some E-Commerce website and is a user of that

website. Then even if any notice regarding sale or discount

comes from that website, then that mail will be treated as a

useful mail for the user.

5. The next analysis is the analysis of the user‟s Inbox as

well as mails in Drafts. If the scenario happens such that the

user visits the Spam mail folder and checks any mail and click

any link in that mail or save it as Draft, then that source will

be treated as a trusted source.

6. In the last analysis, the algorithm would check the user‟s

profile, his/her age and gender, ethnicity, locations of living,

social background and depending on that there would be a

final filter on the keyword list and also the weight fixation for

the keywords will be done accordingly. The pseudo-code of

our method (UMLA) is given in Fig. 2.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

30

3.2 Cumulative Weight Fixation:
Once our User-based Machine Learning Algorithm (UMLA)

is applied, then the successive steps that will keep on

following for every mail is affixing weight to each mail. The

keyword list generated from the UMLA will be used to assign

weightage to each mail. If the weightage exceeds the pre-

defined threshold value then the mail will be treated as a

spam. To make this process efficient and quick, we have

divided the task into two parts: a. Searching Algorithm

adopted for keyword listing and b. Weight Fixation for each

mails.

Inputs:

i. The set of pre-assigned keywords k1, k2, k3… kn ∈ K

ii. The set of weightage values for the respective keywords

w1,w2,w3,…wn ∈ W

iii. Threshold value: Wt , Contact list : CL

Pre-Process:

1. Check Sent Mails

1.1. If(count(ki) > Wt)

then, drop(ki) and drop(wi) from set K and W

respectively; where ki ∈ K and wi ∈ W

2. Check Contact

2.1 if(mail →sender ∈ CL)

 Treat the mail as non-spam

3. Check Browsing History of the Browser

3.1 if(mail→sender ∈ website_visited)

 Treat the mail as non-spam

4. Check Accounts saved in Browser‟s cache

4.1 if(mail→sender ∈ website_in_cache)

 Treat the mail as non-spam

5. Check User‟s Profile

5.1 if(user‟s age < 18)

 Drop or Add certain keywords

5.2 if(user‟s gender = = „Female‟)

 Drop or Add certain keywords

6. Alter the set K and W and update as KNEW and WNEW

Weight-Fixation:

Weight Fixation:

Output: mi ← Spam / Ham

Fig. 2: Pseudo-code for UMLA method

If we assume a text mail containing „n‟ words, then simple

iterative searching method will make a complexity of O(n) for

each word in the list. To avoid that amount of complexity for

searching every word from the mails, we have divided the

task into two sub-tasks:

i. Formation of a Binary Search Tree with the

keywords of each mail in alphabetical

ascending order.

ii. Searching each keyword from the Binary

Search Tree (Bt) and compared with the latest

formed keyword list (KNEW).

This searching procedure will have an overall complexity of

O(log2n) for searching each keyword after the Binary Search

Tree is formed. If we had followed the trivial searching

method, then for every word, we had to search the entire text

and for every iteration, the complexity would have been O (n).

If we had followed the trivial searching method, then for

every word, we had to search the entire text and for every

iteration, the complexity would have been O(n) as shown by

green line in Fig. 3. The X-axis represents number of mails

and the Blue line represents the complexity of our searching

method.

Fig. 3: Searching time comparison of traditional spam-

detection methods Vs. UMLA

This searching technique is applied in finding the words from

the keyword list along with the occurrence of the words and

finally calculating the weight of each mail. To calculate the

weight of each mail we have proposed three different

approaches.

i. Frequency-based weight fixation

ii. Matrix-based weight fixation

iii. Tree-based weight fixation

Basis of Weight Fixation:
We have taken 1000 e-mails from the sample data set and we

denote them as m1, m2, m3, m4 ...m1000. Out of these 1000 mails

there might be some spam mails, which we are about to

detect. Three possible techniques of weight fixation we have

used in our method depending on context of the mails.

i. Frequency based Weight Fixation:

In this procedure, firstly we follow the searching technique

and put the e-mails in a list according to the keywords found

along with its frequency of occurrence as shown in Table 1:

Table 1: Frequency of occurrence of the keywords

free(3) lottery(3) discount(3) deal(2) offer(2) sex(2)

m3(3) m7(2) m2(1) m 13(2) m37(2) m489(1)

m50(1) m501(1) m52(3) m 50(2) m705(3) m802(3)

m88(2) m145(2) m812(1)

0 20 40 60

O(n)

O(log2n)

Loop i from 1 to n ; where „n‟ is the number of mails in inbox

 Select mail mi where mi ∈ n ∀ i ∈ I+

 String s[] ← ki from mi ; // ki represents keywords in mi

 Form Binary Search Tree (Bt) ;

