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In this paper we propose a new lifetime model for multivariate survival data in presence of surviving
fractions and examine some of its properties. Its genesis is based on situations in which there are m types
of unobservable competing causes, where each cause is related to a time of occurrence of an event of
interest. Our model is a multivariate extension of the univariate survival cure rate model proposed by
Rodrigues et al. [37]. The inferential approach exploits the maximum likelihood tools. We perform a
simulation study in order to verify the asymptotic properties of the maximum likelihood estimators. The
simulation study also focus on size and power of the likelihood ratio test. The methodology is illustrated
on a real data set on customer churn data.

Keywords: competing risks; cured fraction; maximum likelihood approach; multivariate survival
models; unified survival models

1. Introduction

Cure rate models play an important role in survival analysis. The cover situations in that there
are sample units insusceptible or cured with respect to the occurrence of the event of interest.
The proportion of such units is termed as the cured fraction. In clinical studies, the event of
interest can be the death of a patient, hence the terminology. However, cure rate models have
been shown to be appropriate for the modeling many other kinds of events, such as criminal
recidivism, divorce, child-bearing, unemployment, and costumer churn.

There is a vast literature on cure rate models for survival data (also called survival models
with a surviving fraction or long-term survival models), though the majority of these stems are
from either one of the standard mixture cure model [3,5,26,33], or the the promotion time cure
model [2,7,17,37,40]. The books by Ibrahim et al. [17], Maller and Zhou [29] are references of
these two classes, respectively, and covers a wide range of developments.
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2 V.G. Cancho et al.

Although extensions of cure rate models were developed, limited attention has been paid to
the research on multivariate cure rate models. In the frequentist framework, Chatterjee and Shih
[6] proposed a marginal approach using bivariate copula models. Price and Manatunga [34]
imposed frailty to account for correlation and conducted the maximum likelihood estimation
under a parametric model assumption. Both methods were based on the mixture cure model.
Louzada and Cobre [20] proposed a multiple time scale survival model with a cure fraction.
Those methods were based on the mixture cure model. In the Bayesian approach, Chen et al.
[8] generalized the work of Chen et al. [7] to multivariate failure time data by introducing a
positive stable frailty and Louzada et al. [22] proposed bivariate long-term distribution based on
the Farlie–Gumbel–Morgenstern copula model.

In this paper, a new multivariate cure rate survival model is developed under a scenario of
latent competing causes (or risks). Our model is a multivariate extension of the univariate sur-
vival cure rate model proposed by Rodrigues et al. [37], who unified the cure rate survival models
proposed by Berkson and Gage [3], Chen et al. [7] and Hanin [16]. In the formulation we consider
that there are N types of causes of failures in which each cause produces the correspondent event
of interest, where these latent variables are modeled by a multivariate Poisson distribution [18].

The main assumption here is that N is a discrete random variable with support at {0, 1, . . .},
which represents the unobservable number of causes (or risks). In Section 2, we shall consider
some particular discrete distributions such as the binomial, geometric and Poisson. In the case
that N is a unknown number of causes (or risks), we have a so called competing risk survival
problem. Indeed, assuming a unknown N, we are assuming that there is a unknown number of
latent competing causes (or risk). In many situations this information is not available, or it is
impossible that the true cause of failure can be specified by an expert. For instance, in reliability,
the components can be totally destroyed in the experiment. Further, the true cause of failure can
be masked from our view. In modular systems, the need to keep a system running means that a
module that contains many components can be replaced without the identification of the exact
failing component.

Practical applications of the cure rate models and extensions are well established in biomedical
sciences, criminology and engineering as a method for modeling time-to-event data. Also, these
models have been used in economical studies. Yamaguchi [44] considered a cure rate model to
the analysis of permanent employment in Japan and Tong et al. [42] discussed the application
of cure rate model to predict time-to-default on a UK personal loan portfolio. Both studies were
based on the standard mixture cure model [3].

Here however, we focusing on customers who may abandon a service from an organization
(churning), where the main interest is to predict time-to-churn, cure rate models are particularly
useful. This is because, in general, a substantial proportion of customers in the organization do
not experience churning. In this context we shall denote cure by non-churn, leading to what
we call non-churning rate models. We bring into account a sample of costumers taken from a
Brazilian retailer customer portfolio, which comprised time up to churn (in years) in two differ-
ent credit card products, from where we observe a substantial amount of customers who do not
experience churning during the company-customer lifetime. The churning can be regarded as a
product of attrition between customer and company [4] and is typically driven by different com-
petitive causes, usually latent. Our example as well as more discussion on churning are properly
presented in Section 5. For instance, Figure 1 presents the overall Kaplan–Meier survival curve
for the Brazilian retailer customer portfolio. A plateau points out to the presence of non-churn
fraction on the data.

The paper is organized as follows. In Section 2, we formulate the multivariate cure rate model.
Inference methods based on the likelihood approach are developed in occupy the Section 2.2.
Simulation study is presented in the Section 3. An application to a real data set is developed in
Section 4. Finally, Section 5 concludes with some general remarks.
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Figure 1. The Brazilian customer churn data. Estimative of Kaplan–Meier of the survival function of
Product 1 (right panel) and the Product 2 (left panel).

