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Abstract—The sixth generation (6G) wireless communication
networks are envisioned to revolutionize customer services and
applications via the Internet of Things (IoT) towards a future
of fully intelligent and autonomous systems. In this article, we
explore the emerging opportunities brought by 6G technologies
in IoT networks and applications, by conducting a holistic
survey on the convergence of 6G and IoT. We first shed
light on some of the most fundamental 6G technologies that
are expected to empower future IoT networks, including edge
intelligence, reconfigurable intelligent surfaces, space-air-ground-
underwater communications, Terahertz communications, massive
ultra-reliable and low-latency communications, and blockchain.
Particularly, compared to the other related survey papers, we
provide an in-depth discussion of the roles of 6G in a wide range
of prospective IoT applications via five key domains, namely
Healthcare Internet of Things, Vehicular Internet of Things
and Autonomous Driving, Unmanned Aerial Vehicles, Satellite
Internet of Things, and Industrial Internet of Things. Finally, we
highlight interesting research challenges and point out potential
directions to spur further research in this promising area.

Index Terms—6G, Internet of Things, network intelligence,
wireless communications.

I. INTRODUCTION

Recent advances in wireless communications and smart
device technologies have promoted the proliferation of Inter-
net of Things (IoT) with ubiquitous sensing and computing
capabilities to interconnect millions of physical objects to the
Internet. Nowadays, IoT constitutes an integral part of the
future Internet and has received much attention from both
academia and industry due to its great potential to deliver
customer services in many aspects of modern life [1]. IoT
enables seamless communications and automatic management
between heterogeneous devices without human intervention
which has the potential to revolutionize industries and provide
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significant benefits to society through fully intelligent and
automated remote management systems.

As an enabler for supporting IoT networks and applications,
mobile technologies from the first to the fifth generation
have been already proposed and deployed commercially, as
illustrated in Fig. 1. Notably, enabled by inherent usage
features such as enhanced mobile broadband (eMBB), massive
machine type communication (mMTC), and ultra-reliable and
low-latency communication (URLLC) services, the latest fifth-
generation (5G) technology has been proven to offer different
service opportunities to IoT ecosystems with high through-
put, low latency and energy-efficient service provision [2],
[3]. However, with the unprecedented proliferation of smart
devices and the rapid expansion of IoT networks, 5G cannot
completely meet the rising technical criteria, e.g., autonomous,
ultra-large-scale, highly dynamic and fully intelligent services.
The fast growth of automated and intelligent IoT networks is
likely to exceed the capability of the 5G wireless systems.
Moreover, the emergence of new IoT services and applications
such as remote robotic surgery and flying vehicles, also
requires further advances in current 5G systems for improving
the quality of IoT service delivery and business [4].

To pave the way for the development in IoT and be-
yond, research on sixth-generation (6G) wireless networks
[5] and their accompanying technological trends has recently
received much attention from both academia and industry.
6G is expected to provide an entirely new service quality
and enhance user’s experience in current IoT systems due to
its superior features over the previous network generations,
such as ultra low-latency communications, extremely high
throughput, satellite-based customer services, massive and
autonomous networks [6]–[8]. These levels of capacity will
be unprecedented and will accelerate the applications and
deployments of 6G-based IoT networks across the realms of
IoT data sensing, device connectivity, wireless communication,
and 6G network management. Enabled by the great potential
of 6G-IoT, many efforts have been put into research in
this promising area. For instance, Finland has sponsored the
first 6G project named 6Genesis [5], and built the world’s
first experimental 6G-IoT research environment. Nokia has
launched Hexa-X [9], a new European 6G flagship research
initiative from January 1, 2021, aiming to develop the vision
for future 6G systems for connecting human, physical and
digital worlds in future IoT networks through the collabora-
tion of prominent European network vendors, communication
service providers, and research institutes. Furthermore, the
U.S. Federal Communications Commission (FCC) has opened
the Terahertz (THz) spectrum band which allows researchers
and engineers to test 6G functions on mobile communications
systems and IoT devices [10]. Moreover, the government of

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

2

1G
2G

64 Kbps

2 Mbps

100-1000 Mbps

1-10 Gbps

2.4 Kbps

Landlines Texting, Basic 

SMS

Texting, SMS, 

Internet Access

3G

4G

5G

Texting, SMS, 

Internet Access, 

Video, Mobile 

Broadband

All of Mentioned 

Features, Ultra HD 

Video, Smart IoT 

Devices

6G

All of Mentioned Features, 

Full Coverage, Massive IoT, 

Mobile Apps using AI, 

Satellite Communications, 

Autonomous Systems

Time1980's 1990's 2000's 2010's 2020's 2025-2030

6G technologies will revolutionize IoT applications 

in various domains and provide immense impacts on 

citizens, consumers and business towards a future 

society of fully intelligent and autonomous systems.

Internet of Healthcare 

Things

Future 6G-IoT 

Applications

Vehicular Internet of 

Things and 

Autonomous Driving

Satellite Internet of 

Things

Industrial Internet of 

Things

Unmanned Aerial 

Vehicles

>  1 Tbps

E
v

o
lu

ti
o

n

Fig. 1: The evolution of wireless networks toward future 6G-IoT.

South Korea has planned to launch a pilot project for 6G
mobile services from 2026 [11]. In this project, five major
IoT areas have been selected for testing and evaluation of
6G systems, including digital healthcare immersive content,
self-driving cars, smart cities and smart factories. Initial 6G
networks could be deployed in 2028, while mass commer-
cialization of this technology is expected to occur in 2030.
These recent activities have motivated researchers to look into
the significant promise of 6G-IoT and exploit fundamental
technologies for enabling future 6G-IoT, aiming to satisfy the
requirements for the intelligent information society of 2030s.
The vision of 6G-IoT applications that will be discussed in
this paper is illustrated in Fig. 2.

A. Comparison and Our Key Contributions

Driven by the recent advances of wireless networks and IoT,
some research efforts have been made to review related works.
Specifically, the study in [12] provided a brief discussion
on the potential technologies for 6G to enable mobile AI
applications and the analysis of the AI-enabled solutions for
6G network design and optimization. A speculative study
on 6G was given in [13] where the authors indicated the
visionary technologies potentially used in future 6G networks
and applications. The use cases in 6G wireless networks were
summarized in [14], while the recent advances in wireless
communication toward 6G were presented in [15]. The works
in [16], [17] presented a survey on the vision of future 6G
wireless communication and its network architecture, with
a focus on the analysis of enabling technologies for 6G
networks. A more comprehensive survey on 6G wireless
communications and networks was provided in [18], where
the authors paid attention to the illustration of the tentative
roadmap of definition, specification, standardization, and reg-
ulation in 6G technologies. The potential 6G requirements and
the latest research activities related to 6G were also discussed

in [19], while the survey in [20] provided a holistic discussion
of various essential technologies in 6G. The comparison of the
related works and our paper is summarized in Table I.

Although 6G has been studied extensively in the literature,
there is no existing work to provide a comprehensive and
dedicated survey on the integration of 6G and IoT, to the best
of our knowledge. Notably, a holistic discussion on the emerg-
ing 6G-IoT applications such as Vehicular Internet of Things,
Autonomous Driving, and Satellite Internet of Things is still
missing in the open literature. These limitations motivate us to
conduct a holistic review on the convergence of 6G and IoT.
Particularly, we identify and discuss the most fundamental 6G
technologies for enabling IoT networks, including edge intel-
ligence, reconfigurable intelligent surfaces, space-air-ground-
underwater communications, THz communications, massive
URLLC communications, and blockchain. It is worth noting
that while the existing works [14]–[18] only focus on the
discussion of fundamental technologies for enabling wireless
communications and networks, we here highlight the 6G
technologies which directly influence the IoT applications and
network in a holistic manner, from intelligence (e.g., edge
intelligence), communications (e.g., massive URLLC commu-
nications) to security (e.g., blockchain). The representative use
cases on the integration of 6G technologies and IoT are also
explored and analyzed. Subsequently, we present an extensive
discussion on the use of these 6G technologies in a wide
range of newly emerging IoT applications via five domains,
i.e., Internet of Healthcare Things, Unmanned Aerial Vehicles,
Vehicular Internet of Things and Autonomous Driving, Satel-
lite Internet of Things, and Industrial Internet of Things. The
taxonomy tables are also provided to give more insights into
the convergence of 6G and IoT. Finally, we discuss a number
of important research challenges and highlight interesting
future directions in 6G-IoT. These technical contributions thus
make our article fundamentally different from the existing
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Fig. 2: Vision of future 6G-based IoT applications.

survey papers in the open literature. In a nutshell, this article
brings a new set of contributions as highlighted below:

1) We present a holistic discussion of the convergence
of 6G and IoT, starting from an introduction to the
recent advances in 6G and IoT and the discussion of
the technical requirements of their integration.

2) We extensively discuss the fundamental 6G technolo-
gies which are envisioned to enable IoT networks,
including edge intelligence, reconfigurable intelligent
surfaces, space-air-ground-underwater communications,
THz communications, massive URLLC, and blockchain.

3) We then provide an extensive survey and discussion
of the roles of 6G in prospective IoT applications in
five key domains, namely Healthcare Internet of Things,
Unmanned Aerial Vehicles, Vehicular Internet of Things
and Autonomous Driving, Satellite Internet of Things,
and Industrial Internet of Things. The representative use
cases in each 6G-IoT application domain are highlighted
and discussed. Moreover, taxonomy tables to summarize
the key technical aspects and contributions of each 6G-
IoT use case are also provided.

4) We identify several important research challenges and
then discuss possible directions for future research to-
ward the full realization of 6G-IoT.

B. Structure of The Survey

This survey is organized as shown in Fig. 3. Section II
discusses the recent advances and vision of 6G and IoT

and highlights the requirements of their integration. Next,
the fundamental technologies enabling the 6G-IoT networks
and applications are analyzed in Section III. The opportu-
nities brought by 6G in a number of newly emerging IoT
applications are explored and discussed in Section IV in a
number of important domains, i.e., Healthcare Internet of
Things (HIoT), Unmanned Aerial Vehicles (UAVs), Vehicular
Internet of Things (VIoT) and Autonomous Driving, Satellite
Internet of Things (SIoT), and Industrial Internet of Things
(IIoT). Section V identifies several key research challenges,
including security and privacy in 6G-IoT, energy efficiency
in 6G-IoT, hardware constraints of IoT devices, and standard
specifications for 6G-IoT, along with the discussion of possible
directions for future research. Finally, Section VI concludes
the article. A list of key acronyms used throughout the paper
is summarized in Table II.

II. 6G AND INTERNET OF THINGS: VISION AND
REQUIREMENTS

In this section, we discuss the vision of 6G and IoT. The
requirements of 6G-IoT networks are also highlighted.

A. 6G

Driven by the unprecedented proliferation of mobile devices
and the exponential growth of mobile traffic, wireless commu-
nication technologies have rapidly developed in recent years
as a key enabler for future customer services and applications.
Although the 5G network has been proven to enhance QoS
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TABLE I: Existing surveys on 6G-related topics and our new contributions.

Related
works

Topic Key contributions

[12] AI-based 6G concept A brief discussion on the potential technologies for 6G to enable mobile AI applications and the
analysis of the AI-enabled solutions for 6G network design and optimization.

[13] Speculative study on 6G A short discussion to speculate on the visionary technologies for enabling 6G networks and
applications.

[14] 6G technologies and case studies A short discussion on the enabling technologies for 6G and potential case studies.
[15] 6G concept A survey on the concept of 6G and its recent advancements in wireless communication systems.

[16], [17] Enabling technologies for 6G
wireless communications

A survey on the vision of future 6G wireless communication and its network architecture, with
focus on the analysis of enabling technologies for 6G networks.

[18] Technical aspects of 6G A discussion on the definition, specification, standardization, and regulation of 6G technologies.
[19] Requirements and research

activities in 6G
A survey on the 6G requirements and the latest research activities related to 6G.

[20] Essential technologies in 6G A holistic discussion of various essential technologies in 6G communications and networks.
Our paper 6G and IoT A comprehensive survey on the convergence of 6G and IoT. Particularly,

• We identify and discuss the fundamental technologies that are envisaged to enable 6G-IoT
networks, namely edge intelligence, RISs, space-air-ground-underwater communications, THz
communications, massive URLLC, and blockchain.

• We provide a holistic discussion on the emerging applications of 6G in IoT, i.e., Healthcare
Internet of Things, Unmanned Aerial Vehicles, Vehicular Internet of Things and Autonomous
Driving, Satellite Internet of Things, and Industrial Internet of Things.

• Taxonomy tables are provided to give more insights into 6G-IoT use cases. Research challenges
and directions are also highlighted.

over previous generations, it will be challenging to fully meet
the newly emerging requirements of future IoT services [16].
More specifically, it can be foreseen that 5G networks will
be unable to accommodate the tremendous volume of mobile
traffic in 2030 and beyond. Due to the popularity of rich-
video applications, enhanced screen resolution, machine-to-
machine (M2M) communications, mobile edge services, etc.,
the global mobile traffic will grow exponentially, up to 5016
exabyte (EB) per month in the year of 2030 compared with
62 EB per month in 2020 [18]. The traffic demand per mobile
broadband (MBB) also increases rapidly due to the growth
of smartphones and tablets and the proliferation of mobile
data services. For example, there is a need for new mobile
communication technologies to support video services such as

Youtube, Netflix, and recently Tik-Tok since video data traffic
accounts for two thirds of all mobile traffic nowadays and
continues to grow in the coming years [18]. Moreover, the
rapid development of data-centric intelligent systems exposes
new latency limitations of 5G wireless systems. For example,
the 5G air interface delay of less than 1 millisecond is in-
adequate to support haptic Internet-based applications such as
autonomous driving or real-time healthcare assistance because
the required delay is below 0.1 millisecond.

In this context, 6G is envisioned to provide new disruptive
wireless technologies and innovative networking infrastruc-
tures to realize a plethora of new IoT applications by satis-
fying such stringent network demands in a holistic fashion,
compared to its 5G counterpart [19]. With the advent of
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TABLE II: List of key acronyms.

Acronyms Definitions
6G Sixth-Generation
IoT Internet of Things

VIoT Vehicular Internet of Things
HIoT Healthcare Internet of Things
SIoT Satellite Internet of Things
IIoT Industrial Internet of Things
AI Artificial Intelligence
FL Federated Learning
ML Machine Learning
DL Deep Learning

DRL Deep Reinforcement Learning
DNN Deep Neural Network
CNN Convolutional Neural Network
MEC Mobile Edge Computing
UAV Unmanned Aerial Vehicle

URLLC Ultra-Reliable Low-Latency Communication
mURLLC Massive URLLC

THz Terahertz
RIS Reconfigurable Intelligent Surface

MIMO Multiple-Input and Multiple-Output
NOMA Non-orthogonal Multiple Access

LEO Low Earth Orbit
V2V Vehicle-to-vehicle
V2X Vehicle-to-Everything
AV Autonomous Driving

RSU Road Side Unit
QoS Quality-of-Service

advanced technologies such as edge intelligence, THz, and
large-scale satellite constellation, 6G communication systems
are able to evolve towards a more powerful IoT ecosystem
as well as build the fully connected and intelligent digital
world toward the foreseen economic, social, and environmental
ecosystems of the 2030 era. 6G is expected to outperform 5G
in multiple specifications as shown in Table III. While 5G
networks remain some critical limitations in terms of mobile
traffic capability, density of device connectivity, and network
latency, 6G is able to bring a new level of network qualities
with the outstanding features as follows:

• Achieving a supper high data rate from 1 Tb/s to address
the massive-scale IoT connectivity where the seamless
mobility, spectrum availability, and mobile traffic co-
exist.