 Loop from 1 to n

 Check(mi,kj) ∀ 1≤i≤n ∧ kj ∈ KNEW

 if match found

 Then, Wmi = Wmi + [(f*WNEW i) + Wmi/10]

 Map mi to the total weight of mi;

 If (Wmi ≥ Wt)

 Then mi ← spam

 Else

 mi ← non-spam

End loop

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

31

for row = 0 to n

 for col = 0 to n

 do

 if (mail[row][col] ≠ 0) then

 if (freq[row][col] < 2) then

 weight[mail[row][col]] ← freq[row][col]*list[col];

if(weight[mail[row][col]] > 10) then

 move_to_spam(mail[row][col]);

 else if (freq[row][col] ≥ 2) then

 weight[mail[row][col]] ← weight[mail[row][col]]

 + (list[col]* freq[row][col])

 +(weight[mail[row][col]] ÷ 10);

 if(weight[mail[row][col]] > 10) then

 move_to_spam(mail[row][col]);

 done

end loop

From the keyword list, if we multiply the occurrences of each

keyword with their respective weights, we can calculate the

weightage of each mail and determine whether it is spam or

not. The maximum weight allowable is initially fixed as 10,

but this may increase based on user‟s behavior as discussed

earlier.

Now, there may situations where a mail has got more than one

spam keywords in its content, so to deal with this and to

model such situation appropriately we have used the concept

of cumulative weight.

If more than one word from the list is found in a mail then the

overall weight of each mail is added with a fraction of 1/10th

of the net weight. Thus, the Cumulative Weighted Sum

(CWS) is set as (1/10) based on experimental results on the

sample data set.

Let, the weight of a mail „mi‟ be Wmi and weight of a

particular keyword be „w‟ and its frequency in mi be „f‟ then:

 Wmi + [(w * f)] if (f<2)

Wmi = …….. (1)

 Wmi + [(w * f) + (Wmi/10)] if (f ≥2)

Table 2 represents some sample mails with their respective

cumulative weighted sum values calculated from equation (1).

Table 2: Final CWS values for sample mails with decision

Individual

Mail ‘s

CWS Value Decision

m1 0 Ham

m2 3 Ham

m3 10 Spam

m4 7 Ham

m5 0 Ham

… … …

… … …

m1000 12 Spam

ii. Matrix based weight fixation:

In this procedure, we have done the weight fixation with the

help of matrices. We have used two matrices M1 and M2 with

„n‟ columns, where we assume that the number of keywords

in the list is „n‟ and each column in the matrix is represented

by a keyword from the list of updated keywords (KNEW). The

corresponding mail number is assigned to respective column

of 1st matrix if that particular keyword is present in that mail.

Let us assume a mail; „mi‟ has a particular keyword, which is

represented in the „j‟th column of the matrix, then mi will be

placed in the „j‟th column of the 1st matrix M1 as shown below.

81214588

95802288705505250150

584891243713273

1

mmm

mmmmmmmm

mmmmmmmm

OrderSexShopOfferDealDiscountLotteryFree

M

The 2nd matrix M2 contains the frequency of each keyword in

the respective position of each element of the 1st matrix. For

example, if mail m3 is in the position [row, column] = [1,1] of

the 1st matrix, then [1,1] of the 2nd matrix will signify the

frequency of that keyword, represented by the column 1, in

m3.

If we multiply the element of M2 having value greater than 0,

with the weight of the keyword that is represented by the

respective column of the M1 and repeat this process for every

value of the 2nd matrix then we shall get the weightage of each

mail and subsequently identify which of the mail is spam or

non-spam. This measure depends on whether the weightage

crosses the designated threshold value or not. If a mail has

more than one keyword, then the Cumulative weighted sum

formula will be applied to fix the weight as stated in the first

case.

Let, „n‟ denotes the number of keywords in the list, two 2-D

arrays, mail[][] and freq[][] contain the number of mails

and the frequency of each keyword in that mail respectively.

Array list[] contain the weight of the keywords in the same

order in which they are arranged and another vector weight[]

contains the weight of each mail. The pseudo-code of the

matrix based weight fixation is given in Fig.4

Fig. 4: Pseudo-code for Matrix based weight Fixation

iii. Tree based weight fixation

In this procedure, we have used the structure of a bipartite tree

as shown in Fig. 5. Square and circular shapes represent the

two set of nodes where square node signifies the list of

keywords generated by the User based Machine Learning

Algorithm (UMLA) and the circular nodes signify list of

mails to be considered.

Followed by the searching algorithm, we connect the mails

with the keywords in a manner such that if any mail (say mi)

122

23232311

41222123

2

OrderSexShopOfferDealDiscountLotteryFree

M

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

32

contains a keyword (say ki) which belongs to the keyword list,

then there will exist an edge from the keyword (ki) node to the

mail (mi) node and the weightage of the edge will be the

frequency of the keyword in the mail.