2. The model

The proposed multivariate cure rate model can be derived as follows. For an individual in the
population, let Nk , be the random variable that denote the unobservable number of causes do
type k (k = 1, . . . , m) that can produce the event of interest for this individual. We assume
that Nk are discrete random variables taking values in the non-negative integers {0, 1, . . .}, with
joint probability mass function P(N1 = n1, . . . , Nm = nm) and probability generating function,
ϕN1,...,Nm(w1, . . . wm) with 0 ≤ wk ≤ 1. The time for the jth competing cause of type k to produce
the event of interest is denoted by Zkj, k = 1, . . . , m, j = 1, 2, . . .. Given Nk = nk , the Zk1 . . . , Zknk

are independent and identically distributed random variables with cumulative distribution func-
tion Fk(·) = 1 − Sk(·). We also assumed that the latent variables Z1j, . . . , Zkj are independent.
The observable times to event are defined by the random variables Yk = min{Zk1, . . . ZkNk } for
Nk > 0 and Yk = ∞ if Nk = 0 with P(Y1 = ∞, . . . , Ym = ∞| N1 = 0, . . . Nm = 0) = 1. Under
this setup we can demonstrate, that the population survival function for Y = (Y1, . . . , Ym) is given
by

Spop(y) = P[N = 0] +
∑

n1,...,nm=1

P[Z11 > y1, . . . , Z1n1 > y1, . . . , Zm1 > ym, . . . , Zmnm > ym]

× P[N1 = n1, . . . , Nm = nm]

= P[N1 = 0, . . . , Nm = 0] +
∑

n1,...,nm=1

P[N1 = n1, . . . , Nm = nm]Sn1
1 (y1) · · · Snm

m (ym)

=
∑

n1,...,nm=0

P[N1 = n1, . . . , Nm = nm]Sn1
1 (y1) · · · Snm

m (ym)

= ϕN1,...,Nm(S1(y1), . . . , Sm(ym)). (1)

Note that, the last step of Equation (1) comes from the definition of the probability generating
function. The model in Equation (1) is a natural extension of the univariate survival cure rate
models.

The survival function Spop(y) in Equation (1) is not a proper survival, that is,
limy1,...,ym→∞ Spop(y) = ϕN1,...,Nm(0, . . . 0) = P[N1 = 0, . . . , Nm = 0] > 0 (the joint cure rate).

From Equation (1) the marginal survival function is obtained as

Spop(yk) = ϕNk (Sk(yk)), k = 1, . . . , m. (2)
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4 V.G. Cancho et al.

The marginal survival function (2) is the same as the one proposed by Rodrigues et al. [37].
The marginal cure rate proportion is Sk(∞) = ϕNk (0) = P[Nk = 0] > 0. In the case that random
variables N1, . . . , Nm are independent, the survival function Spop(y) in Equation (1) is given by
Spop(y) = ∏m

k=1 ϕNk (Sk(yk)).

2.1 Some examples

In this section we apply the results obtained so far for N following the bivariate Bernoulli,
bivariate geometric and multivariate Poisson distribution.

An extension of bivariate version of univariate standard mixture cure rate model. In
what follows, consider a bivariate Bernoulli random vector N = (N1, N2), which takes val-
ues from (0, 0), (0, 1), (1, 0) and (1, 1) in the cartesian product space {0, 1}2 = {0, 1} × {0, 1}.
Denote θij = P[N1 = i, N2 = j], i, j = 0, 1, such that,

∑1
i=0

∑1
j=0 θij = 1. Then the correspond-

ing probability generating function is given by ϕN(w1, w2) = θ00 + θ10w1 + θ01w2 + θ11w1w2.
From Equation (1), we obtain the following results related to the standard mixture cure rate
model,

Spop(y1, y2) = θ00 + θ10S1(y1) + θ01S2(y2) + θ11S1(y1)S2(y2).

Thus the joint cure fraction is Spop(∞, ∞) = θ00. The marginal survival functions are given by
Spop(y1) = θ00 + θ01 + (θ10 + θ11)S1(y1) and Spop(y2) = θ00 + θ10 + (θ01 + θ11)S2(y2).

Now, if we consider a random vector N = (N1, N2), following a bivariate Geometric distribu-
tion with probability mass function

P[N1 = n1, N2 = n2] =
(

n1 + n2

n1

)
(1 − θ1 − θ2)θ

n1
1 θ

n2
2 ,

where nj = 0, 1, . . ., 0 < θj < 1, j = 1, 2 and 0 < 1 − θ1 − θ2 < 1. From Equation (1), we obtain
the new bivariate cure rate model as

Spop(y1, y2) = 1 − θ1 − θ2

1 − θ1S1(y1) − θ2S2(y2)
,

with the joint cure fraction Spop(∞, ∞) = 1 − θ1 − θ2. The marginal survival functions are given
by Spop(y1) = (1 − θ1 − θ2)/(1 − θ2 − θ1S1(yj)) and Spop(y2) = (1 − θ1 − θ2)/(1 − θ1 − θ2S2

(yj)), respectively. This marginal model is similar to the one proposed by Gu et al. [15].
Finally, if we assume that N = (N1, . . . , Nm) follows a multivariate Poisson distribution with

probability mass function

P[N1 = n1, . . . , Nm = nm] = e−{∑m
i=1 θi}

m∏
i=1

θ
ni
i

ni!

s∑
i=0

m∏
j=1

(
nj

i!