• Increasing the mobile traffic capability up to 1 Gb/s/m2

to satisfy super high throughput requirements and IoT
device density.

• Achieving an extremely high device connectivity density
of 107 devices/km2 which supports well for massively-
dense IoT network deployments

• Achieving ultra-low network latencies (10-100 µs) to
fulfill the requirements of haptic applications, such as
e-health and autonomous driving.

B. Internet of Things (IoT)

As a key technology in integrating heterogeneous electronic
devices with wireless systems, IoT aims to connect different
things to the Internet, forming a connected environment where
data sensing, computation and communications are performed
automatically without human involvement. IoT data can be
collected from ubiquitous mobile devices such as sensors,
actuators, smart phones, personal computers, and radio fre-
quency identifications (RFIDs) to serve end users [21]. It is
estimated that IoT will achieve an impressive development

TABLE III: New features of 6G-IoT versus 5G-IoT.

5G-IoT 6G-IoT

Network
Features

• Data Rate of 20 Gb/s
• Mobile Traffic Capa-

bility: 10 Mb/s/m2

• Connectivity
Density: 106

devices/km2

• Network Latency: 1
ms

• Coverage
Percentage: about 70
%

• Energy Efficiency:
1000x relative to 4G

• Spectrum Efficiency:
3-5x relative to 4G

• Data Rate from 1
Tb/s

• Mobile Traffic Capa-
bility: 1 Gb/s/m2

• Connectivity
Density: 107

devices/km2

• Network Latency:
10-100 µs

• Coverage
Percentage: > 99 %

• Energy Efficiency:
10x relative to 5G

• Spectrum Efficiency:
> 3x relative to 5G

Enabling
Technologies

• mm-Wave Commu-
nications

• URLLC
• NOMA
• Artificial

Intelligence
• Cloud/Edge

Computing
• Software-Defined

Networking/
Network Slicing

• THz Communica-
tions

• Massive URLLC
• Space-air-ground-

underwater
Communications

• Edge Intelligence
• RIS
• Blockchain

in the next few years. According to Cisco [22], up to 500
billion IoT devices are expected to be connected to the Internet
by 2030, from only 26 billion devices in 2020. Furthermore,
in a new analysis of IHS Markit [23], a world leader in
critical information, analytics and solutions, the development
of connected global IoT devices will achieve an impressive
rate of 12 percent annually, from nearly 27 billion in 2017 to
125 billion in 2030. Recently, GlobeNewswire also forecasts
that the global 5G-IoT market will grow from USD 694.0
million in 2020 to USD 6,285.5 million by 2025 [24]. The
Internet of Nano-Things is also significant to build future
advanced IoT ecosystems [25], where the network of objects
(nano-devices and things) can sense, transmit, process, and
store data based on nano units (e.g., a nanocontroller) for
supporting customer services such as healthcare monitor-
ing. Seamless interconnectivity among nano-networks via the
available communication networks and the Internet requires
developing new network architectures and new communication
paradigms. In this context, 6G with its exceptional features and
strong capabilities will be a key enabler for supporting future
IoT networks and applications, by providing full-dimensional
wireless coverage, and integrating all functionalities, from
sensing, communication, computing, to intelligence and fully
autonomous control. In fact, the next generation 6G mobile
networks are envisaged to provide massive coverage and better
scalability to facilitate IoT connectivity and service delivery,
compared to the 5G mobile network [26].

C. Requirements of 6G-IoT

To fully realize the 2030 intelligent information society of
full intelligence, massive device connectivity and coverage,
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data-driven services, and autonomous systems, 6G-IoT will
need more stringent requirements over its 5G-IoT counterpart,
as highlighted below.

1) Massive IoT Connectivity: Driven by the explosion of
smart devices and rapid development of wireless commu-
nication technologies, the mobile connectivity has increased
tremendously [16]. It is predicted that the volume of global
mobile traffic will grow exponentially with over 5000 exabyte
in the year of 2030 and increase 80 times compared to the
mobile traffic in 2020. Broadband access platforms along with
satellite networks enabled by using low earth orbit (LEO)
satellites [27] will be the key enabler for supporting large-
scale communications of future smart devices. Furthermore,
the use of flying platforms such as UAVs are also needed
to support seamless connectivity over the future large-scale
IoT networks where fixed base stations cannot manage to
ensure stable and reliable device communications in moving
IoT networks. For example, a distributed UAV deployment
prototype is presented in [28] in the context of 6G networks,
by using 33 UAVs to provide wireless connectivity for 400
terrestrial IoT users over the coverage of 2000 m x 2000
m area. Given the UE distribution and corresponding dis-
continuous UAV location space, a distributed motion algorithm
is developed which allows each UAV to autonomously obtain
the optimal position in a continuous IoT space. Simulations
indicate that the use of swarm of UAVs is able to obtain the
maximum load balance near to 1 by the distributed deployment
solution, with the deployment time reduced by up to 40%
compared to the centralized method.

2) Massive Ultra-Reliable Low-Latency IoT Communica-
tions: Although ultra-reliable and low-latency communication
(URLLC) has been introduced and used in applied 5G-based
IoT use cases [29], it needs to be improved to massively
support emerging applications in 6G-IoT networks such as
fully autonomous IoT and flying IoT systems. For example, in
the future autonomous transportation systems, where vehicles
are self-controlled and navigated in real-time, the massive
URLLC is highly necessary for transporting video feeds
from cameras to vehicles and coordinating the timely vehicle
signalling on the roads in an automated and safe manner. In the
future, timeliness of information delivery will be a significant
feature for the intelligent interconnected society where the
tactile internet will dominate to offer haptic communications
for mission-critical IoT services with touch and actuation in
real-time. As an case study, the work in [30] implements a
massive URLLC-based IoT simulation for 6G IoT networks
by designing a short range wireless isochronous real-time in-
X subnetwork with communication cycles shorter than 0.1 ms
and outage probability below 10−6. A dense IoT scenario is
considered with up to two devices per m2 using a multi-GHz
spectrum for providing high spatial service availability. By
conducting a semi-analytical system evaluation analysis, it is
revealed that the cycle times are a factor of x10 shorter than
the latency targets of 5G radio technologies (i.e., below 0.1
ms) which is potentially applied to future ultra-low latency
IoT applications such as autonomous driving, real-time health
monitoring, and industrial automation.

3) Improved 6G IoT Communication Protocols: The intro-
duction of new vertical IoT applications in future intelligent
networks imposes major architectural changes to current mo-
bile networks in order to simultaneously support a variety
of stringent requirements (e.g., autonomous driving and e-
healthcare). In such a context, network communication stan-
dards and protocols play an important role in deploying 6G-
IoT ecosystems at large-scale due to the integration with other
important computing services such as edge/cloud computing
and wireless technologies. For example, the Industry Specifi-
cation Group of the European Telecommunications Standards
Institute has released the initiative called ETSI Multi-access
Edge Computing [31], which aims to leverage seamlessly
edge computing and communication frameworks for IoT-based
applications originating from vendors, developers and third-
party service providers. This initiative could be a significant
step to the deployment of future IoT applications at the
network edge in the 6G network where IoT computing and
storage are expected to be shifted from the network centre
to the network edge. Recently, the IEEE 802.11 working
group has initiated discussions on releasing the next generation
of Wi-Fi standard, referred to as IEEE 802.11be Extremely
High Throughput [32], which can meet the peak throughput
requirements set by upcoming IoT applications in the 6G era.
These communication standards are expected to support well
the service providers in deploying intelligent IoT services at
the network edge.

4) Extended IoT Network Coverage: In the future IoT-based
society, it is desirable to achieve a full coverage beyond the
terrestrial networks, from using large-dimensional space-air-
ground-underwater networks [5]. Edge intelligence and UAVs
are the keys to achieving full wireless coverage where the
former is able to provide autonomous and intelligent solutions
at the network edge, while the latter can be used to build
flying base stations to extend the coverage of current mobile
networks from only 2D in existing terrestrial networks to 3D
in an integrated terrestrial-satellite-aerial system. For example,
high-altitude UAVs can be exploited as agile aerial platforms
to enable on-demand maritime coverage [33], as a promising
solution to establish shore-based terrestrial based stations to
facilitate the deployment of communications infrastructure for
vessels on the ocean. To be clear, a practical automatic iden-
tification system is employed to obtain the vessel distribution
with the offshore distance of the range of [20, 30] km. To
provide an on-demand coverage of distributed vessels, UAVs
are coordinated to move along with vessels for ensuring long-
term broadband services. Here, an oil-powered fixed-wing
UAV is adopted which can perform a 740 km round trip over
the coastal area of about 370 km. Once the data transmission
task at a vessel is accomplished, the UAV flies back to the
charging station and continues serving the next vessel user
in the queue. This communication pattern is unique from
traditional UAV networks where IoT users are often fixed or
have random distributions.

5) Next-generation Smart IoT Devices: Future 6G-IoT net-
works are predicted to rely on smart devices where edge
intelligence and computing can be fully realized at the devices,
e.g., smartphones, vehicles, machines and robots. Such a
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device-centric network poses new challenges and requirements
on the design and operation of its wireless communications,
since smart devices will not only generate or exploit data, but
will also actively join the network management and operation
processes. Device-centric wireless solutions can be device-to-
device communications or multi-hop cellular networks that are
parts of the 3GPP roadmap [34]. In the 6G era, each IoT smart
device can act as an end-user terminal which can provide
connectivity and services (e.g., intelligent control, caching,
and network signalling) to other devices at the network edge
without the need for a centralized controller [35]. This can be
extended to demand-driven opportunistic networking which is
tailored to different user, service or network demands such
as energy cost minimization or spectrum efficiency maxi-
mization for end-user devices [36]. Moreover, recent years
have witnessed a proliferation in wearable devices whose
functionalities are gradually replacing the roles of smartphones
that are central in 4G/5G network generations. These new
wearable devices are diverse, ranging from smart wearables
to smart body implants which can play a pivotal role in the
revolution of wearable IoT networks for driving the emerging
human-centric 6G services.

III. FUNDAMENTAL TECHNOLOGIES FOR 6G-IOT

In this section, the fundamental technologies that are en-
visioned to enable future 6G-IoT networks and applications
are discussed. It is important to highlight that existing survey
papers [14]–[18] mostly discuss enabling technologies for 6G
wireless communication; we here focus on technologies which
will directly support 6G-IoT, including edge intelligence, RISs,
space-air-ground-underwater communications, THz communi-
cations, mURLLC, and blockchain, as illustrated in Fig. 4.

A. Edge Intelligence

In intelligent 6G systems, AI functions are extended to
the network edge thanks to the computational capabilities of
edge nodes [37]. This leads to a new paradigm called edge
intelligence [38], [39], which is envisioned by the convergence

of AI, communications, and edge computation. Recently, some
research efforts have been made to explore the potential of
edge intelligence in 6G-IoT use cases. For instance, the work
in [40] suggested a self-learning edge intelligence solution,
aiming to identify and classify emerging unknown services
from raw crowdsourcing data distributed across a wide ge-
ographical area with a case study in 6G-based vehicular
networks. A latency-sensitive connected vehicular system is
proposed that consists of six campus shuttles connected to two
edge servers along with a mobile app to monitor the latency of
wireless vehicular data transmission. A highly-efficient edge
intelligence approach is employed, by equipping each vehicle
with an AI-based generative adversarial network. This is able
to generate synthetic data that can be directly produced by the
edge server, which helps reduce the data volume required to
upload from the user and mitigate the total traffic transported
throughout the network. However, the proposed self-learning
architecture has not yet considered user mobility that can
closely affect the latency in AI training among distributed
vehicles. Moreover, the role of edge intelligence in 6G-IoT
is also discussed in [41] where some dominant use cases
are taken into account, such as autonomous driving. Edge
intelligence is foreseen as a key enabler for dynamic spectrum
access to provide fast and reliable AI-based data processing
at the edge devices, e.g., platoons, vehicles on the street,
and road side units. The benefits of edge intelligence are
also considered for collaborative robots (or cobots) in smart
manufacturing, with possible applied domains like automatic
monitoring of machine health properties, autonomous or semi-
autonomous navigation, and fine-grained control of cobots.
Moreover, ubiquitous edge devices can run AI functions to
offer large-scale edge intelligence services enabled by big
data analytics [42]. In this context, the information asset
characterized by high volume, velocity and variety of big
data is exploited to realize AI-based data analytics for its
transformation into useful information to serve IoT users.
Particularly, the 6G-based big data analysis technology can
significantly enhance the large-scale data transmission and
data computation rates based on advanced communication
technologies such as massive URLLC and space-air-ground-
underwater communications. Along with edge computing, fog
computing also allows for relieving the load on cloud servers
by offering computation and storage at fog nodes close to
the IoT devices for improving the QoS [43]. Fog nodes
would be useful to incorporate idle and spare resources of
all available devices to further enhance network efficiency,
especially in distributed IoT networks where cloud computing
cannot handle all users’ computation demands. Fog computing
can be combined with AI techniques to realize fog intelligence
for providing smart and low-latency IoT services in the future
6G era.

Recently, federated learning (FL) [44] as a distributed
collaborative AI approach is emerging to transform edge/fog
intelligence architectures. Conceptually, FL is a distributed AI
approach which enables training of high-quality AI models
by averaging local updates aggregated from multiple learning
edge clients without the need for direct access to the local data
[45]. For example, in the context of intelligent IoT networks,
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distributed IoT devices can collaboratively work with a data
aggregator (e.g., an edge server) to perform neural network
training where devices only exchange the parameters while
raw data sharing is not needed, as illustrated in Fig. 5. With
its working concept, FL can offer several unique features
to IoT networks. One of the most important features is
the ability to enhance data privacy based on the distributed
model training without sharing raw data to external servers.
Following the increasingly stringent data privacy protection
legislation such as the General Data Protection Regulation
(GDPR), the capability of protecting user information in FL
is essential for building future safe 6G-IoT systems. Another
feature is that FL enables low-latency network communica-
tions by avoiding the offloading of huge data volumes to the
remote server in the training process. This capability also helps
save much network spectrum resources required for iterative
data training. Additionally, the cooperation of massive IoT
devices for contributing large-scale datasets and computation
resources in the FL system would accelerate the convergence
rate of the overall training process and thus improve learning
performances, e.g., accuracy rates, for better intelligent 6G-
IoT services. A case study of FL-enabled edge intelligence
in the 6G-IoT context is provided in [46]. Motivated by the
privacy leakage issues in AI training, an approach called Air-
Ground Integrated Federated Learning (AGIFL) is employed
to evaluate the effect of different UAVs hovering location
deployment schemes with privacy awareness. Here, multiple
terrestrial nodes (e.g., mobile users) are regarded as clients
to join the collaborative training with the server deployed at
the UAV. In this setting, each user performs local training
using its own dataset and sends the updated parameter to the
UAV which aggregates all received updates to build a global
model before giving it back to all participating users for the
next round of training during the location deployment. By
implementing simulations on image classification tasks using
convolutional neural networks (CNNs) based on classical
handwritten digit datasets, the proposed AGIFL-based method
shows a promising classification accuracy performance (the
accuracy rate achieves up to 95%), compared to non-federated
schemes in the 6G context. In the near future, the security
for local gradient computation at UAVs should be taken into
account in federated training, by integrating attack detection
methods such as access control and data authentication.