Let us assume that mail mi contains a keyword ki and the

occurrence of that keyword in the mail is „f‟, then there will

be an edge from node ki to node mi and the weight of the edge

will be „f‟. So, mathematically the Weight of the mail mi

following the method of Cumulative Weighted Sum

(discussed previously) will be as:

 Wmi + [(w * f)] if (f<2)

Wmi =

 Wmi + [(w * f) + (Wmi/10)] if (f>2)

From Fig. 5, we can see that there is a connection from node

m17 to keyword “Lottery” and the weightage of the connection

is „2‟. This means that mail m17 has the keyword “Lottery”

with a frequency of 2. Following the aforesaid formula, the

weight calculation for a sample mail m17 is shown below

Wm17 = 0 + [(2*3) + 0] = 6

Similarly, we can determine the weightage of every mail from

the tree based model.

Fig. 5 Bipartite tree showing the mapping of mails to keywords

7. SAMPLE STUDY
The experiments in this work are done based on the data set

named LingSpam [16]. For example, one sample mail taken

from the above data set is given below:

“Subject: free promotional offer

' ' own 100 % free web site site : http : / / 138 . 27 . 44 . 5

.cearth . . ca / users / freewebsites / * * * charge * * * * * *

commitment * * * * * * problem * * * opportunity seekers

internet marketers small large site is . earn prosperous

income giving away free web sites . . . already web site ? site

linked thousands web sites ? amazing site . . . http : / / 138 .

27 . 44 . 5 . cearth . . ca / users / freewebsites / * * * charge *

* * * * * commitment * * * * * * problem * * * is truly going

site century ! *

* please

excuse intrusion . one free offer mailing * * * * * * * * * * * *

**

Taking the sample mail shown above, the procedure of weight

fixation is demonstrated. We first form a Binary Search Tree

taking the keywords of the sample mail and then applied

binary search. Secondly, we will then search each keyword

from the keyword list and note the frequency of each keyword

in the mail.

Fig. 6 Binary Search Tree made with the keywords from

the sample mail

The result shows the occurrence of keyword „free‟ for 5-

times, „offer‟ for 2-times. Now, we apply the Cumulative

weighted sum formula to calculate the weight as follows.

W1=0+[(3*3)+(0/10)] = 9 (2)

W2=9+[(2*2)+(9/10)]=13.9 (3)

So, the weight comes to be 13.9, which on initial condition is

definitely a spam. But, if analyze the user‟s inbox and check

other mails, then we can surely ascertain the proper score to

mark a mail as spam. Thus, we did experiments on 1000 mails

found out the result for each mail and tallied the level of

accuracy.

8. EXPERIMENTAL RESULTS
The available spam mail filtering procedures are server-side in

general, i.e. they have a centralized approach or algorithm for

every user and as a result of this, in most of the cases, the

effectiveness of filtering spam somehow decreases. To check

the effectiveness of the algorithm we have used a sample of

1000 mails from LingSpam dataset [16]. Out of the 1000

mails there were 255 spam mails and the algorithm based on

the matrix-based weight fixation in the 2nd technique detected

260 spam mails of which 240 were spam and 20 were non-

spam mails and 20 spam mails remained undetected.

So, based on the dataset chosen, the true-positive rate is 88%,

false-negative is 8%, false-positive is 8% and true-negative is

97.3%. So, the accuracy of the algorithm based on matrix

technique, the total accuracy is 95%. In addition, if we

compare the accuracy level of this algorithm with the

commercially available spam mail filtering software‟s, then

also it is noticeable that proposed UMLA algorithm is more

efficient. (The testing is done based on same dataset)

So, this algorithm proves to be efficient if compared with the

efficiency of some commercially available spam filtering

software applications. Using same dataset if we compare the

accuracy level of other algorithms on which related works are

done like -Naive-Bayes method, Logistic Model Tree (LMT)

and J48 decision tree classifiers, then also we have achieved

much improved performance for our algorithm as shown in

Fig. 7 by bar chart diagram compared with other spam

detection mechanisms [7].

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

33

From the experimental results shown in Table 3 and in Fig. 7,

we can clearly suggest that the proposed algorithm is much

more efficient than the commonly used detection methods and

other commercially available software applications.

Table 3: Comparative study with commercially available

Text-spam filters

 Mail-

Washer

Pro.