)
i!

(
θ0∏m
i=1 θi

)i

, (3)

where nj = 0, 1, . . ., θj > 0, j = 0, 1, . . . , m and s = min{n1, . . . , nm}. The above multivariate dis-
tribution allows for positive dependence between the two random variables. Marginally each
random variable follows a Poisson distribution with E(Nj) = θj + θ0 and, Cov(Ni, Nj) = θ0,
i �= j = 1, . . . , m and hence θ0 is a measure of dependence between the two random variables. If
θ0 = 0 then the variables are independent and the multivariate Poisson distribution reduces to the
product of m independent Poisson distributions. For a comprehensive treatment of the multivari-
ate Poisson distribution the reader can refer to Karlis [18]. The probability generating function,
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Journal of Applied Statistics 5

of N is given by

ϕN(w1, . . . , wm) = exp

{
−

m∑
i=1

θi(1 − wi) − θ0

(
1 −

m∏
i=1

wi

)}
.

From Equation (1), we obtain the new multivariate cure rate model as

Spop(y) = exp

{
−

m∑
i=1

θi(1 − Si(yi)) − θ0

(
1 −

m∏
i=1

Si(yi)

)}
. (4)

The survival function Spop(y) in Equation (4) is not a proper survival, that is,
limy1,...,ym→∞ Spop(y) = exp{−∑m

i=0 θi} > 0 (the joint cure fraction). Note that when θ0 = 0 in
Equation (4), the joint survival function reduces to the product of m independent survival func-
tions. The marginal distribution of each component in Equation (4) has a proportional hazards
structure if the covariates enter the model only through (θ0, . . . , θm). This is a desirable feature of
the proposed model that leads to attractive theoretical properties. From Equation (4) the marginal
survival functions are

Spop(yk) = exp{−(θk + θ0)Fk(yk)}, k = 1, . . . , m. (5)

Equation (5) indicates that the marginal survival function has a cure rate structure with prob-
ability of cure p0k = e−θk−θ0 for Yk , k = 1, . . . , m. It is important to note in Equation (5) that
each marginal survival function has the structure of the promotion time cure model [7,43].
In Equation (5) that each marginal survival function has a proportional hazards structure as
long as the covariates, only enter through θk and θ0. The marginal hazard function is given by,
(θk + θ0)fk(yk) which satisfies the conditions for the proportional hazards model [12].

Without loss of generality , considering the bivariate distribution of (Y1, Y2), then joint survival
function in Equation (4) is given by

Spop(y1, y2) = exp{−θ1(1 − S1(y1)) − θ2(1 − S2(y2)) − θ0(1 − S1(y1)S2(y2))}. (6)

The parameter θ0 is a measure of association between (Y1, Y2). As θ0 → 0, this implies less
association between (Y1, Y2) which can be seen from Equation (6). Following Clayton [9] and
Oakes [32] , we can compute a local measure of association, denoted by ϑ∗(Y1, Y2), as a function
of θ0. This measure of association is defined as

ϑ∗(Y1, Y2) = Spop(y1, y2)(∂
2/∂y1∂y2)Spop(y1, y2)

(∂Spop(y1, y2)/∂y1)(∂Spop(y1, y2)/∂y2)
. (7)

The measure in Equation (7), has the interpretation as the ratio of the hazard rate of the condi-
tional distribution of Y1 (Y2), given Y2 = y2 (Y1 = y1), to that of Y1 (Y2) given Y2 > y2 (Y1 > y1).
For more discussion of Equation (7), see [9]. For the bivariate cure rate model in Equation (6),
ϑ∗(y1, y2) is well defined and is given by

ϑ∗(y1, y2) = 1 + θ0{[θ1 + θ0S2(y2)][θ2 + θ0S1(y1)]}−1. (8)

In Figure 2, we see that ϑ∗(y1, y2) in Equation (8) increases in (y1, y2). That is, the association
between (y1, y2) is less when (y1, y2) are small and the association increases over time.

As pointed out by Chen et al. [8] in multivariate survival models with cure rate can not deter-
mine global dependence measures (such as correlation coefficient, which depends on time) due
to the fact that the random variables can take infinite with positive probability. The same authors
recommend using measures of local dependency as presented here.
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6 V.G. Cancho et al.

y1

y2

theta(y1, y2)

y1

y2

theta(y1, y2)

Figure 2. Local measure of association for model with θ1 = 0.2, θ2 = 0.3, θ0 = 0.2 (left panel) and θ0 = 2
(right panel).