In edge intelligence, AI on hardware will be one of the
promising technologies that can accelerate the development of
IoT applications in the 6G era. With the rapid growth of smart
mobile devices and advancement in embedded hardware, there
is an increasing interest in deploying AI on the edge devices,
e.g., mobile computers, smart phones, edge servers, for both
on-chip ML and DL functions. Embedded AI functions can
provide on-device learning inference with low latency com-
pared to cloud-based AI training. The deployment of AI on
hardware opens up new interesting on-device IoT applications,
such as mobile smart object detection, and mobile human
recognition. For example, a binary neural networks (BNNs)
engine is developed in [47] based on graphics processing units
(GPUs) for Android devices that optimizes both software and
hardware for running ML functions on resource-constrained

devices, e.g., Android phones. The computation capability of
BNN is exploited on mobile devices, decoupled with parallel
optimizations with the OpenCL library toolkit for enabling
real-time and reliable NN deployments on Android devices.
The experimental results indicate that the mobile BNN archi-
tecture can achieve a learning accuracy of 95.3% and improve
the capability of storage and CPU usage in BNN running by
up to 20%. Another case study is presented in [48], where a
MobileNet app is designed for on-device CNN training on
mobile devices for mobile localization applications in IoT
networks. The visual images captured by phone cameras can
be learned by the CNN to determine the centroid of the object
(e.g., the human hand) for supporting human motion detection
tasks, such as people counting in social events.

The development of edge intelligence mostly relies on
edge devices that play important roles to perform learning
tasks, i.e., classification or regression. However, adversaries
can deploy attacks to steal data and modify parameters during
the data transmission and training, which makes edge intelli-
gence highly vulnerable. Another security issue comes from
untrusted edge devices that can exploit the private information
extracted from gradient exchange in the collaborative train-
ing, which thus also introduces high risks of data breaches.
Therefore, future security solutions should be proposed for a
safe and reliable edge intelligence ecosystem in future 6G-
IoT networks. For example, decentralizing the data learning
can be a feasible choice for edge intelligence systems, where
blockchain ledgers can be adopted to verify the computation
process of edge intelligence models. It can be done by using
allowing edge blockhain peers to authorize the accuracy of the
common AI model without revealing the labels of datasets.
The data flow inside the AI model can also be hidden using
blockchain-based cryptography techniques to prevent data
modification threats.

B. Reconfigurable Intelligent Surfaces

Recently, reconfigurable intelligent surfaces (RISs) have
gained significant research attention for 6G technology appli-
cations [49]. The RIS consists of arrays of passive scattering
elements with artificial planar structures, where each element
is enabled by electronic circuits to reflect the impinging
electromagnetic wave in a software-defined manner [50]. The
reconfigurability makes RISs as a promising solution to sup-
port the wireless system design and optimization by facili-
tating signal propagation, channel modeling and acquisition
which enables smart radio environments beneficial to 6G-
based applications. Indeed, RIS enables a number of promising
applications in the context of 6G-IoT networks. For instance,
RIS is able to simultaneously enhance the signal gleaned
from the serving base stations in multi-cell IoT networks to
reduce inter-cell interference between massive IoT devices
[51]. Another application of RIS is the capability to enhance
the data offloading rates for IoT systems. Specifically, the
volume of data offloaded to edge servers is largely dependent
on the channel gain of offloading links. RISs can be deployed
for establishing a virtual array gain and reflection-based beam-
forming gain to computation offloading links. The use of RISs

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

9

Global Model
Aggregation

FL Aggregation 

Server

Base 

Station
Model 

Upload

Model 

Download

Access 

Point

Edge IoT devices

...

Smart 

phones

Local Data

Local Model

Local 

computation 

Mobile 

Computers

Local Data

Local Model

Local 

computation 

Local Data

Local Model

Industrial 

Sensors

Local 

computation 

Step 1: The server distributes an initial global 

model to IoT devices

Step 2:  Each device performs local training 

using its own dataset and updates the trained 

parameter to the server

Step 3:  The server aggregates the received 

parameters and updates a new global model, 

and then sends it back to all devices

Converge? 

Training termination

Yes

No

Fig. 5: Edge intelligence with FL for wireless IoT networks.

thus enables more data to be offloaded to edge servers, where
the data can be processed more time-efficiently than using
traditional offloading approaches.

Recent research works have started integrating RISs into
6G-based IoT applications. The study in [52] provides a range
of case studies where RISs can be applied to IoT such as
smart buildings. Indeed, RISs can help establish the interface
between the indoor and outdoor entities, aiming to facilitate
the access of private households in smart buildings. From
the wireless communication benefits, RISs are promising to
provide cooperative entity layers for avoiding interference and
improving spectral efficiencies in the device communications
between indoors and outdoors. Another case study is presented
in [53], where RISs are integrated in VIoT-based vehicle-to-
vehicle (V2V) networks consisting of a RIS-based access point
for transmission and a RIS-based relay deployed on a building
for coordinating the vehicular communications. RISs are also
considered in [54] to support radio-frequency (RF) sensing
for human posture recognition in IoT applications such as
surveillance and remote health monitoring. By periodically
programming RIS configurations in a human posture recogni-
tion system, the optimal propagation links can be obtained so
that the system can create multiple independent paths that ac-
cumulate the useful information of human postures to estimate
better the human posture recognitions in comparison with the
random configuration and the non-configurable environment
cases.

C. Space-air-ground-underwater Communications

6G is envisioned to be a unified communication platform,
not only on the land but also on the sky (such as flight) and
underwater (such as voyage), to achieve an extremely broad
coverage and ubiquitous connectivity for fully supporting

future IoT applications. Accordingly, a cell-free and four-tier
large-dimensional communication network for 6G-IoT can be
derived, consisting of four tiers: space, air, terrestrial, and
underwater [5].

• Space Communication Tier: This layer will provide wire-
less coverage using LEO, medium-Earth-orbit (MEO),
and geostationary-Earth-orbit (GEO) satellites for areas
that are not covered by terrestrial networks. Space com-
munication technologies can be deployed to support high-
capacity space networks for satellite-ground communica-
tions at various atmospheric altitudes [55].

• Air Communication Tier: This layer is well supported
by UAVs and balloons working as flying base stations to
provide coverage and connectivity for managing disaster-
stricken areas and supporting public safety networks and
emergency situations when URLLC is required [56].
UAVs also work as aerial users to incorporate with
terrestrial base stations to set up direct air-ground links
to perform cooperative sensing and data transmission in
6G-IoT environments.

• Terrestrial Communication Tier: This layer aims to wire-
less coverage and connectivity for human activities on the
ground where physical base stations, mobile devices and
computing servers are interconnected together. In the con-
text of 6G-based IoT, the THz band will be exploited to
enhance spectral efficiency and accelerate communication
speeds, especially in ultra-dense heterogeneous networks
with millions of users [57].

• Underwater Communication Tier: This layer accommo-
dates connectivity services for underwater IoT devices
such as submarines in broad-sea and deep-sea activities.
Bi-directional communications can be necessary for inter-
connection between underwater IoT devices and control
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hubs [58].
Several case studies have been considered for investigating
the feasibility of space-air-ground-underwater communications
in 6G-IoT applications. For example, a multiuser satellite
IoT system is considered in [59] based on LEO satellite
communications. In this regard, a Mobile Edge Computing
(MEC) server is integrated with the full-duplex access points
to create satellite-links for improving communication latency
efficiency in mission-critical IoT applications. The simul-
taneous wireless information and power transfer (SWIPT)
technology is integrated with a hybrid energy storage method,
i.e., the power is from power grid or renewable sources, to
achieve longer battery life and higher energy efficiency for
IoT communications, while the satellite provides the wide area
network connection for terrestrial terminals, including stations
and mobile users. Then, a satellite-terrestrial communication
model is derived, aiming to maximize the achievable rate of
IoT terminals. Simulations with a satellite IoT system with
10 IoT users illustrate an improvement in achievable rate
of terminals by 16% due to the joint optimization of CPU
frequency, computation tasks, and terminal transmitting power.
Nevertheless, the communication latency caused by packet loss
checking over satellite channels has not been considered in the
proposed multiuser satellite IoT system optimization. Another
case study is explored in [60], where UAVs are employed
to realize UAV-to-Everything communications for supporting
different data transmission solutions in IoT data sensing,
emergency search and monitoring, and video streaming in
wireless 6G scenarios.

D. Terahertz (THz) Communications

THz communications are envisioned as a driving technology
for 6G-IoT which requires 100+ Gbps data rates and 1-
millisecond latency. Enabled from the mm-wave spectrum,
the THz band (0.1-10 THz) is promising to fulfill the fu-
ture requirements of 6G-IoT applications, including pico-
second level symbol duration, integration of thousands of
submillimeter-long antennas, and weak interference without
full legacy regulation [61]. One of the key benefits of THz
spectrum is to deal with the spectrum scarcity problems in
wireless communications and significantly enhance wireless
system capacities in 6G-IoT. Moreover, THz communications
also provide ultra-high bandwidth and high throughput, which
support ultra-broadband applications such as virtual reality
and wireless personal area networks. Inspired by the unique
features of THz communications, several IoT studies have
been implemented in the context of 6G. Recently, THz com-
munication technologies have been used for user localization
by exploiting the ultra-wide bandwidths available at THz
frequencies [62]. This allows the receivers to address spaced
multipath components and effectively measure the signal sent
by the transmitters for estimating correctly the user location.
THz bands are also exploited for UAVs communications [62],
aiming to analyze the coverage probability of UAV networks
with respect to the THz base station density and the strength
of THz signals. The work in [63] focuses on modelling THz
communication channels in VIoT-based vehicular networks

and configurations of hybrid beamforming subarray by taking
transmit power consumption into account in different scenar-
ios, such as the fully-connected, sub-connected and overlapped
subarray structures. By using a cellular infrastructure-to-
everything application consisting of both cellular and vehicular
communications with 1000 channels and multiple pedestrian
users and high-mobility vehicles, the analysis of antenna
array structures can be performed. Simulation results show a
balanced performance trade-off in terms of spectral efficiency,
energy efficiency, and hardware costs between the popular
fully-connected structures in VIoT communications with THz
massive MIMO. This trend is expected to continue in various
areas of THz band-based IoT communications such as channel
modeling and spectrum allocation. In the future, time-varying
THz communication issues caused by the high mobility of
vehicle should be considered, which could be addressed by
predictable AI approaches such as dynamic DRL algorithms.

E. Massive Ultra-Reliable and Low-latency Communications

In the 6G era, it is expected to achieve URLLC for sup-
porting future IoT services through low-latency and reliable
connectivity [64], [65]. For example, mURLLC is expected
to support the timely and highly reliable delivery of massive
health data for facilitating remote healthcare, aiming to provide
better medical services to patients in the remote areas and also
reduce regional imbalance in the health workforce. mURLLC
can be deployed in smart factories to automate the mission-
critical processes such as automatic manufacturing and remote
robotic control. Compared with the traditional wired connec-
tions, the use of mURLLC technology allows for optimizing
the operational cost with extremely low latency and ultra-
high reliability, e.g., the reliability of 99.9999% with block
error rate (BLER) of below 10−5. Thanks to its outstanding
features, mURLLC also well supports transportation systems,
by offering timely data sharing of information among vehicles,
infrastructures, and pedestrians with high reliabilities, which
thus enhances road safety and improves traffic efficiency in ve-
hicular networks. The integration of mURLLC into smart grid
is also an active application, aiming for replacing cable/fibre
based solutions to carry out the real-time protection and
control over the distributed grid lines and stations. As a result,
a wide range of mission-critical services can be realized with
mURLLC such as fast fault diagnosis and accurate positioning,
reliable fault isolation and system restoration as well as remote
decoupling protections.

Moreover, the recent advances in AI make it an ideal tool to
analyze the latency and reliability for enabling mURLLC in
6G-IoT, by offering excellent solutions, e.g., accurate traffic
and mobility prediction with deep learning (DL) and fast
network control with deep reinforcement learning (DRL) [66],
[67]. The use of AI becomes more significant when the net-
work information is unavailable and the network environment
is highly dynamic. For example, the work in [68] exploits DL
to a mURLLC-based virtual robotic arm system where deep
neural networks (DNNs) are applied to predict accurately arm
positions and control robotic arms with a duration of 1 ms.
Deep transfer learning is also adopted in the DL architecture
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to fine-tune the pre-trained DNNs in non-stationary networks
for improving the learning efficiency. Moreover, DRL has
been used in [69] for optimizing the distributed cooperative
sub-channel assignment and transmission power control which
aims to provide the strict reliability and latency requirements
of URLLC services. By using DRL, each mobile IoT de-
vice is able to intelligently make decision on its spectrum
access based on its own instantaneous observations, aiming to
optimize its sub-channel assignment and transmission power
control. Then, a proper QoS-aware reward function is derived
to manage the energy efficiency and QoS requirements of all
IoT users. Experiments are implemented in a URLLC-based
IoT environment with 2000 devices, the minimum data rate
requirement is set to 3.5 bps/Hz, and the reliability requirement
varies between 99.9% and 99.99999%. Implementation results
demonstrate a much better energy efficiency by using DRL,
compared to other conventional random approaches. A limita-
tion of this approach is the lack of training latency analysis in
the DRL running under the latency requirements of URLLC.

To achieve the latency and reliability for mURLLC, IoT
applications should meet several critical requirements. System
overheads in term of channel access, user scheduling, and allo-
cation of resources should be minimized. The recent advances
in AI open new opportunities for latency optimization in IoT
networks, such as optimal IoT user selection and scheduling
via DRL approaches, and low-latency resource allocation in
intelligent transportation using distributed training techniques
via FL. Furthermore, the packet error probability should be
minimized to achieve lower-latency data transmission since
traditional methods such as hybrid automatic repeat request
(HARQ) processing are not appropriate to achieve a low block
error rate (BLER) [70]. Additionally, energy-efficient solutions
for IoT devices should be designed, aiming to solve the issues
of continuously checking awaiting packets on the network that
incurs high latency as well. How to implement energy-saving
while offering a solution for high frequency of data checks is
needed for URLLC-based IoT devices.