[17]

Spamihilator

[17]

Our

Algorithm

True Positive Rate

(TPR)

84% 82% 88%

False Negative Rate

(FNR)

14% 10% 8%

False Positive Rate

(FPR)

10% 8% 8%

True Negative Rate

(TNR)

91% 93% 97.3%

Fig 7: Comparative Accuracy Level with other popular

text-spam detection methods

9. CONCLUSION
In this present work, we have designed an algorithm based on

Weight fixation, Cumulative weighted sum, and Browser

Intelligence System (BIS), which will benefit users to get rid

of spam mails and achieve a better mailing experience. The

weight fixation procedure consists of three alternative

techniques- First, the process of indexing, second, the

arrangement in matrix format and thirdly, the arrangement in

tree order. Out of these three procedures, the matrix format is

most accurate and efficient for general-purpose mails. From

the analysis of result, it shows that UMLA, if implemented in

a client-side application can detect the issue of spam mail at

an accuracy level of 95%.

The proposed UMLA method for spam mail filtering is based

on client-side application, which is of its first kind and thus

the effectiveness of such filtering increases manifold. Firstly,

we can get much more specific, accurate and customized

results for every user. As the algorithm involves an analysis of

every user‟s inbox and browsing history, it knows user‟s

choice, preferences, browsing pattern, contacts, and the type

of mails the user is interested. This increases the quality and

efficiency of the algorithm and provides a much better user

experience compared to other spam detection methods.

Secondly, as the application based on the algorithm is client-

side, the issues regarding security is also solved as no third

party except the client and the server can peep through the

content of a mail.

Therefore, we can conclude our approach can be used to

develop an effective spam mail filter but only after properly

justifying the scope of improvement in terms of false positive

rate. User‟s criteria oriented image-spam detection can also be

targeted separately based on machine learning techniques as

future scope of this work.

10. REFERENCES
[1]. Christina V, Karpagavalli S, Suganya G, “A Study on

Email Spam Filtering Techniques”, International Journal

of Computer Applications (0975 – 8887) Volume 12–

No.1, December 2010

[2]. Saadat Nazirova, “Survey on Spam Filtering Technique”,

Communications and Network, 2011, 3, 153-160

doi:10.4236/cn.2011.33019 Published Online August

2011

[3]. Cormack G (2008) Email spam filtering: a systematic

review. Found Trends InfRetr 1(4):335–455

[4]. V. Christina et al. Email Spam Filtering using Supervised

Machine Learning Techniques. International Journal on

Computer Science and Engineering (IJCSE) Vol. 02, No.

09, 2010, 3126-3129

[5]. S.Dhanaraj, Dr. V. Karthikeyani, “A Study on E-mail

Image Spam Filtering Techniques”, Pattern Recognition,

Informatics and Mobile Engineering (PRIME) February

21-22

[6]. Lamia Mohammed Ketari, Munesh Chandra, Mohammadi

Akheela Khanum, “A Study of Image Spam Filtering

Techniques”, 2012 Fourth International Conference on

Computational Intelligence and Communication

Networks

[7]. Sarit Chakraborty, Bikramadittya Mondal, “Spam Mail

Filtering Technique using Different Decision Tree

Classifiers through Data Mining Approach - A

Comparative Performance Analysis”, International

Journal of Computer Applications, 47(16):26-31, June

2012 (ISSN: 0975 – 888)

[8]. H. He and E. A. Garcia, “Learning from imbalanced

data,” IEEE Transactions on knowledge and data

engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[9] S. Ruggieri, “Efficient c4. 5 [classification algorithm],”

IEEE transactions on knowledge and data engineering,

vol. 14, no. 2, pp. 438–444, 2002

[10]. W. Feng, J. Sun, L. Zhang, C. Cao and Q. Yang, "A

support vector machine based naive Bayes algorithm for

spam filtering," 2016 IEEE 35th International

Performance Computing and Communications

Conference (IPCCC), Las Vegas, NV, 2016, pp. 1-8

[11]. Tarek M Mahmoud, Alaa Ismail El Nashar, Tarek Abd-

El-Hafeez and Marwa Khairy, “An Efficient Three-phase

Email Spam Filtering Technique”, British Journal of

Mathematics & Computer Science 4(9), 2014.

[12]. Pingchuan Liu and Teng-Sheng Moh ,“Content Based

Spam E-mail Filtering”, 2016 International Conference

on Collaboration Technologies and Systems

[13]. Ahmed Khorsi, "An Overview of Content-based Spam

Filtering Techniques", Informatica, vol. 31, no. 3,

October 2007, pp 269-277.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6– No.10, April 2017 – www.caeaccess.org

34

[14]. J. W. Yoon, H. Kim, and J. H. Huh, “Hybrid spam

filtering for mobile communication,” computers &

security, vol. 29, no. 4, pp. 446–459, 2010.

[15]. B. Sch Ikopf, S. Mika, C. Burges et al., “Input space

versus feature space in kernel-based method,” IEEE

Trans Neural Networks, pp. 1000–1017

[16]. Ling-Spam data set has been taken from -

www.csmining.org

[17]. The Spam-mail filters used for testing in Table 3 are

taken from www.fireturst.com, www.spamihilator.com

http://www.csmining.org/
http://www.spamihilator.com/