In the next section, we develop the inferential procedures based on likelihood theory for the
bivariate survival cure rate model given in Equation (6). Hereafter we assume a Weibull dis-
tribution for the unobserved time Z with Fk(z | γ k) = 1 − Sk(z | γ k) = 1 − exp(−zγ1k eγk2) and
fk(z | γ k) = γk1zγk2−1 exp(γk2 − zγk1 eγk2), for z > 0, γk1 > 0, is the shape parameter and γk2 ∈ R

is the scale parameter and γk = (γ1k , γ2k)
	, k = 1, 2.

2.2 Inference for bivariate survival cure rate model

Let us consider the situation when the failure times (Y1, Y2) in Section 2 are not completely
observed and are subject to right censoring. Let Cki denote the censoring time of k component,
k = 1, 2. Suppose that (Y1i; Y2i) and (C1i; C2i) are independent. For each individual i, observed
quantities are represented by the random variables tki = min(Yki, Cki) and δki = I(yki = Yki),
which denotes a censorship indicator, k = 1, 2, i = 1, . . . , n. Assuming that C1i and C2i are
independents, and both are non-informative censoring, then we can express the likelihood of
ϑ = (β1, β2, γ 1, γ 2, θ0) as,

L(ϑ) =
n∏

i=1

Spop(t1i, t2i)

2∏
k=1

[fk(tki | γ k)]
δki [θ0 + (θ2 + θ0S1(t1i | γ 1))(θ1 + θ0S2(t2i | γ 2))]

δ1iδ2i

× (θ1 + θ0S2(t2i | γ 2))
δ1i(1−δ2i)(θ2 + θ0S1(t1i | γ 1̆))

δ2i(1−δ1i), (9)

where Spop(t1, t2) is survival function given in Equation (6) whereas fk(tki | γ k) and Sk(tki | γ k),
k = 1, 2 are, respectively, the density and survival functions of the Weibull distribution. The
maximum likelihood estimates (MLEs) of ϑ can be obtained by maximizing the log–likelihood
function �(ϑ) = log L(ϑ), which is equivalent to solve the following nonlinear equation sys-
tem ∂�(ϑ)/∂ϑk = 0, for k = 1, . . . , dim(ϑ). Under suitable regularity conditions, following Cox

and Hinkley [11], it can be shown that R(ϑ)(ϑ̂ − ϑ)
D−→N(0, I), as n → ∞, where I denotes

the identity matrix and R(ϑ) denotes Choleski decomposition of the observed information
matrix Iobs(ϑ), that is, R(ϑ)	R(ϑ) = Iobs(ϑ). Thus, the approximate distribution of ϑ̂ (MLE)
in large samples is a multivariate normal distribution with mean vector ϑ and covariance matrix
I−1

obs(ϑ), which can be estimated by {−∂�ϑ)/∂ϑ∂ϑ	}−1 evaluated at ϑ = ϑ̂ . Second derivative
computations can be obtained numerically.

Besides estimation, hypothesis testing is another key issue. Let ϑ1 and ϑ2 be proper disjoint
subsets of ϑ . Suppose that we have interest in testing H0 : ϑ1 = ϑ10 versus H1 : ϑ1 �= ϑ10, with
ϑ2 being a nuisance parameter. Let ϑ̂0 be the MLE under H0 and define the log-likelihood ratio
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Journal of Applied Statistics 7

statistic given by, 	n = 2{�(ϑ̂) − �(ϑ̂0)}. Under H0 and some regularity conditions, 	n con-
verges in distribution to a chi-square distribution with dim(ϑ1) degrees freedom [31]. Another
hypothesis test of interest, which is studied further here, is to test the independence model
(H0 : θ0 = 0) against the dependent one (H1 : θ0 > 0). The null distribution of the likelihood
ratio test under H0 is however non-standard [39] and it has been found that the distribution can
be approximated by a 50–50 mixture of the chi-square distribution with 1 degree of freedom and
a degenerated distribution at zero. That is, the statistic 	n converge to 0.5 + 0.5P[χ2

1 ≤ x] distri-
bution, where χ2

1 is chi-square distribution with one degree freedom. We investigate the sample
properties of the distributions of the tests via a simulation study.

3. Simulation study

To evaluate the performance of the maximum likelihood estimative of the parameter of the
bivariate survival cure rate model, we carry out a simulation study. In this study we con-
sider the bivariate cure rate model with a Weibull distribution for the event time (Zkj, k = 1, 2,
j = 1, 2, . . ..), with parameter, γk1 = 1.4 and γk2 = 2.0. For each individual i, i = 1, . . . , n, the
number of causes of the event of interest (N1, N2) is generated from a bivariate Poisson dis-
tribution with parameter θ0 = 0.5, θ1 = 0.2 and θ2 = 0.3, so that the joint cured fraction and
marginals are p00 = 0.37, p01 = 0.50 and p02 = 0.45, respectively. The censoring times Cki are
sampled from the uniform distribution on the interval (0, τk), where τk is a set in order to control
the proportion of censored observations. In this study the proportion of censored observations is
on an average approximately equal to 55% and 45%, respectively.