F. Blockchain

In 6G-based IoT networks, how to achieve a high degree
of security and privacy is a practical challenge since the fact
that 6G systems tend to be distributed and thus suffer from the
higher risks of attacks and threats. Moreover, how to ensure
data privacy in the open sharing systems in multi-layer 6G
systems such as vehicular data sharing in autonomous driving
is a critical issue. Blockchain [71], as an emerging disruptive
technology, is able to offer innovative solutions to effectively
deal with such privacy and security challenges in 6G-IoT
networks. Conceptually, the blockchain is a decentralized,
immutable and transparent database where no any authority
is needed to manage the data. This is enabled by a peer-
to-peer network topology which allows each entity, e.g., an
IoT device, to hold an equal right to control and authorize
the data stored in the blockchain. Generally, blockchains can
be classified as either a public (permission-less) or a private
(permissioned) blockchain. A public blockchain allows anyone
to perform transactions and join in the consensus process.
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The best-known public blockchain applications include Bitcoin
and Ethereum. Private blockchains on the other hand are an
invitation-only network managed by a central entity, and a
participant who wants to join the blockchain network needs
to be permissioned via a validation mechanism. Enabled by
its working concept, blockchain boasts a number of desirable
characteristics, including decentralization, traceability, trust-
worthiness, and immutability. These features make blockchain
a promising candidate to be integrated into 6G-IoT ecosystems
for security and privacy provision. For secure access control
in 6G-based IoT communication environments, a blockchain-
based approach is proposed in [72]. The authors exploit the
decentralization of immutability features of blockchain to de-
velop a security mechanism for reliable resource access control
and user privacy preservation. Specifically, for a secure access
control, the states of the virtualized resources are modelled
using a Q-learning approach that can learn the resource usage
patterns to detect abnormal data access behaviours. In terms
of privacy preserving, a joint method of low-latency and
memory saving is used to augment the response success ratio,
and to obtain the false positives of the connected users. The
benefits of the proposed solution are verified by the high true
positives (nearly 94%), accurate access denial and success
ratio (nearly 92%). However, the mining latency caused by
block verification in blockchain has not been considered yet,
and the evaluation of data leakage probability is still missing.

Moreover, a roadmap for the applications of blockchain
in 6G-IoT automation is drawn in [73] where blockchain is
particularly useful for applied domains such as UAVs, smart
grid, and food industry. In fact, blockchain is able to establish
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secure autonomous systems where UAVs can act as blockchain
clients to communicate with ground base stations, aiming
to exchange and share data to fulfil their missions such as
emergency search or environmental monitoring via a peer-
to-peer ledger, as illustrated in Fig. 6. By using blockchain,
UAVs, terrestrial users, and network operators can trust the
data stored on the ledger with a shared control and tracing right
provided over the distributed environment. Another possible
IoT application is smart healthcare; the verification of health
data 6G-based healthcare systems can be implemented by
blockchain and its inherent smart contract technology [74],
where no third-party is required while a high degree of trust is
ensured. Moreover, the application of blockchain in future 6G-
IoT networks also might result in costs in terms of latency and
energy usage. The mining process, e.g., block verification and
information exchange among miners, leads to high network
delays and consumes excessive energy. For example, in the
Ethereum blockchain platform, miners need to run Proof-of-
Work (PoW) which is computationally extensive and time-
consuming. Further, the repeated information exchange among
multiple miners in the block verification also needs large
bandwidth resources. Hence, it is essential to take operational
costs into account when applying blockchain in future IoT
networks.

To this end, we summarize the fundamental 6G technologies
along with their key features and important use cases in IoT
networks in Table IV.

IV. 6G FOR IOT APPLICATIONS

Enabled by the fundamental technologies as described in the
previous section, 6G is envisioned to realize new applications
for IoT. In this section, we explore and discuss extensively
the emerging applications of 6G in a wide range of important
IoT domains, including HIoT, VIoT and Autonomous Driving,
UAVs, SIoT, and IIoT.

A. 6G for Healthcare Internet of Things (HIoT)

The integration of 6G will revolutionize HIoT [76] by
using its enabling technologies. The work in [77] discussed
the potential use of 6G technologies such as mURLLC and
THz communications for supporting extremely low-latency
healthcare data transmission and accelerating medical network
connections between wearables and remote doctors. In fact,
healthcare domains such as remote health monitoring requires
low-latency communications (below 1 ms) with the reliability
requirement of above 99.999% to achieve nearly real-time
health provision with a fast and reliable remote diagnosis.
Interestingly, 6G robotics can be applied to implement remote
surgery in a fashion that remote doctors can manage the
surgery via the robotic systems at a latency of milliseconds and
high reliability. Recently, a telesurgery system is also studied
in [78] in the context of 6G by using UAVs and blockchain.
Given the security risks in existing mobile surgery networks,
blockchain is integrated into the robotic system where each
robot acts as a data node so that surgical information is stored
securely in the database ledger without the need of centralized
authority. Particularly, smart contracts are also adopted that can
provide automatic authentication for health data requests and
control over the health data sharing during the surgery [79]. To
solve the slow healthcare response rates, UAVs are employed
as relays to transport light-weight healthcare items such as
medicines and surgical tools among hospitals in emergent
situations, which helps avoid road-traffic congestions and thus
mitigates data exchange latency. Meanwhile, to achieve future
requirements in terms of ultra-high data rates of medical
data communications, the mURLLC technology is an ideal
solution by using the THz bands in 6G-based healthcare
networks [80]. Accordingly, nano-devices, implants, and on-
body sensors can communicate and transmit data in real-time
with extremely high reliability and availability to edge devices
or cloud centres for short- and long-term medical analysis.
In particular, mURLLC also plays a key role in hospital-
based telestration where doctors can monitor and manage the
surgery procedure remotely using real-time video streaming
from medical robotics and assistant devices interconnected by
6G core networks [81]. Moreover, 6G-based URLLC has been
exploited to facilitate connected ambulance in future health-
care, by allowing real-time video streaming with high color
resolution for reliable diagnosis to clinicians and paramedical
staff from the hospital at moderately high speeds (up to 100
km/h) [82]. For example, electroencephalogram data from
clinical examination can be conducted on-board and through
URLLC-based real-time teleconsultation, hospital doctors are
able to provide urgent indications to paramedical staff in the
ambulance. In this scenario, a very small survival time must
be ensured (below 2 ms) although the ambulance can run at
high speeds.

To realize intelligent 6G-based healthcare, AI can be ex-
ploited for data learning and analytics. The study in [83] uses
various machine learning (ML) techniques such as Bayesian
classifier, logistic regression, and decision tree to analyze
historical health records of stroke out-patients collected from
wearable sensors in heathcare-based 6G heterogeneous net-
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TABLE IV: Taxonomy of fundamental 6G technologies for IoT.

Fundamental
technology

Key features Potential applications in 6G-IoT

Edge Intelligence

• Enabled by the seamless integration of AI, commu-
nications, and edge computing where AI functions
are deployed at decentralized edge nodes to make
intelligence close to the data source where they are
generated, e.g., mobile devices.

• Privacy-enhanced edge intelligence can be realized
via distributed collaborative data training with FL.
This learning paradigm allows distributed IoT de-
vices to collaborate with an aggregator to perform
AI training while raw data sharing is not needed.

• A self-learning edge intelligence solution is proposed in [40] with a case
study in 6G-based vehicular networks where an AI-based GAN is deployed
on each vehicle to perform personalized classification of vehicular latency
data without the central processing at a centralized server.

• The work in [41] illustrates the roles of edge intelligence in 6G-IoT via some
dominant use cases such as autonomous driving and collaborative robots in
smart manufacturing. Compared with [40], this scheme still has high data
communication latency due to the lack of synthetic data production with
GANs at edge nodes.

• Edge intelligence in the 6G-IoT context is enhanced with FL [46] for UAV
networks where multiple mobile users collaboratively join the FL process
with the server deployed at the UAV.

RISs

• RISs are man-made surfaces of electromagnetic
material that are electronically controlled with in-
tegrated electronics to enable reconfigurable prop-
agation environments [50].

• The reconfigurability makes RISs as a promising
solution to support the wireless system design and
optimization to enable smart radio environments
and benefit 6G-based IoT applications.

• RISs can help establish the interface between the indoor and outdoor entities
[52], aiming to facilitate the access of private households in smart buildings.
RISs are also promising to provide cooperative entity layers for avoiding
interference and improving spectral efficiencies in the device communications
between indoors and outdoors.

• RISs are also considered in [54] to support RF sensing for human posture
recognition in IoT applications such as surveillance and remote health
monitoring.

Space-air-ground
-underwater

Communications

• A cell-free and four-tier large-dimensional com-
munication network for 6G-IoT can be derived,
consisting of four tiers: space, air, terrestrial, and
underwater [5].

• UAVs can be used as flying stations to provide
coverage and connectivity for disaster-stricken ar-
eas and supporting public safety networks and
emergency situations when URLLC is required.

• A multiuser satellite IoT system is considered in [59] based on LEO satellite
communications where an MEC server is integrated with the full-duplex
access points to create satellite-links for improving communication latency
efficiency in mission-critical IoT applications.

• Different from [59], UAVs are exploited in [60] for supporting different data
transmission solutions in IoT data sensing and video streaming, where a new
DRL algorithm is integrated to optimize the trajectory and power control of
UAVs.

THz
Communications

• THz communications are envisioned as a driving
technology for 6G-IoT which requires 100+ Gbps
data rates and 1- millisecond latency [75].

• The THz spectrum is able to deal with the spectrum
scarcity problems in wireless communications and
significantly enhance wireless system capacities in
6G-IoT.

• Recently, THz communication technologies have been used for user local-
ization by exploiting the ultra-wide bandwidths available at THz frequencies
[62].

• THz bands are also exploited for UAVs communications [63], aiming to
analyze the coverage probability of UAV networks. However, unlike [62], this
scheme leverages THz base station density and the strength of THz signals
for UAVs’ location and trajectory estimation.

mURLLC

• Massive URLLC in 6G-IoT can be realized by
mMTC and 5G URLLC integration for enabling
mURLLC [65] to provide extremely low latency,
extremely reliable connectivity, high availability
and scalability

• The recent advances in AI make it an ideal tool
to model the latency and reliability for enabling
mURLLC in 6G-IoT, by offering excellent solu-
tions, e.g., accurate traffic and mobility prediction
with DL, and fast network control with DRL [66].

• The work in [68] exploits DL to a mURLLC-based virtual robotic arm system
where DNNs are applied to predict accurately arm positions. Deep transfer
learning is also adopted in the DL architecture to fine-tune the pre-trained
DNNs in non-stationary networks for improving the learning efficiency.

• The work in [69] offers a more advanced learning approach, by integrating
DNNs with reinforcement learning for optimizing the distributed cooperative
sub-channel assignment and transmission power control, which aim to provide
the strict reliability and latency requirements of URLLC services.

Blockchain

• Although 6G has the capability to provide excep-
tional service qualities to IoT applications, there
exist critical issues in terms of risks of data inter-
operability, network privacy and security vulnera-
bilities.

• Blockchain is able to offer many innovative solu-
tions to effectively deal with such privacy and se-
curity challenges in 6G-IoT networks [71]. Techni-
cally, the blockchain is a decentralized, immutable
and transparent database where no any authority is
needed to manage the data.

• A blockchain-based approach is proposed in [72] for secure access control
and privacy preservation in 6G-based IoT communication environments.

• A roadmap for the applications of blockchain in 6G-IoT automation is drawn
in [73] where blockchain is particularly useful for applied domains such as
UAVs, smart grid, and food industry. For example, blockchain is able to
establish secure autonomous systems where UAVs act as blockchain clients
to communicate with ground base stations in a secure manner.

• The verification of smart healthcare in 6G-based healthcare systems can be
implemented by blockchain [74] with the integration of smart contract for
self-executing data access evaluation, which has not been considered in [72]
and [73].

works. To accelerate the stroke care for patients, an uplink
radio resource allocation optimization solution is integrated
where the assigned resources are proportional to the stroke
likelihood of patients. Another ML-based solution for intelli-
gent 6G-healthcare networks is suggested in [84], where edge-

cloud computing is adopted to provide low-latency health data
analytics for healthcare services such as diagnosis, disease
prediction, and intelligent decision making tasks for physi-
cal medicine and rehabilitation. In this context, ML is also
useful to optimize mobility management processes in 6G-
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Fig. 8: DL for V2V network management.

based health networks, by taking data rates, traffic flows,
data processing delays, and bandwidth resource allocation
into account. Implementation results show a good trade-off
between time and energy efficiency by using ML techniques
while effectively managing and monitoring the mobility of the
IoT driven devices in 6G-empowered industrial applications
including healthcare services. Recently, COVID-19 has spread
rapidly across the globe and become a major health concern
of many countries. Wireless communication technologies such
as URLLC, edge intelligence, and cloud computing have
been applied to combat the COVID-19 pandemic in different
ways [85]. For example, high-speed live video conferenc-
ing based on URLLC enables healthcare professionals to
discuss with patients in a low-latency and reliable manner
for timely COVID-19 outbreak analysis. COVID-19 data can
be processed using data-driven edge intelligence techniques
by integrating edge computing and AI for accurate and fast
disease diagnosis [86]. Fig. 7 illustrates a case study of using
edge intelligence for COVID-19 analysis, by applying FL at
the network edge. Each edge server located at a local hospital
institution is equipped with a local GAN consisting of a
discriminator and a generator based on CNNs to learn the
COVID-19 data distribution using its own local image dataset.
Then, the local GANs synchronize and exchange the learned
model parameters for aggregation at a cloud server, which then
returns a new version of the global model to all institutions
for the next training round. This process is repeated until
a desired accuracy is achieved, aiming to generate realistic
COVID-19 images for the detection of COVID-19. The use
of edge intelligence thus offers unique benefits to COVID-
19 analytics, including privacy protection and large-scale data
processing capabilities.

B. 6G for Vehicular Internet of Things (VIoT) and and Au-
tonomous Driving

The advances in 6G technologies have greatly transformed
vehicular Internet of Things (VIoT) networks and thus revolu-
tionized intelligent transportation systems (ITSs). The work in
[87] exploits mMTCs to enable vehicle-to-everything (V2X)
connectivity for the transmission of short vehicular informa-
tion payloads by a high number of vehicles without human
interaction in 6G-based VIoT networks. To do so, the id-
iosyncrasies of V2X are taken to strike a trade-off between

scalability, reliability, and latency via a vehicle discovery
approach in which a discovery entity located at the base
station collects information about the proximity of the vehi-
cles. Accordingly, to optimize the discovery scheme, signature
properties such as time slots and hash functions are tuned,
aiming to minimize the false-positive probability to schedule
the radio resources for V2X data communications under the
available spectrum budget. In future 6G-based VIoT, data
rate prediction is a challenging task due to the complex
interdependency between factors such as mobility, channels,
and networking. ML can be an efficient approach to mimic the
possible behavior of network-assisted throughput prediction
in future 6G vehicular networks [88] by learning the historic
network load information based on control channel analytics.
To unleash the potential of vehicular intelligence in VIoT,
edge intelligence functions with ML are integrated into road
side units (RUSs) that are responsible for performing the
estimation of traffic volume and weather forecast based on
the aggregation of local observations from vehicles [89]. To
further enhance the scalability of vehicular systems in the
context of 6G, a distributed estimation approach is proposed,
by allowing for local estimation at distributed vehicles through
wireless data exchange with neighbouring vehicles within the
communication range.

The role of DL in providing intelligence for 6G-based VIoT
is also examined in [90] by leveraging its high-dimensional
generalization ability to model vehicular communication chan-
nels and support networking management, such as optimal
resource allocation using DRL algorithms [91], as illustrated in
Fig. 8. In this context, how to build trust for data learning and
reasoning is highly important as the data training is normally
treated as a process in a black box where the input and output
are known only. Therefore, a trust broker entity is proposed
for 6G-VIoT networks, which is able to provide reasoning for
learning actions at the DL controller, e.g., the base station.
Thus, the learning process can be interpreted so that busi-
ness stakeholders can understand the data training process,
e.g., which data features cause which decisions. Vehicular
intelligence is also the focus in [92] where DL techniques
are adopted to autonomously schedule the data transmission.
This is enabled by using three approaches, supervised learning
for data rate estimation, unsupervised learning for recognizing
geospatially-dependent uncertainties of the estimation model,
and reinforcement learning (RL) for autonomously coordinat-
ing data transmissions based on anticipated resource efficiency.
This combined scheme is promising to achieve multi-objective
optimization in VIoT, from resource allocation to data rate
maximization. In the future, it is useful to develop cooperative
DL approaches like FL since 6G-VIoT networks are expected
to be highly scalable and distributed. In addition to network
management, DL-based intelligent software is deployed at the
vehicular data controller that is able to provide useful solutions
for security protection in 6G-based VIoT networks [93]. A
new weight-based ensemble DL approach is suggested to
detect intrusion and attack risks in vehicular communications.
Support vector machine is firstly used to map data to a high-
dimensional space through a kernel function and build the
optimal classification hyperplane to extract the sample classes.
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K-neighborhood is then applied to determine the categories of
extracted samples, which is then classified by a decision tree.
Numerical results demonstrate the high performances of DL
in terms of high attack detection accuracy (an increase of 5%-
20%, compared to non-learning approaches), which thus helps
improve the reliability and security of vehicle networks in 6G.

In the future vehicular networks, autonomous driving (AV)
will play a significant role in improving transportation quality,
road safety, and vehicular energy efficiency. 6G technologies
are expected to provide exciting opportunities to meet the
stringent service requirements of AV applications for reliability
and high-speed communications [94]. To fully realize AV
in the 6G, it is important to investigate the communication
performances of the V2V networks since each vehicle is
regarded as an entity with full control and recognition in the
interconnected vehicular system. In this context, cooperative
driving is enabled through information sharing and driving
coordination among vehicles, where DL can come as a natural
solution to perform fast prediction of the V2V communication
performance bounds for intelligent control of inter-vehicle
distances. Edge intelligence is also of paramount importance
for providing intelligent functions at the network edge, e.g.,
RSUs, for controlling the AV system [95]. For example,
AV controllers can be located at edge servers embedded
with DL processors to train vehicular data for implement-
ing autonomous driving decision making and high-definition
mapping for navigation. FL can also be exploited to provide
cooperative learning and perform federated vehicular commu-
nications among vehicles and edge servers, while preserving
user privacy and reducing network overheads caused by raw
data sharing [96].

C. 6G for Unmanned Aerial Vehicles (UAVs)

Enabled by the emerging wireless technologies, many re-
search efforts have been put into exploring the applications
of 6G-UAV networks. The work in [97] considers a cell-free
UAV network for 6G-based wide-area IoT with focus on a
UAV flight process-oriented optimization. This can be done
by formulating a data transmission efficiency maximization
problem that can be solved by taking large-scale channel
state information, on-board energy, and interference temper-
ature constraints into account. The proposed approach is also
promising to identify the cell-free coverage patterns to support
massive access for wide-area IoT devices in the future 6G
era. The authors in [98] propose a UAV-supported clustered
non-orthogonal multiple access (C-NOMA) scheme [99] for
supporting wireless powered communications in 6G-enabled
IoT networks. Given the popularity of cluster IoT terminals,
a terminal clustering strategy is adopted based on intra-
cluster NOMA communications which allows UAV to transmit
radio signals to IoT terminals. A synergetic optimization
solution for UAV trajectory planning and subslot allocation
is derived by portioning the downlink energy transfer subslot
and uplink information transmission subslot. This aims to
maximize the achievable sum rates of all IoT terminals which
are confirmed via numerical simulations. Unlike the work

in [98], the project in [100] pays attention to characterize
the UAV-to-ground channel with arbitrary three-dimensional
(3D) UAV trajectories for UAV-based 6G networks. To do
so, a 3D nonstationary geometry-based stochastic model is
derived by using the multiple-input multiple-output (MIMO)
channel configuration, with respect to distinctions between AV
altitudes, spatial consistency, and 3D arbitrary UAV movement
trajectories. Meanwhile, a collaborative multi-UAV trajectory
optimization and resource scheduling framework is studied
in [101] in a 6G-IoT network, where multiple UAVs are
used as flying base stations to transfer energy to multiple
terrestrial IoT users. The design is focused on the association
between UAVs and users, by implementing a user association
solution to select the most appropriate user to upload data
to a specific UAV. Accordingly, the ultimate objective is to
optimize the average achievable rate among all IoT users,
with respect to the UAV trajectory, sub-slot duration, and user
transmit power. A joint algorithm based on the relaxation
and successive convex optimization methods is derived to
solve the proposed problem, showing a better achievable rate
compared to existing schemes. Similarly, the research in [102]
concentrates on optimizing the transmission rates of UAVs,
where UAVs act as mobile relays in NOMA-based cognitive
6G-IoT networks. A flexible approach is adopted that allows
for optimally selecting relays to provide higher transmission
rates under fixed power.

In addition, AI techniques have been used to provide
intelligent solutions for 6G-based UAV networks. In fact,
UAVs can provide wireless communication services, edge
computing services, and edge caching services when empow-
ered AI-based solutions [103]. For example, to control the
UAV mobility and mission scheduling for the UAV trajectory
planning, AI techniques like ML can be exploited to predict the
future demands of users and service areas based on historical
datasets of movement trajectories and user requests. This not
only adjusts optimally the UAV trajectories to save transmit
power but also enhances the quality of users’ experience.
Moreover, AI approaches are very useful to build proactive
edge data caching in UAV-based IoT networks, based on the
data training and prediction capabilities through learning and
feedback processes, e.g., data caching with DRL [104]. Very
recently, FL has been applied in [105] to provide privacy-
preserved intelligence for UAV-based 6G networks. Here, each
UAV runs a DL model and exchanges learned parameters
with an MEC server for aggregation. To accommodate the
federated data training in the UAV network with limited
batteries and bandwidth spectrum, a resource allocation prob-
lem is considered that is then solved by a DRL algorithm.
In the future, to facilitate operations of UAVs in 6G-IoT
networks, regulations should be put into place to provide
guidelines for the deployment of UAVs in IoT systems, to
ensure safety and privacy [106]. Moreover, local licensing
regulations are also important, especially when countries are
still in the process of defining rules for spectrum access
rights to UAV manufacturers. Regulatory authorities should
collaborate to address critical issues in UAV integration into
the existing IoT networks, from pricing strategies to network
deployment choices, interference protection and aerial service
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coordination.

D. 6G for Satellite Internet of Things (SIoT)
In the 6G era, it is highly essential to integrate satellite

communications into current wireless networks for massive
IoT coverage which gives birth a new domain called SIoT
[107], [108]. Conceptually, satellites consist of three main
network tiers, namely LEO, MEO, and GEO to offer global
services to the terrestrial IoT users. Compared to MEO and
LEO, the LEO system has been received priorities in 5G-
network generation research due to its lower orbit height and
useful features to support IoT connectivity, such as shorter
transmission delay, smaller path loss. However, in the 6G
era, thanks to the advanced satellite technologies, multiple
satellites can be deployed at dozens of orbits above the
earth, LEO systems can thus authentically realize the global
coverage and more efficiency by frequency reuse. Moreover,
it is envisioned to establish inter-satellite links to enable
inter-satellite communications based on THz bands, which
can accommodate more satellites and achieve higher link
performances due to its much wider bandwidth, compared to
existing spectrum resources in mmWave communication and
optical communication counterparts in the 5G era [107]. As
a case study in SIoT, the work in [109] focuses on research
of a LEO satellite network that can support the navigation
of UAV trajectories for IoT data collection missions. A two-
mode communication model is derived, i.e., the UAV carry-
store mode and the satellite network relay mode for IoT data
transmission. In this context, a UAV energy cost optimiza-
tion problem is formulated that is then solved by a column
generation based algorithm. To provide further insights into
SIoT, the authors in [110] build a comprehensive model along
with highlighting technical discussions and challenges; this
includes satellite base stations and a network of terrestrial
users where satellite communications can be realized via relays
located at terrestrial base stations. Satellite communications
can be integrated with the RIS technology to enhance transmit
power consumption at the satellites, as shown in [111]; thus,
a RIS-assisted LEO satellite framework is created. RIS units
can be set up on the rectenna arrays to support IoT data
broadcasting and beamforming based on transmit features such
as carrier frequencies. In line with the energy discussion,
an energy-aware massive random access scheme for satellite
communications in 6G-enabled global SIoT is considered in
[112]. In reality, to communicate to the base station via the
uplinks, each IoT device needs to create a random access
process, by selecting an available preamble from the provided
preamble set for data transmission. Accordingly, an enhanced
preamble sequence scheme is proposed to perform one-step
fractional timing advance estimation to avoid additional sig-
nalling overhead and energy costs. Simulation results confirm
a high performance in terms of an increase of up to 15% in
timing estimation accuracy compared to existing approaches.

In addition to energy management, spectrum sharing is
another critical issue in the satellite communications for 6G-
based IoT networks [113]. The combination of NOMA and
cognitive radio technologies can help to overcome the spec-
trum scarcity. This is based on that fact that NOMA is able to
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Fig. 9: The 6G-based SIoT network and use cases.

enhance the spectrum efficiency by enabling users to transmit
on the same carrier and classifying users by different power
levels. Furthermore, the cognitive radio facilitates dynamic
spectrum sharing for efficient spectrum usage. Towards a
trade-off between system flexibility, network performance,
latency and energy management in 6G-based SIoT networks, a
holistic architecture is provided in [114] with different useful
applied domains, as illustrated in Fig. 9. For instance, SIoT is
flexible to offer remote connectivity where terrestrial networks
are overloaded or not possible, like seas and deserts. Further, it
is possible to provide data services, such as data offloading and
caching to support service delivery for terrestrial base stations
with billions of connected users. SIoT platforms can enable
energy sustainability via the use of aerial IoT devices such as
UAVs and balloons, with renewable sources from the space
that may be not available at the ground-based stations [115].

E. 6G for Industrial Internet of Things (IIoT)

Recently, the roles of 6G have been investigated in the IIoT
domain. For example, ML approaches have been applied to
provide intelligence for 6G-based IIoT networks. The study
in [116] investigates the potential of ML-based CNNs in
optimizing resource allocation in massive IIoT systems with
6G through a multi-agent system. Due to the limited resource
of IIoT sensors, the deployment of sensor nodes is often
implemented randomly, introducing unnecessary energy costs.
CNNs are useful to perform intelligent sensor clustering via
data mining and predictions based on neural backpropagation
and interaction in the training process with historical datasets.
Numerical simulation verifies a better resource allocation with
lower power consumption and reduced complexity. Mean-
while, transfer learning is adopted in [117] to coordinate the
data distribution and transmission in a blockchain-based 6G
IIoT network, where blockchain is integrated into edge nodes
and a cloud server for building a secure data sharing platform.
An integrated fog-cloud computing model is integrated to
handle the data analytics and blockchain data, by taking the
block size, CPU and memory usage, and network delays into
account. The reasoning ability of ML is exploited in [118] for
dealing with fault detection and fault prediction problems in
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6G-based IIoT systems with industrial sensors and actuators.
To this end, a long short-term memory network with a DNN
is integrated to perform online fault prediction in a mini
manufacturing system, aiming to optimize plant operations
and accelerate the production process. Online learning enabled
by data-driven ML is also helpful to 6G-based IIoT network
operation interpretation thanks to the reasoning ability of the
deep neural structures [119]. This is particularly important for
future 6G-IIoT applications where data volumes are extremely
large and its architecture is highly complex which can be
explained via data learning.

Intelligent agriculture can be realized where AI techniques
would be very useful to optimize agricultural processes, while
blockchain is able to enable secure production and logistics,
e.g., secure package delivery from the farms to the super-
markets via immutable block ledger [120]. Further, space-
terrestrial communications with UAVs has the great potential
to advancing precision agriculture, by allowing for aerial-based
soil measurement via the sensing capabilities of UAVs over
the large-scale coverage [121]. UAVs can be also exploited to
support crop imaging from a low altitude, aiming to provide a
holistic view on the farm for automatic management of agri-
culture production. Beyond these sectors, mining is another
industrial domain that can be also received much benefits from
communication advances [122], through service management
solutions offered by 6G technologies, e.g., massive URLLC-
enabled robotics for low-latency and automatic mineral man-
ufacturing, and AI for mineral predictive production control
and pricing prediction.

Although 6G brings unprecedented benefits to IIoT, security
and privacy represent significant challenges to be addressed.
Blockchain with its decentralization and immutability has
emerged as a promising solution to provide security and
trust for 6G-based IIoT networks. A secure data aggregation
approach for 6G-IIoT systems is considered in [123] based
on blockchain. This can build decentralized databases stored
over the IIoT devices without the need for an authority.
Instead, it relies on the consensus of all participating nodes
that can verify and authenticate the task assignment and the
task data. In an effort to further enhance privacy protection,
a sensitive tasks decomposition and task receivers grouping
method is integrated; hence, the direct disclosure of privacy in
sensitive tasks. Another blockchain-based solution for security
enhancement in 6G-IIoT networks is also suggested in [124]
along with FL that manages the industrial data learning
process via the collaboration of end users and a base station.
In this context, to reduce the unreliable and long-distance
communications between end users and edge servers, digital
twins are exploited to bridge the physical IIoT systems with
the digital world for robust FL training.

In summary, we list the 6G-IoT applications in Table V to
give better insights into the technical aspects of each reference
work.

V. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

In this section, we highlight several interesting research
challenges and point out possible future directions in 6G-IoT.

A. Security and Privacy in 6G-IoT

The use of 6G technologies will revolutionize the IoT net-
works and services, with many network features such as high
reliability, ultra-low latency, and massive wireless coverage.
However, the integration of 6G into IoT networks may be
vulnerable to threats related to wireless interface attacks such
as unauthorized access to data at computing units/servers,
threats to integrity in the access network infrastructure, and
denial of service (DoS) to software and data centres [125]. For
example, the diversity of IoT devices and access mechanisms
as well as massive device connectivity in large-scale IoT
access networks brings new security challenges as handovers
between different access technologies increase the risk of
attacks. The growth of connections between devices and com-
puting nodes at the network edge also increases the security
and privacy threats, where eavesdropping attacks, hijacking
attacks, spoofing attacks and DoS attacks may occur in data
communications and data management centres. Additionally,
to realize intelligent 6G-IoT networks, AI functions can be
deployed at distributed edge nodes, where the data training
can be manipulated in a spectrum access system by inserting
fake signals or modified parameters. Thus, a malicious attack
can illegally take advantage of a large portion of spectrum by
denying the spectrum to other users. Attackers can also exploit
the distributed data training nature and the dependencies on
edge computing to launch different attacks such as malicious
data injection, data poisoning or spoofing that adversely affect
the training outputs of AI functions in intelligent 6G-IoT sys-
tems. Also, edge intelligence can face security vulnerabilities
due to the distribution of AI functions at the network edge,
where attacks can deploy data breaches or modifications while
the management of remote 6G core network controllers is
limited [126]. Moreover, the deployment of satellite-UAV-IoT
communications over the untrusted environments in space can
be hindered by data privacy leakage caused by third-parties
and adversaries during the data exchange and transmission
between satellite base stations, UAVs, and terrestrial IoT users.