We choose five sample sizes, n = 50, 100, 200, 300 and 600. For each configuration, we con-
duct 1, 000 simulations and then calculate the average of the MLEs of the parameters of the
model and the cured fraction, the standard deviation (SD) of the MLEs, the square RMSE of the
MLEs and the coverage probability (CP) of the 95% confidence intervals.

The simulation results are shown in Table 1. We observe that the averages of the MLEs of the
parameters of the model and the cured fraction are close to the true values. We also observe, the
SDs and RMSEs decrease as the sample size increases. Also, from Table 1, we observe that PCs
are closer to the nominal value as the sample size increases.

Table 1. Averages of maximum likelihood estimates (AMLEs), SD and square root of mean square error
(RMSE) of the parameters of bivariate cure rate model and cured fractions p01, p02 and p00.

Parameter Cure fraction

n θ1 θ2 θ0 γ11 γ12 γ21 γ22 p01 p02 p00

50 AML 0.222 0.328 0.495 2.056 1.436 2.044 1.435 0.494 0.445 0.358
SD 0.107 0.129 0.136 0.299 0.304 0.302 0.303 0.072 0.072 0.068
REQM 0.109 0.132 0.136 0.304 0.308 0.305 0.306 0.072 0.089 0.068
CP 0.913 0.921 0.919 0.922 0.930 0.913 0.909 0.912 0.909 0.923

100 AMLE 0.211 0.302 0.499 2.047 1.416 2.047 1.424 0.495 0.452 0.367
SD 0.077 0.091 0.096 0.227 0.219 0.222 0.220 0.053 0.054 0.052
REQM 0.077 0.091 0.096 0.232 0.221 0.226 0.223 0.054 0.070 0.052
CP 0.938 0.942 0.939 0.942 0.941 0.940 0.937 0.935 0.935 0.948

200 AMLE 0.203 0.303 0.500 2.018 1.409 2.030 1.410 0.497 0.450 0.368
SD 0.057 0.066 0.068 0.155 0.161 0.154 0.153 0.037 0.038 0.0362
REQM 0.057 0.066 0.068 0.156 0.163 0.157 0.155 0.037 0.060 0.036
CP 0.942 0.943 0.949 0.942 0.953 0.950 0.948 0.949 0.945 0.950

300 AMLE 0.201 0.298 0.502 2.008 1.391 2.021 1.403 0.496 0.450 0.369
SD 0.047 0.051 0.054 0.133 0.130 0.131 0.129 0.031 0.031 0.029
REQM 0.047 0.051 0.054 0.133 0.130 0.132 0.130 0.031 0.055 0.029
CP 0.951 0.950 0.954 0.949 0.952 0.951 0.953 0.952 0.950 0.952
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8 V.G. Cancho et al.

Table 2. Empirical rejection rates of the null hypothesis H0 : θ0 = 0 at a nominal significance level of 5%.

n

θ0 50 100 200 300

0.0 0.028 0.043 0.047 0.052
0.1 0.175 0.326 0.576 0.745
0.2 0.443 0.706 0.936 0.985
0.5 0.810 0.987 0.992 0.998
1.0 0.935 0.995 0.999 0.999
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Figure 3. Q–Q plot of empirical 	n against the mixture of the Chi-square distribution with 1 degree of
freedom and the degenerated distribution at 0.

Additionally, we conduct a simulation study to search the null distribution of the likelihood
ratio test, 	n, to test the hypotheses H0 : θ0 = 0 versus H1 : θ0 > 0. Table 2 summarizes the
results of the simulation study considering different sample sizes. The rejection rates are close to
5% for moderate sample sized. Besides, the power of the test increases as sample size increases.
To further examine the null distribution of the tests, we plot the simulated null distributions of 	n

for sample size 100 (left panel) and 600 (right panel). They are displayed in Figure 3. The plots
show that the mixture of chi-square distribution with 1 degree of freedom with a degenerated
distribution at zero provides reasonable approximation to the null distribution of 	n.

4. The Brazilian customer churn data

In order to illustrate our proposed modeling discussed so far, in this section we consider a sample
of customers taken from a Brazilian retailer customer portfolio, as already stated in Section 1,
which comprised of time up to churn (in years) in two different credit card products.

Usually known as customer churn, but also, customer turnover or customer defection, the loss
of customers is a major concern of companies or service providers today. The central focus is on
voluntary churn, which occurs due to a personal decision of the client, who decides to migrate to
another company or service provider.

For the Brazilian customer churn data we observe two times up to churn, Y1 (in years) and Y1

(in years), in two credit card products, hereafter Product 1 and Product 2. The study was carried
out with 945 credit card holders of a large Brazilian retailer in order to measure the customer
churn. Censoring is approximately 23% and 19% for each one of the products, respectively,
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Journal of Applied Statistics 9

and they can be regarded as the loyal customer fractions, which remain in the product even
after several years. Here, though the cause of churn is latent, we can conjecture some possible
competitive causes, which may prevent a customer from being loyal to a particular product,
such as: more attractive management fees or exemption from fees, greater facilities in using
the credit card, more solicitous managers, faster problem solving, easier to pay bills, offering
major advantages such as high score to earn award miles (on airlines) and best after-sales help
is provided. The main objectives here are to understand the relationship between the times up to

Table 3. MLEs for the bivariate cure rate model for the Brazilian customer churn data.

Conf. interval (95%)

Parameter Estimate Standard error L U

θ0 1.390 0.066 1.261 1.519
θ1 0.103 0.024 0.056 0.150
θ2 0.293 0.041 0.213 0.374
γ11 1.921 0.059 1.806 2.036
γ12 − 2.736 0.085 − 2.903 − 2.569
γ21 1.839 0.0495 1.743 1.936
γ22 − 3.060 0.089 − 3.235 − 2.886
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Figure 4. The Brazilian customer churn data. Kaplan–Meier survival curve together with MLEs of the
survival of Product 1 (top right panel) and the Product 2 (top left panel). The bivariate survival surface
(bottom panel).
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10 V.G. Cancho et al.

churn in the two credit card products and estimate the loyal customer fractions. The idea is to
provide the retailer with tools for enhancing customer retention.

Then, the bivariate cure rate (BCR) model proposed in Equation (6) is fitted to the data. Table 3
presents the maximumm likelihood estimates (MLEs) and the corresponding 95% confidence
intervals of the BCR model parameters. We observe that the 95% confidence interval of θ0 not
including zero which indicates a significative dependence between Y1 and Y2. Alternatively, we
can compute the likelihood ratio statistics (LRS) to verify dependence between the random vari-
ables Y1 and Y2, that is, H0 : θ0 = 0 versus H1 : θ0 > 0, where under the null hypothesis H0, the
LRS, 	n, is assumed to be asymptotically distributed as a symmetric mixture of a chi-squared
distribution with one degree of freedom and a point-mass at zero. Thus, 	n is equal to 678.43,
with a p−value = 0.00001, which is a strong evidence in favor of the H1.

Figure 4 exhibits the Kaplan–Meier estimates of the survival function of customers churn
together with the MLEs of the marginal survival function (top panel) based on the multivari-
ate cure rate model and the joint survival function (bottom panel). Finally, the MLEs of the
non-churning fractions for the plots in Figure 4 are, respectively: p̂01 = 0.225 [0.195, 0.254],
p̂02 = 0.186 [0.160, 0.212] and p00 = 0.168 [0.143, 0.92]. The quantities in brackets are the 95%
asymptotic confidence intervals, after applying the delta method. We observe that p̂01 and p̂02 are
different from zero, indicating the presence of customer non-churning fractions for both credit
products after a period of almost 7 years for Product 1 and 10 years for Product 2. While, the
p̂00 = 0.168 indicates the presence of joint customer non-churning fraction. Thus, actions for
customer retention are desirable to reduce churn in periods shorter than 7 and 10 years, respec-
tively, since churning of long-term customers is worth to the retailer than newly recruited ones.
Moreover, the retailer’s shares are much facilitated by the fact that the mean number of com-
peting latent causes for Product 1 and Product 2 are estimated to be equal to 1.493 and 1.683,
respectively, indicating a small amount of competitive latent causes to be investigated.

5. Final comments

In this paper we proposed a new multivariate survival model with cure rate, having examined
some of its properties. Some of its particular cases are focused, that is, the bivariate Bernoulli,
bivariate geometric and multivariate Poisson distributions. The model is a multivariate extension
of the unified survival cure rate model proposed by Rodrigues et al. [37]. The model is useful
for jointly modeling lifetime data with a cure rate fraction. The model can be easily extended
to incorporate covariate information into the model parameters. It is of practical use in settings
were the competing causes (or risks), related to the occurrence of the phenomenon, are latent,
in the sense there is no information about which one was responsible for occurrence of the phe-
nomenon. Its applicability is discussed in a Brazilian customer churn data set, from where we
discovered the BCR model delivers the best fit. Moreover, from our modeling we discover there
is presence of customer non-churning fractions of about 20% for both credit products and pres-
ence of a small joint customer non-churning fraction, directing to actions for customer retention
in order to reduce churn. The modeling considered in this article can be fitted using standard
available software [35], which makes the approach quite powerful and accessible to practitioners
in the field.

There are evident gain by the multivariate model over the independent model. In general, the
differences between populations (groups) do not depends on only one variable but a set of them.
The use of only one variable can produce erroneous results. There are some cases, for example
in the univariate study indicates a group (or population or treatments) to be the best or most
appropriate. However, when considering other variables, jointly, other treatments may shown
to be the most appropriate. There are still situations in which, when the variables are analyzed
separately, significant differences between populations (or treatments or groups) are not detected
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for the study variables. However, when the analysis is made globally, by a multivariate approach,
differences are highlighted and are detected appropriately by statistical tests.