Therefore, the risk mitigation must be considered to en-
sure high degrees of security and privacy for 6G-IoT. For
example, perturbation techniques [127] such as differential
privacy or dummy can be used to protect training datasets
against data breaches in the edge intelligence-based 6G-IoT
networks, by constructing composition theorems with complex
mathematical solutions [128]. As an example, differential
privacy is applied in [129] by inserting artificial noise (e.g.,
Gaussian noise) to the gradients of NN layers to preserve
training data and hidden personal information against external
threats while guaranteeing convergence. A novel privacy-
preserving data aggregation solution is also integrated under
fog computing architecture to satisfy ε differential privacy in
the fashion that the aggregation results are close to the actual
results while adversaries cannot extract the ground truth in
the exchanged gradients. A Reference Energy Disaggregation
dataset including specific information about the electricity
consumption of households and a healthcare dataset including
more than 1 million medical records are employed for sim-
ulations. Implementation results demonstrate that differential
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TABLE V: Taxonomy of 6G-IoT applications.

Applications Ref. Use Case Applied 6G
technology

Key Contributions

6G-based HIoT

[77] Remote health monitoring mURLLC and
THz

communications

A solution for remote health monitoring with extremely low-latency data
transmission and network connections between wearables and remote doctors.

[78] Remote surgery UAVs and
blockchain

A more comprehensive model using the UAVs and blockchain integration that
can provide both fast and secure features for surgery processes.

[80] Healthcare data
communications

mURLLC An improved healthcare communication approach using mURLLC for
communication between nano-devices, implants, and on-body sensors and

edge/cloud servers.
[82] Connected ambulance URLLC A scheme using 6G-based URLLC to facilitate connected ambulance in

future healthcare, by allowing real-time video streaming with high color
resolution for reliable diagnosis.

[83] Health data analytics and
resource allocation

optimization

ML A ML-based framework to analyze historical health records of stroke
out-patients collected from wearable sensors and radio resource allocation

optimization in heathcare-based 6G heterogeneous networks.
[84] Mobility management ML A solution using ML for ML to optimize mobility management processes in

6G-based health networks.
[86] COVID-19 data analytics Edge intelligence Edge intelligence-based solutions for COVID-19 data learning and diagnosis

in hospital networks. Compared with other works [83], [84], this scheme
involves high training latency due to highly deep CNN structure.

6G-based VIoT

[87] Enabling V2X
connectivity

mMTC An approach using mMTC to enable V2X connectivity for the transmission
of short vehicular information payloads in 6G-based VIoT networks.

[89] Vehicular network
estimation

ML An ML-based scheme to perform estimation of traffic volume and weather
forecast based on the aggregation of local observations from vehicles at

RUSs.
[90] Vehicular communication

modelling
DL Unlike [89], this scheme relies on the high-dimensional generalization ability

of DL to model vehicular communications in 6G-based VIoT.
[92] Vehicular intelligence DL An approach for enabling vehicular intelligence where DL techniques are

adopted to autonomously schedule the data transmission.
[94] Autonomous driving DL A scheme for cooperative driving enabled by DL-based fast prediction of the

V2V communication performance bounds towards intelligent control of
inter-vehicle distances.

[95] Autonomous driving DL A model using DL-based edge intelligence that is mainly applied to
implement autonomous driving decision making and high-definition mapping

for vehicular navigation.

6G-based UAV

[97] UAV flight
process-oriented

optimization

UAV A cell-free UAV network for 6G-based wide-area IoT with focus on a UAV
flight process-oriented optimization.

[98] UAV wireless powered
communications

UAV A UAV-based scheme for supporting wireless powered communications in
6G-enabled IoT networks. Compared with [97], UAV communications are

further supported by the NOMA technology, which allows UAV to transmit
radio signals to IoT terminals.

[101]
Multi-UAV trajectory

optimization and resource
scheduling

UAV A collaborative multi-UAV trajectory optimization and resource scheduling
framework in a 6G-IoT network.

[103]
Intelligent UAV platforms ML UAVs platforms can provide wireless communication services, edge

computing services, and edge caching services with ML techniques.

[105]
Federated UAV
communications

FL As a further design advancement, a privacy-enhanced ML approach is
employed via FL to provide reliable intelligence for UAV-based 6G networks.

6G-based SIoT

[109]
Satellite IoT data

collection
UAV A LEO satellite network to support in the navigation of UAV trajectories for

IoT data collection missions.

[111]
RIS-based satellite

communications
RIS A model for RIS-based satellite communications to enhance transmit power

consumption at the satellites, aiming to form a RIS-assisted LEO satellite
framework.

[112]
Energy-aware massive

random access
Satellite

communications
An energy-aware massive random access scheme for satellite communications

in 6G-enabled global SIoT.

[113]
Satellite spectrum sharing Satellite

communications
A study for spectrum sharing in satellite communications for 6G-based IoT

networks. Moreover, this scheme is integrated with NOMA to further
enhance the spectrum efficiency.

6G-based IIoT

[116]
Optimal industrial
resource allocation

ML An ML-based CNNs approach for optimizing resource allocation in massive
IIoT systems with 6G through a multi-agent system.

[117]
Transmission latency

minimization
ML A transfer learning-based method to coordinate the intelligent data

distribution and sharing. Particularly, this scheme offers security features by
using an immutable data control solution with blockchain.

[123]
Secure industrial data

aggregation
Blockchain A secure data aggregation approach for 6G-IIoT systems based on blockchain

that can build decentralized databases stored over the IIoT devices.

[124]
Security enhancement in

IIoT
Blockchain and

FL
A blockchain-based solution for security enhancement in 6G-IIoT networks.
Compared with related works [117], [123], this scheme is integrated with FL

that further improves data privacy without sharing of raw data.
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privacy helps achieve an up to 6% higher data protection
degree, compared to traditional Laplace differential privacy
approaches, under various privacy budget settings. However,
the application of differential privacy also comes with the cost
of training quality degradation. In future work, it is suggested
to develop accuracy-aware differential privacy designs to strike
the trade-off between training quality and privacy protection.
Moreover, blockchain is a promising solution to build trust
and establish secure decentralized communications for UAV-
IoT networks [130]. Each UAV can act as a blockchain node
to perform decentralized data sharing and communications,
where lightweight mining mechanisms should be also designed
for low-latency data consensus with respect to the resource
constraints of flying devices like UAVs. This blockchain
technique becomes more important in the 6G era since IoT
networks tend to be decentralized and deployed over the large
scale that is well suitable for the decentralization feature of
blockchain.

B. Energy Efficiency in 6G-IoT

In future 6G-based IoT networks, how to achieve high
energy efficiency is a major concern. The data communications
and service delivery services, e.g., vehicular data sharing
in autonomous driving, packet delivery in the space with
UAV communications, requires significant energy resources to
ensure the network operations. Besides, each base station in
wireless cellular networks normally consumes 2.5 kW to 4 kW
[131], which means that the deployment of massive 6G-IoT
networks with thousands of stations results in enormous energy
consumption that also increases carbon emissions. Designing
energy-efficient communication protocols via optimization is
desired to realize green 6G-IoT networks. For example, the
work in [132] jointly optimizes the QoS and energy consump-
tion in 6G-based smart automation systems. This can be done
by implementing a 6G-driven multimedia data structure model
with respect to QoS parameters, such as packet loss ratio
and average transfer delay during energy-efficient multimedia
transmission.

Energy harvesting techniques to exploit the renewable en-
ergy resources would be very useful to build green 6G-IoT
systems, e.g., IoT devices can harvest power from ambient
environments, such as wind power, solar power, vibration
power, and thermal power to serve their communications
and computing services [133]. For example, a solar energy
harvesting solution is considered in [134] for HIoT networks,
where implantable sensors can harvest solar power from
natural sunlight for serving the sensory data transmissions
via a Bluetooth low energy module in a transparent silicon
housing for HIoT-based healthcare monitoring. Experiments
are conducted via a wireless implantable sensor prototype with
a solar panel and access point working over a 10 minutes
operation cycle, showing a stable energy harvesting while the
lifetime of the HIoT-based healthcare system is significantly
improved. The future researchers should further investigate the
energy efficiency issues in 6G-IoT networks at higher altitudes,
such as satellite networks with flying devices and base stations,
where space communication technologies are adopted and

energy harvesting is dependent on device trajectories and
ambient environments.

C. Hardware Constraints of IoT Devices

The hardware constraint of IoT devices is another pos-
sible challenge in communications and computations 6G-
based IoT networks. For example, in intelligent 6G-based
healthcare, wearable sensors and mobile devices should be
able to simultaneously run AI functions to achieve edge
intelligence and implement data transmission with URLLC.
Due to the constraints of hardware, memory, and power
resources, certain IoT sensors cannot meet the corresponding
computational requirements [135]. The data exchange between
IoT sensors and the network server also incurs communication
overhead which scales up with the task sizes. Thus, new
hardware design is needed toward future smart and powerful
IoT devices. For instance, the work in [136] introduces a
software-based DL accelerator to support data training on
mobile sensor hardware. The key idea is to use a set of
heterogeneous processors (e.g., GPUs) where each computing
unit exploits distinct computational resources for processing
different inference phases of DL models. This aims to optimize
hardware usage for data training without compromising the
accuracy performances, enabled by two algorithms, i.e., run-
time layer compression and deep architecture decomposition.
Simulation results demonstrate the superior performance of
the proposed approach in terms of low execution time and
energy consumption in AI hardware running, compared to
cloud offloading-based approaches. This research is promising
to develop mobile AI inference for edge intelligence, which
would enable on-device IoT implementation in the future
wireless networks. Moreover, a scheme called Tiny-transfer
learning (TinyTL) is considered in [137] for memory-efficient
on-device sensor learning. To compensate for the capacity
loss, a memory-efficient bias module, called lite residual
module is integrated which enhances the model capacity by
refining the intermediate feature maps of the feature extractor
with a minimal memory overhead. Numerical simulations
are implemented using image classification datasets, showing
that the proposed on-device learning approach can achieve a
competitive accuracy performance (above 90%), compared to
the traditional training solutions (e.g., Inception-V3), while
reducing the training memory footprint by up to 12.9. More
research efforts are needed to provide hardware-based AI train-
ing solutions on nano IoT devices and embedded wearables
in future intelligent 6G IoT networks, such as intelligent-
enhanced living assistance services.

D. Standard Specifications for 6G-IoT

The emergence of 6G technologies potentially transforms
the shape of IoT markets and revolutionizes the IoT ecosys-
tems with advanced wireless networking features. However,
the development of 6G-IoT systems requires stringent stan-
dard specifications that calls the collaboration of all business
stakeholders such as network operators, services providers,
and customers [138]. The lack of system standards can
hinder the deployment of 6G functions and technologies in

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

20

customer IoT systems. Moreover, the introduction of verti-
cal 6G-IoT use cases in future intelligent networks imposes
major architectural changes to current mobile networks in
order to simultaneously support a diverse variety of stringent
requirements (e.g. autonomous driving, e-healthcare, etc.) In
such a context, network standards hold an important role in
deploying 6G-IoT ecosystems at large-scale due to the reliance
of other important services such as computing and 6G server-
IoT device communication protocols. A popular protocol is
MODBUS [139] which is the communication standard for
connectivity of computer servers, industrial electronic equip-
ments, and sensor devices in IoT environments. MODBUS
is developed based on a variety of enabling protocols such
as remote terminal unit (RTU), TCP/IP, and UDP. It relies
on mesh networking architectures and can provide indus-
trial communications with the supervisory control over the
industrial radio bands. Recently, the Industry Specification
Group of the European Telecommunications Standards In-
stitute has released the initiative called ETSI Multi-access
Edge Computing [140], which aims to leverage seamlessly
edge computing and communication frameworks for integrat-
ing various edge-based IoT applications originating from the
vendors and service providers in the next-generation wireless
networks. This would facilitate various IoT services such as
video analytics, augmented reality, data caching, and content
delivery. In the near future, the interested stakeholders should
pay more attention to develop new standard specifications for
new space-air-ground-underwater communications, e.g., new
IoT satellite IoT communications, which would be significant
to the future deployment of new commercial IoT applications
such as space travel and deep sea marine services. The
summary of challenges and potential directions in 6G-IoT
research is presented in Table VI.

VI. CONCLUSIONS

6G has recently sparked much interest in both industry and
academia due to its appealing features compared to previous
generations of wireless networks. In this article, we have
explored the opportunities brought by the 6G technologies to
support IoT networks through a holistic survey based on the
emerging study activities in the field. This work is motivated
by the lack of a comprehensive survey on the use of 6G for
IoT. To bridge this gap, we have first introduced the recent
advances in FL and IoT and discussed the key requirements of
6G-IoT integration. We have then identified and analyzed the
key 6G technologies for enabling IoT networks, ranging from
edge intelligence, RISs, space-air-ground-underwater commu-
nications, THz communications to mURLLC and blockchain.
Next, we have provided a holistic discussion on the use of
6G in emerging IoT applications, such as HIoT, VIoT and
autonomous driving, UAVs, SIoT, and IIoT. From the extensive
survey, the key technical aspects and emerging use cases in
6G-IoT have been also summarized and analyzed via taxon-
omy tables. Finally, we have identified potential challenges
and highlighted possible directions for future research.

Research on 6G-IoT networks and applications is still in its
infancy. This being said, it is envisioned that 6G will transform

the current IoT network infrastructures and bring new levels of
service quality and user experience in the future applications.
We believe our timely work will shed valuable light on the
research of the 6G-IoT integration topics as well as motivate
researchers and stakeholders to augment the research efforts
in this promising area.
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TABLE VI: Summary of key research challenges and possible directions for 6G-IoT.

Challenges Description Possible directions

Security and Privacy
in 6G-IoT

• The developments of 6G-IoT come at the cost of new
security and privacy concerns, e.g., unauthorized access
to data at computing units/servers, threats to integrity
in the access network infrastructure, and data breaches
in edge intelligence [126].

• The deployment of satellite-UAV-IoT communications
over the untrusted environments in the space can be
hindered by data privacy leakage caused by third-
parties and adversaries during the data exchange and
transmission.

• Perturbation techniques such as differential privacy
or dummy can be useful to protect training datasets
against data breach in the edge intelligence-based 6G-
IoT networks [127].