There are a large number of further possible developments of the current work. Future
developments of our work may involve other parametric or semi-parametric extensions of the
multivariate lifetime distribution under the proposed setup. Macera et al. [28] proposed an sim-
ple exponential-Poisson model for multivariate data. Besides, we envisage the relaxation of the
assumption that Yk = min{Zk1, . . . ZkNk }. Indeed, we may consider the modeling of its counter-
part, Yk = max{Zk1, . . . ZkNk }, corresponding to a complementary risk scenarios as discussed by
Louzada-Neto [25] and further developed by Barriga et al. [2], Roman et al. [38], Flores et al.
[14], Louzada et al. [21] and Tojeiro et al. [41] among others. Moreover, following Cooner et al.
[10] and Louzada et al. [19], we envisage a generalization of our framework by assuming Yk as
random, such as we may scan all possible Yk values from the first to last order statistics.

Accelerated life tests is common in practice. Our approach should be investigate in this con-
text. A possible approach is to consider the accelerated life test schemes adopted by Achcar
and Louzada-Neto [1], Rodrigues et al. [36], or in a regression fashion as Louzada-Neto [24],
Mazucheli et al. [30] and Louzada-Neto et al. [27]. Finally, influence diagnostics is important in
the context of regression modeling. Influence diagnostics should be developed for our multivari-
ate survival model with cure rate. A possible approach is to consider the influential diagnostic
scheme developed by Fachini et al. [13] and the one developed by Louzada et al. [23] for a
bivariate promotion lifetime model.

Acknowledgements

The authors thank the reviewers for their comments and suggestions, which led to a substantial improvement of the
manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research was sponsored by the Brazilian organizations CNPq and FAPESP through their research grant programs.

References

[1] J.A. Achcar and F. Louzada-Neto, A Bayesian approach for accelerated life tests considering the Weibull
distribution, Comput. Statist. Q. 7 (1992), pp. 355–368.

[2] G.D.C. Barriga, F. Louzada, and V.G. Cancho, The complementary exponential power lifetime model, Comput.
Statist. Data Anal. 55 (2011), pp. 1250–1259.

[3] J. Berkson and R.P. Gage, Survival curve for cancer patients following treatment, J. Amer. Statist. Assoc. 47 (1952),
pp. 501–515.

[4] W. Buckinx and D. Van den Poel, Customer base analysis:partial defection of behaviourally loyal clients in a
non-contractual FMCG retail setting, European J. Oper. Res. 164(1) (2005), pp. 252–268.

[5] V.G. Cancho and H. Bolfarine, Modeling the presence of immunes by using the exponentiated-Weibull model, J.
Appl. Stat. 28(6) (2001), pp. 659–671.

[6] N. Chatterjee and J. Shih, A bivariate cure-mixture approach for modeling familial association in diseases,
Biometrics 57(3) (2001), pp. 779–786.

[7] M.-H. Chen, J.G. Ibrahim, and D. Sinha, A new Bayesian model for survival data with a surviving fraction, J. Amer.
Statist. Assoc. 94 (1999), pp. 909–919.

[8] M.-H. Chen, J.G. Ibrahim, and D. Sinha, Bayesian inference for multivariate survival data with a cure fraction, J.
Multivariate Anal. 80(1) (2002), pp. 101–126.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

8:
59

 2
9 

O
ct

ob
er

 2
01

5 



12 V.G. Cancho et al.

[9] D.G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of
familial tendency in chronic disease incidence, Biometrika 65(1) (1978), pp. 141–151.

[10] F. Cooner, S. Banerjee, B.P. Carlin, and D. Sinha, Flexible cure rate modeling under latent activation schemes, J.
Amer. Statist. Assoc. 102 (2007), pp. 560–572.

[11] D.R. Cox and D.V. Hinkley, Theoretical Statistics, CRC Press, London, 1979.
[12] D. Cox and D. Oakes, Analysis of Survival Data, Chapman & Hall, London, 1984.
[13] J.B. Fachini, E.M.M. Ortega, and F. Louzada-Neto, Comparing several accelerated life models, Stat. Methods Appl.

17 (2008), pp. 413–433.
[14] J. Flores, P. Borges, V.G. Cancho, and F. Louzada, The complementary exponential power series distribution, Braz.

J. Probab. Stat. 27 (2013), pp. 565–584.
[15] Y. Gu, D. Sinha, and S. Banerjee, Analysis of cure rate survival data under proportional odds model, Lifetime Data

Anal. 17(1) (2011), pp. 123–134.
[16] L.G. Hanin, Iterated birth and death process as a model of radiation cell survival, Math. Biosci. 169(1) (2002), pp.