• Blockchain is a promising solution to build trust and
establish secure decentralized communications for 6G-
IoT networks [130] over the space and untrusted wire-
less environments.

Energy Efficiency
in 6G-IoT

• In future 6G-based IoT networks, how to achieve high
energy efficiency is a major concern, e.g., energy re-
sources needed for data transmission, communications,
and service delivery services.

• Building energy-efficient wireless communication pro-
tocols is highly needed for green 6G-IoT networks.

• The [132] jointly optimizes the QoS and energy con-
sumption in 6G-based smart automation systems, by
implementing a 6G-driven multimedia data structure
approach.

• Energy harvesting techniques to exploit the renewable
energy resources will be very useful to build green 6G-
IoT systems [133].

Hardware Constraints
of IoT Devices

• The participations in 6G communications and computa-
tion tasks poses new challenges into hardware designs
for IoT devices.

• Due to the constraints of hardware, memory, and power
resources, certain IoT sensors cannot meet these com-
putational requirements in 6G-based customer applica-
tions [135].

• The work in [136] introduces a software-based deep
learning accelerator to support AI/DL training on mo-
bile sensor hardware.

• In the future, it is desired to develop lightweight on-
device hardware platforms to meet service computation
demands, e.g., on-device edge intelligence in mobile 6G
networks.

Standard Specifications
in 6G-IoT

• The development of 6G-IoT systems requires stringent
standard specifications that calls the collaboration of
all business stakeholders such as network operators,
services providers, and customers [138].

• The introduction of vertical 6G-IoT use cases in fu-
ture intelligent networks imposes major architectural
changes to current mobile networks for supporting a
diverse variety of stringent requirements.

• It is important to establish new standards for computing
and 6G server-IoT device communication protocols.

• A standard initiative ETSI Multi-access Edge Com-
puting is introduced in [140], allowing for leverag-
ing seamlessly edge computing and communication
resources in various edge-based IoT applications.

[21] M. A. Al-Jarrah, M. A. Yaseen, A. Al-Dweik, O. A. Dobre, and
E. Alsusa, “Decision Fusion for IoT-Based Wireless Sensor Networks,”
IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1313–1326, Feb.
2020.

[22] “Internet of Things 2016,” 2016. [Online].
Available: https://www.cisco.com/c/dam/en/us/products/collateral/se/
internetof-things/at-a-glance-c45-731471.pdf.

[23] “Number of Connected IoT Devices will Surge
to 125 billion by 2030,” 2021. [On-
line]. Available: https://news.ihsmarkit.com/prviewer/releaseonly/slug/
number-connected-iot-devices-will-surge-125-billion-2030

[24] “5G IoT Market by Connection, Radio Technology, Range, Vertical
and Region - Global Forecast to 2025,” 2019. [Online]. Avail-
able: https://www.globenewswire.com/fr/news-release/2019/04/19/
1806975/0/en/Global-5G-IoT-Market-Forecast-to-2025-Market.html

[25] A. O. Balghusoon and S. Mahfoudh, “Routing Protocols for Wireless
Nanosensor Networks and Internet of Nano Things: A Comprehensive
Survey,” IEEE Access, vol. 8, pp. 200 724–200 748, 2020.

[26] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, “Internet of Things in the 5G Era: Enablers, Architecture,
and Business Models,” IEEE Journal on Selected Areas in Communi-
cations, vol. 34, no. 3, pp. 510–527, Mar. 2016.

[27] B. Soret, I. Leyva-Mayorga, and P. Popovski, “Inter-Plane Satellite
Matching in Dense LEO Constellations,” in Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM), Waikoloa,
HI, USA, Dec. 2019, pp. 1–6.

[28] H. Wang, H. Zhao, W. Wu, J. Xiong, D. Ma, and J. Wei, “Deployment
Algorithms of Flying Base Stations: 5G and Beyond With UAVs,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10 009–10 027, Dec. 2019.

[29] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Networks:
The IEEE TSN and IETF DetNet Standards and Related 5G ULL

Research,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 88–145, 2019.

[30] R. Adeogun, G. Berardinelli, P. E. Mogensen, I. Rodriguez,
and M. Razzaghpour, “Towards 6G in-X Subnetworks With Sub-
Millisecond Communication Cycles and Extreme Reliability,” IEEE
Access, vol. 8, pp. 110 172–110 188, 2020.

[31] F. Giust, V. Sciancalepore, D. Sabella, M. C. Filippou, S. Mangiante,
W. Featherstone, and D. Munaretto, “Multi-Access Edge Computing:
The Driver Behind the Wheel of 5G-Connected Cars,” IEEE Commu-
nications Standards Magazine, vol. 2, no. 3, pp. 66–73, Sep. 2018.

[32] D. Lopez-Perez, A. Garcia-Rodriguez, L. Galati-Giordano, M. Kasslin,
and K. Doppler, “IEEE 802.11be Extremely High Throughput: The
Next Generation of Wi-Fi Technology Beyond 802.11ax,” IEEE Com-
munications Magazine, vol. 57, no. 9, pp. 113–119, Sep. 2019.

[33] X. Li, W. Feng, J. Wang, Y. Chen, N. Ge, and C.-X. Wang, “Enabling
5G on the Ocean: A Hybrid Satellite-UAV-Terrestrial Network Solu-
tion,” IEEE Wireless Communications, vol. 27, no. 6, pp. 116–121,
Dec. 2020.

[34] B. Coll-Perales, J. Gozalvez, and J. L. Maestre, “5G and Beyond: Smart
Devices as Part of the Network Fabric,” IEEE Network, vol. 33, no. 4,
pp. 170–177, Jul. 2019.

[35] M. Mohammadkarimi, M. A. Raza, and O. A. Dobre, “Signature-Based
Nonorthogonal Massive Multiple Access for Future Wireless Networks:
Uplink Massive Connectivity for Machine-Type Communications,”
IEEE Vehicular Technology Magazine, vol. 13, no. 4, pp. 40–50, Dec.
2018.

[36] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “In-
ternet of Things (IoT) for Next-Generation Smart Systems: A Review
of Current Challenges, Future Trends and Prospects for Emerging 5G-
IoT Scenarios,” IEEE Access, vol. 8, pp. 23 022–23 040, 2020.

[37] S. Han, T. Xie, C.-L. I, L. Chai, Z. Liu, Y. Yuan, and C. Cui, “Artificial-
Intelligence-Enabled Air Interface for 6G: Solutions, Challenges, and

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 

https://www.cisco.com/c/dam/en/us/products/collateral/se/ internetof-things/at-a-glance-c45-731471.pdf.
https://www.cisco.com/c/dam/en/us/products/collateral/se/ internetof-things/at-a-glance-c45-731471.pdf.
https://news.ihsmarkit.com/prviewer/releaseonly/slug/number-connected-iot-devices-will-surge-125-billion-2030
https://news.ihsmarkit.com/prviewer/releaseonly/slug/number-connected-iot-devices-will-surge-125-billion-2030
https://www.globenewswire.com/fr/news-release/2019/04/19/1806975/0/en/Global-5G-IoT-Market-Forecast-to-2025-Market.html
https://www.globenewswire.com/fr/news-release/2019/04/19/1806975/0/en/Global-5G-IoT-Market-Forecast-to-2025-Market.html


2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

22

Standardization Impacts,” IEEE Communications Magazine, vol. 58,
no. 10, pp. 73–79, Oct. 2020.

[38] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, Aug. 2020.

[39] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
Aug. 2019.

[40] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Toward Self-Learning
Edge Intelligence in 6G,” IEEE Communications Magazine, vol. 58,
no. 12, pp. 34–40, Dec. 2020.

[41] E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-
Castieira, M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks, T. Leppnen,
L. Lovn, T. Mikkonen, A. Rao, S. Samarakoon, K. Seppnen, P. Sroka,
S. Tarkoma, and T. Yang, “6G White Paper on Edge Intelligence,” Apr.
2020, arXiv: 2004.14850.

[42] Z. Lv, R. Lou, J. Li, A. K. Singh, and H. Song, “Big Data Analytics
for 6G-Enabled Massive Internet of Things,” IEEE Internet of Things
Journal, vol. 8, no. 7, pp. 5350–5359, Apr. 2021.

[43] U. M. Malik, M. A. Javed, S. Zeadally, and S. u. Islam, “Energy
Efficient Fog Computing for 6G enabled Massive IoT: Recent Trends
and Future Opportunities,” IEEE Internet of Things Journal, pp. 1–1,
2021.

[44] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.
Poor, “Federated Learning for Internet of Things: A Comprehensive
Survey,” IEEE Communications Surveys Tutorials, pp. 1–1, 2021.

[45] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
Learning for 6G: Applications, Challenges, and Opportunities,” Jan.
2021, arXiv: 2101.01338.

[46] Y. Qu, C. Dong, J. Zheng, Q. Wu, Y. Shen, F. Wu, and A. Anpalagan,
“Empowering the Edge Intelligence by Air-Ground Integrated Feder-
ated Learning in 6G Networks,” Jul. 2020, arXiv: 2007.13054.

[47] G. Chen, S. He, H. Meng, and K. Huang, “PhoneBit: Efficient GPU-
Accelerated Binary Neural Network Inference Engine for Mobile
Phones,” in 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, France, Mar. 2020, pp. 786–791.

[48] F. Gouidis, P. Panteleris, I. Oikonomidis, and A. Argyros, “Accurate
Hand Keypoint Localization on Mobile Devices,” in 2019 16th Inter-
national Conference on Machine Vision Applications (MVA), Tokyo,
Japan, May 2019, pp. 1–6.

[49] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen,
J. de Rosny, and S. Tretyakov, “Smart Radio Environments Empow-
ered by Reconfigurable Intelligent Surfaces: How It Works, State of
Research, and The Road Ahead,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 11, pp. 2450–2525, Nov. 2020.

[50] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen,
R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO Surfaces
for 6G Wireless Networks: Opportunities, Challenges, and Trends,”
IEEE Wireless Communications, vol. 27, no. 5, pp. 118–125, Oct. 2020.

[51] S. Zeng, H. Zhang, B. Di, Y. Tan, Z. Han, H. V. Poor, and L. Song,
“Reconfigurable Intelligent Surfaces in 6G: Reflective, Transmissive, or
Both?” IEEE Communications Letters, vol. 25, no. 6, pp. 2063–2067,
Jun. 2021.

[52] S. Kisseleff, W. A. Martins, H. Al-Hraishawi, S. Chatzinotas, and
B. Ottersten, “Reconfigurable Intelligent Surfaces for Smart Cities:
Research Challenges and Opportunities,” IEEE Open Journal of the
Communications Society, vol. 1, pp. 1781–1797, 2020.

[53] A. U. Makarfi, K. M. Rabie, O. Kaiwartya, X. Li, and R. Kharel,
“Physical Layer Security in Vehicular Networks with Reconfigurable
Intelligent Surfaces,” in Proceedings of the 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), Antwerp, Belgium, May
2020, pp. 1–6.

[54] J. Hu, H. Zhang, B. Di, L. Li, K. Bian, L. Song, Y. Li, Z. Han, and H. V.
Poor, “Reconfigurable Intelligent Surface Based RF Sensing: Design,
Optimization, and Implementation,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 11, pp. 2700–2716, Nov. 2020.

[55] A. Saeed, O. Gurbuz, and M. A. Akkas, “Terahertz Communications
at Various Atmospheric Altitudes,” Physical Communication, vol. 41,
p. 101113, Aug. 2020.

[56] Y. Huo, X. Dong, T. Lu, W. Xu, and M. Yuen, “Distributed and Mul-
tilayer UAV Networks for Next-Generation Wireless Communication
and Power Transfer: A Feasibility Study,” IEEE Internet of Things
Journal, vol. 6, no. 4, pp. 7103–7115, Aug. 2019.

[57] S. Andreev, V. Petrov, M. Dohler, and H. Yanikomeroglu, “Future of
Ultra-Dense Networks Beyond 5G: Harnessing Heterogeneous Moving

Cells,” IEEE Communications Magazine, vol. 57, no. 6, pp. 86–92, Jun.
2019.

[58] A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, and M.-S. Alouini,
“A Software-Defined Opto-Acoustic Network Architecture for Internet
of Underwater Things,” IEEE Communications Magazine, vol. 58,
no. 4, pp. 88–94, Apr. 2020.

[59] J. Fu, J. Hua, J. Wen, K. Zhou, J. Li, and B. Sheng, “Optimization
of Achievable Rate in the Multiuser Satellite IoT System With SWIPT
and MEC,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3,
pp. 2072–2080, Mar. 2021.

[60] S. Zhang, H. Zhang, and L. Song, “Beyond D2D: Full Dimension
UAV-to-Everything Communications in 6G,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 6592–6602, Jun. 2020.

[61] C. Han, Y. Wu, Z. Chen, and X. Wang, “Terahertz Communications
(TeraCom): Challenges and Impact on 6G Wireless Systems,” Dec.
2019, arXiv: 1912.06040.

[62] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Man-
dal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless Communications
and Applications Above 100 GHz: Opportunities and Challenges for
6G and Beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019.

[63] S. A. Busari, K. M. S. Huq, S. Mumtaz, J. Rodriguez, Y. Fang,
D. C. Sicker, S. Al-Rubaye, and A. Tsourdos, “Generalized Hybrid
Beamforming for Vehicular Connectivity Using THz Massive MIMO,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8372–
8383, Sep. 2019.

[64] C. She, C. Sun, Z. Gu, Y. Li, C. Yang, H. V. Poor, and B. Vucetic, “A
Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning,” Jan. 2021, arXiv:
2009.06010.

[65] S.-Y. Lien, S.-C. Hung, D.-J. Deng, and Y. J. Wang, “Efficient Ultra-
Reliable and Low Latency Communications and Massive Machine-
Type Communications in 5G New Radio,” in Proceedings of the 2017
IEEE Global Communications Conference, Singapore, Dec. 2017, pp.
1–7.

[66] D. C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P. N. Pathirana,
J. Li, A. Seneviratne, Y. Li, and H. V. Poor, “Enabling AI in Future
Wireless Networks: A Data Life Cycle Perspective,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 1, pp. 553–595, 2021.

[67] T. Li, W. Liu, Z. Zeng, and N. N. Xiong, “DRLR: A Deep Re-
inforcement Learning based Recruitment Scheme for Massive Data
Collections in 6G-based IoT networks,” IEEE Internet of Things
Journal, pp. 1–1, 2021.

[68] C. She, R. Dong, Z. Gu, Z. Hou, Y. Li, W. Hardjawana, C. Yang,
L. Song, and B. Vucetic, “Deep Learning for Ultra-Reliable and Low-
Latency Communications in 6G Networks,” IEEE Network, vol. 34,
no. 5, pp. 219–225, Sep. 2020.

[69] H. Yang, Z. Xiong, J. Zhao, T. D. Niyato, C. Yuen, and R. Deng,
“Deep Reinforcement Learning Based Massive Access Management
for Ultra-Reliable Low-Latency Communications,” IEEE Transactions
on Wireless Communications, pp. 1–1, 2021.

[70] Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5G URLLC:
Design Challenges and System Concepts,” in 2018 15th International
Symposium on Wireless Communication Systems (ISWCS), Lisbon,
Aug. 2018, pp. 1–6.