89–107.
[17] J.G. Ibrahim, M.-H. Chen, and D. Sinha, Bayesian Survival Analysis, Springer, New York, 2001.
[18] D. Karlis, An EM algorithm for multivariate Poisson distribution and related models, J. Appl. Stat. 30(1) (2003),

pp. 63–77.
[19] F. Louzada, E.M.P. Bereta, and M.A.P. Franco, On the distribution of the minimum or maximum of a random number

of i.i.d. lifetime random variables, Appl. Math. 3 (2012), pp. 350–353.
[20] F. Louzada and J. Cobre, A multiple time scale survival model with a cure fraction, Test 21 (2012), pp. 355–368.
[21] F. Louzada, V. Marchi, and J. Carpenter, The complementary exponentiated exponential geometric lifetime

distribution, J. Probab. Statist. (2013). Available at http://dx.doi.org/10.1155/2013/502159
[22] F. Louzada, A.K. Suzuki, and V.G. Cancho, The FGM long-term bivariate survival copula model: Modeling,

Bayesian estimation, and case influence diagnostics, Comm. Statist. Theory Methods 42(4) (2013), pp. 673–691.
[23] F. Louzada, A.K. Suzuki, and V.G. Cancho, On estimation and influence diagnostics for a bivariate promotion

lifetime model based on the fgm copula: A fully Bayesian computation, TEMA Tend. Mat. Apl. Comput. 14 (2013),
pp. 441–461.

[24] F. Louzada-Neto, Extended hazard regression model for reliability and survival analysis, Lifetime Data Anal. 3
(1997), pp. 367–381.

[25] F. Louzada-Neto, Poly-hazard regression models for lifetime data, Biometrics 55 (1999), pp. 1121–1125.
[26] F. Louzada-Neto, J. Mazucheli, and J.A. Achcar, Mixture hazard models for lifetime data, Biom. J. 44 (2002), pp.

355–368.
[27] F. Louzada-Neto, J. Mazucheli, and J.A. Achcar, Mixture hazard models for lifetime data, Biom. J. 44 (2002), pp.

3–14.
[28] M.A.C. Macera, F. Louzada, V.G. Cancho, and C.J.F. Fontes, The exponential-Poisson model for recurrent event

data: An application to a set of data on malaria in Brazil, Biom. J. 57 (2015), pp. 201–214.
[29] R.A. Maller and X. Zhou, Survival Analysis with Long-Term Survivors, Wiley, New York, 1996.
[30] J. Mazucheli, F. Louzada-Neto, and J.A. Achcar, Bayesian inference for polyhazard models in the presence of

covariates, Comput. Statist. Data Anal. 28 (2001), pp. 1–14.
[31] H.S. Migon, D. Gamerman, and F. Louzada, Statistical Inference: An Integrated Approach, CRC Press, London,

2014.
[32] D. Oakes, A model for association in bivariate survival data, J. R. Stat. Soc. Ser. B Methodol. (1982), pp. 414–422.
[33] G.S.C. Perodona and F. Louzada, A general hazard model for lifetime data in the presence of cure rate, J. Appl.

Stat. 38 (2011), pp. 1395–1405.
[34] D.L. Price and A.K. Manatunga, Modelling survival data with a cured fraction using frailty models, Stat. Med.

20(9–10) (2001), pp. 1515–1527.
[35] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,

Vienna, Austria, 2012, ISBN 3-900051-07-0.
[36] J. Rodrigues, H. Bolfarine, and F. Louzada-Neto, Comparing several accelerated life models, Comm. Statist.

Theory Methods 22 (1994), pp. 2297–2308.
[37] J. Rodrigues, V.G. Cancho, M. de Castro, and F. Louzada-Neto, On the unification of long-term survival models,

Statist. Probab. Lett. 79 (2009), pp. 753–759.
[38] M. Roman, F. Louzada, V.G. Cancho, and J.G. Leite, A new long-term survival distribution for cancer data, J. Data

Sci. 10 (2012), pp. 241–258.
[39] S.G. Self and K.-Y. Liang, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under

nonstandard conditions, J. Amer. Statist. Assoc. 82(398) (1987), pp. 605–610.
[40] C. Tojeiro, F. Louzada, M. Roman, and P. Borges, The complementary Weibull geometric distribution, J. Stat.

Comput. Simul. 84 (2012), pp. 1345–1362.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

8:
59

 2
9 

O
ct

ob
er

 2
01

5 

http://dx.doi.org/10.1155/2013/502159


Journal of Applied Statistics 13

[41] C. Tojeiro, F. Louzada, M. Roman, and P. Borges, The complementary Weibull geometric distribution, J. Stat.
Comput. Simul.on 84 (2014), pp. 1345–1362.

[42] E.N.C. Tong, C. Mues, and L.C. Thomas, Mixture cure models in credit scoring: If and when borrowers default,
European J. Oper. Res. 218(1) (2012), pp. 132–139.

[43] A.Y. Yakovlev and A.D. Tsodikov, Stochastic Models of Tumor Latency and Their Biostatistical Applications,
World Scientific, Singapore, 1996.

[44] K. Yamaguchi, Accelerated failure-time regression models with a regression model of surviving fraction: An
application to the analysis of ‘permanent employment’ in Japan, J. Amer. Statist. Assoc. 87(418) (1992), pp.
284–292.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

8:
59

 2
9 

O
ct

ob
er

 2
01

5 


	1 Introduction
	2 The model
	2.1 Some examples
	2.2 Inference for bivariate survival cure rate model

	3 Simulation study
	4 The Brazilian customer churn data
	5 Final comments
	Acknowledgements
	Disclosure statement
	Funding
	References