[71] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for 5G and beyond networks: A state of the art survey,”
Journal of Network and Computer Applications, vol. 166, p. 102693,
Sep. 2020.

[72] G. Manogaran, B. S. Rawal, V. Saravanan, P. M. Kumar, O. S. Martnez,
R. G. Crespo, C. E. Montenegro-Marin, and S. Krishnamoorthy,
“Blockchain based Integrated Security Measure for Reliable Service
Delegation in 6G Communication Environment,” Computer Communi-
cations, vol. 161, pp. 248–256, Sep. 2020.

[73] R. Sekaran, R. Patan, A. Raveendran, F. Al-Turjman, M. Ramachan-
dran, and L. Mostarda, “Survival Study on Blockchain Based 6G-
Enabled Mobile Edge Computation for IoT Automation,” IEEE Access,
vol. 8, pp. 143 453–143 463, 2020.

[74] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for Secure EHRs Sharing of Mobile Cloud Based E-Health
Systems,” IEEE Access, vol. 7, pp. 66 792–66 806, 2019.

[75] A.-A. A. Boulogeorgos, A. Alexiou, T. Merkle, C. Schubert,
R. Elschner, A. Katsiotis, P. Stavrianos, D. Kritharidis, P.-K. Chartsias,
J. Kokkoniemi, M. Juntti, J. Lehtomaki, A. Teixeira, and F. Rodrigues,
“Terahertz Technologies to Deliver Optical Network Quality of Ex-
perience in Wireless Systems Beyond 5G,” IEEE Communications
Magazine, vol. 56, no. 6, pp. 144–151, Jun. 2018.

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

23

[76] H. Habibzadeh, K. Dinesh, O. R. Shishvan, A. Boggio-Dandry,
G. Sharma, and T. Soyata, “A Survey of Healthcare Internet of Things
(HIoT): A Clinical Perspective,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 53–71, Jan. 2020.

[77] S. Nayak and R. Patgiri, “6G Communication Technology: A Vision
on Intelligent Healthcare,” pp. 1–18, 2021.

[78] R. Gupta, A. Shukla, and S. Tanwar, “BATS: A Blockchain and AI-
empowered Drone-assisted Telesurgery System towards 6G,” IEEE
Transactions on Network Science and Engineering, pp. 1–1, 2020.

[79] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain and Edge Computing for Decentralized EMRs Sharing
in Federated Healthcare,” in Proceedings of the 2020 IEEE Global
Communications Conference, Taipei, Taiwan, Dec. 2020, pp. 1–6.

[80] L. Mucchi, S. Jayousi, S. Caputo, E. Paoletti, P. Zoppi, S. Geli, and
P. Dioniso, “How 6G Technology Can Change the Future Wireless
Healthcare,” in Proceedings of the 2020 2nd 6G Wireless Summit (6G
SUMMIT), Levi, Finland, Mar. 2020, pp. 1–6.

[81] M. S. Kaiser, N. Zenia, F. Tabassum, S. A. Mamun, M. A. Rahman,
M. S. Islam, and M. Mahmud, “6G Access Network for Intelligent
Internet of Healthcare Things: Opportunity, Challenges, and Research
Directions,” in Proceedings of International Conference on Trends in
Computational and Cognitive Engineering, ser. Advances in Intelligent
Systems and Computing, M. S. Kaiser, A. Bandyopadhyay, M. Mah-
mud, and K. Ray, Eds., Singapore, 2021, pp. 317–328.

[82] G. Cisotto, E. Casarin, and S. Tomasin, “Requirements and Enablers
of Advanced Healthcare Services over Future Cellular Systems,” IEEE
Communications Magazine, vol. 58, no. 3, pp. 76–81, Mar. 2020.

[83] M. S. Hadi, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
“Patient-Centric HetNets Powered by Machine Learning and Big Data
Analytics for 6G Networks,” IEEE Access, vol. 8, pp. 85 639–85 655,
2020.

[84] A. H. Sodhro, N. Zahid, L. Wang, S. Pirbhulal, Y. O. Ouzrout,
A. Sekhari, A. V. Lira Neto, A. R. L. De Macedo, and V. H. C.
De Albuquerque, “Towards ML-based Energy-Efficient Mechanism for
6G Enabled Industrial Network in Box Systems,” IEEE Transactions
on Industrial Informatics, pp. 1–1, 2020.

[85] Y. Siriwardhana, G. Gr, M. Ylianttila, and M. Liyanage, “The role of
5G for digital healthcare against COVID-19 pandemic: Opportunities
and challenges,” ICT Express, p. S2405959520304744, Nov. 2020.

[86] D. Nguyen, M. Ding, P. N. Pathirana, and A. Seneviratne, “Blockchain
and AI-based Solutions to Combat Coronavirus (COVID-19)-like Epi-
demics: A Survey,” 2020.

[87] C. Kalalas and J. Alonso-Zarate, “Massive Connectivity in 5G and
Beyond: Technical Enablers for the Energy and Automotive Verticals,”
in Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT),
Levi, Finland, Mar. 2020, pp. 1–5.

[88] B. Sliwa, R. Falkenberg, and C. Wietfeld, “Towards Cooperative Data
Rate Prediction for Future Mobile and Vehicular 6G Networks,” in
Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi,
Finland, Mar. 2020, pp. 1–5.

[89] W. Yuan, S. Li, L. Xiang, and D. W. K. Ng, “Distributed Estimation
Framework for Beyond 5G Intelligent Vehicular Networks,” IEEE Open
Journal of Vehicular Technology, vol. 1, pp. 190–214, 2020.

[90] C. Li, W. Guo, S. C. Sun, S. Al-Rubaye, and A. Tsourdos, “Trustworthy
Deep Learning in 6G-Enabled Mass Autonomy: From Concept to
Quality-of-Trust Key Performance Indicators,” IEEE Vehicular Tech-
nology Magazine, vol. 15, no. 4, pp. 112–121, Dec. 2020.

[91] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
Preserved Task Offloading in Mobile Blockchain With Deep Re-
inforcement Learning,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2536–2549, Dec. 2020.

[92] B. Sliwa, R. Adam, and C. Wietfeld, “Client-Based Intelligence for Re-
source Efficient Vehicular Big Data Transfer in Future 6G Networks,”
IEEE Transactions on Vehicular Technology, pp. 1–1, 2021.

[93] Z. Zhang, Y. Cao, Z. Cui, W. Zhang, and J. Chen, “A Many-objective
Optimization based Intelligent Intrusion Detection Algorithm for En-
hancing Security of Vehicular Networks in 6G,” IEEE Transactions on
Vehicular Technology, pp. 1–1, 2021.

[94] X. Chen, S. Leng, J. He, and L. Zhou, “Deep Learning Based
Intelligent Inter-Vehicle Distance Control for 6G-Enabled Cooperative
Autonomous Driving,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[95] J. He, K. Yang, and H.-H. Chen, “6G Cellular Networks and Connected
Autonomous Vehicles,” IEEE Network, pp. 1–7, 2020.

[96] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated Learning for
Wireless Communications: Motivation, Opportunities, and Challenges,”
IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, Jun. 2020.

[97] C. Liu, W. Feng, Y. Chen, C.-X. Wang, and N. Ge, “Cell-Free Satellite-
UAV Networks for 6G Wide-Area Internet of Things,” IEEE Journal
on Selected Areas in Communications, pp. 1–1, 2020.

[98] Z. Na, Y. Liu, J. Shi, C. Liu, and Z. Gao, “UAV-supported Clustered
NOMA for 6G-enabled Internet of Things: Trajectory Planning and
Resource Allocation,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[99] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-s. Kwak, “Power-
Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems:
Potentials and Challenges,” IEEE Communications Surveys & Tutori-
als, vol. 19, no. 2, pp. 721–742, 2017.

[100] H. Chang, C.-X. Wang, Y. Liu, J. Huang, J. Sun, W. Zhang, and X. Gao,
“A Novel Non-Stationary 6G UAV-to-Ground Wireless Channel Model
with 3D Arbitrary Trajectory Changes,” IEEE Internet of Things
Journal, pp. 1–1, 2020.

[101] J. Wang, Z. Na, and X. Liu, “Collaborative Design of Multi-UAV Tra-
jectory and Resource Scheduling for 6G-enabled Internet of Things,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[102] H. Huang, S. Hu, T. Yang, and C. W. Yuan, “Full Duplex Non-
orthogonal Multiple Access with Layers-based Optimized Mobile
Relays Subsets Algorithm in B5G/6G Ubiquitous Networks,” IEEE
Internet of Things Journal, pp. 1–1, 2020.

[103] C. Dong, Y. Shen, Y. Qu, Q. Wu, F. Wu, and G. Chen, “UAVs
as a Service: Boosting Edge Intelligence for Air-Ground Integrated
Networks,” Mar. 2020, arXiv: 2003.10737.

[104] Y. Dai, D. Xu, K. Zhang, S. Maharjan, and Y. Zhang, “Deep Rein-
forcement Learning and Permissioned Blockchain for Content Caching
in Vehicular Edge Computing and Networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 4, pp. 4312–4324, Apr. 2020.

[105] S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, “Battery-
constrained Federated Edge Learning in UAV-enabled IoT for B5G/6G
Networks,” Physical Communication, p. 101381, 2021.

[106] Z. Ullah, F. Al-Turjman, and L. Mostarda, “Cognition in UAV-Aided
5G and Beyond Communications: A Survey,” IEEE Transactions on
Cognitive Communications and Networking, vol. 6, no. 3, pp. 872–891,
Sep. 2020.

[107] J. Chu, X. Chen, C. Zhong, and Z. Zhang, “Robust Design for NOMA-
Based Multibeam LEO Satellite Internet of Things,” IEEE Internet of
Things Journal, vol. 8, no. 3, pp. 1959–1970, Feb. 2021.

[108] C. Liu, W. Feng, X. Tao, and N. Ge, “MEC-Empowered Non-Terrestrial
Network for 6G Wide-Area Time-Sensitive Internet of Things,” Mar.
2021, arXiv: 2103.11907.

[109] Z. Jia, M. Sheng, J. Li, D. Niyato, and Z. Han, “LEO Satellite-
Assisted UAV: Joint Trajectory and Data Collection for Internet of
Remote Things in 6G Aerial Access Networks,” IEEE Internet of
Things Journal, pp. 1–1, 2020.

[110] X. Fang, W. Feng, T. Wei, Y. Chen, N. Ge, and C.-X. Wang, “5G
Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated
Satellite Terrestrial Networks,” Nov. 2020.

[111] K. Tekbyk, G. K. Kurt, and H. Yanikomeroglu, “Energy-Efficient RIS-
assisted Satellites for IoT Networks,” Jan. 2021.

[112] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, and
P. Xiao, “Energy-Efficient Random Access for LEO Satellite-Assisted
6G Internet of Remote Things,” IEEE Internet of Things Journal, pp.
1–1, 2020.

[113] X. Liu, K.-Y. Lam, F. Li, J. Zhao, and L. Wang, “Spectrum Sharing
for 6G Integrated Satellite-Terrestrial Communication Networks Based
on NOMA and Cognitive Radio,” Jan. 2021.

[114] D. Wang, M. Giordani, M.-S. Alouini, and M. Zorzi, “The Potential
of Multi-Layered Hierarchical Non-Terrestrial Networks for 6G,” Nov.
2020.

[115] S. Chen, S. Sun, and S. Kang, “System integration of terrestrial mobile
communication and satellite communication the trends, challenges and
key technologies in B5G and 6G,” China Communications, vol. 17,
no. 12, pp. 156–171, Dec. 2020.

[116] A. Mukherjee, P. Goswami, M. A. Khan, L. Manman, L. Yang, and
P. Pillai, “Energy Efficient Resource Allocation strategy in Massive IoT
for Industrial 6G Applications,” IEEE Internet of Things Journal, pp.
1–1, 2020.

[117] P. K. Deb, S. Misra, T. Sarkar, and A. Mukherjee, “Magnum: A
Distributed Framework for Enabling Transfer Learning in B5G-Enabled
Industrial-IoT,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2020.

[118] A. Mohamed, H. Ruan, M. H. H. Abdelwahab, B. Dorneanu, P. Xiao,
H. Arellano-Garcia, Y. Gao, and R. Tafazolli, “An Inter-Disciplinary
Modelling Approach in Industrial 5G/6G and Machine Learning Era,”
in 2020 IEEE International Conference on Communications Workshops
(ICC Workshops), Dublin, Ireland, Jun. 2020, pp. 1–6.

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

24

[119] J. Huang, G. Li, J. Tian, and S. Li, “Accurate interpretation of the online
learning model for 6G-enabled Internet of Things,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[120] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Inte-
gration of Blockchain and Cloud of Things: Architecture, Applications
and Challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2521–2549, 2020.

[121] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic UAV and UGV system for precision agriculture,”
in Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Nov. 2013, pp. 5321–5326.

[122] T. Sun, “Mining and utilization of special information for archives
management based on 5G network and Internet of Things,” Micropro-
cessors and Microsystems, p. 103410, Nov. 2020.

[123] H. Lin, S. Garg, J. Hu, G. Kaddoum, M. Peng, and M. S. Hossain, “A
Blockchain-based Secure Data Aggregation Strategy using 6G-enabled
NIB for Industrial Applications,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2020.

[124] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
Federated Learning and Blockchain for Edge Association in Digital
Twin empowered 6G Networks,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2020.

[125] P. Porambage, G. Gur, D. P. M. Osorio, M. Liyanage, A. Gurtov, and
M. Ylianttila, “The Roadmap to 6G Security and Privacy,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 1094–1122, 2021.

[126] M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou, “Security
and privacy in 6G networks: New areas and new challenges,” Digital
Communications and Networks, vol. 6, no. 3, pp. 281–291, Aug. 2020.

[127] S. J. Oh, M. Fritz, and B. Schiele, “Adversarial Image Perturbation
for Privacy Protection A Game Theory Perspective,” in Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Oct. 2017, pp. 1491–1500.

[128] S. Shaham, M. Ding, B. Liu, S. Dang, Z. Lin, and J. Li, “Privacy
Preservation in Location-Based Services: A Novel Metric and Attack
Model,” IEEE Transactions on Mobile Computing, pp. 1–1, 2020.

[129] M. Yang, T. Zhu, B. Liu, Y. Xiang, and W. Zhou, “Machine Learning
Differential Privacy With Multifunctional Aggregation in a Fog Com-
puting Architecture,” IEEE Access, vol. 6, pp. 17 119–17 129, 2018.

[130] X. Jian, P. Leng, Y. Wang, M. Alrashoud, and M. S. Hossain,
“Blockchain-Empowered Trusted Networking for Unmanned Aerial
Vehicles in the B5G Era,” IEEE Network, vol. 35, no. 1, pp. 72–77,
Mar. 2021.

[131] F. M. Al-Turjman, M. Imran, and S. T. Bakhsh, “Energy Efficiency
Perspectives of Femtocells in Internet of Things: Recent Advances and
Challenges,” IEEE Access, vol. 5, pp. 26 808–26 818, 2017.

[132] A. H. Sodhro, S. Pirbhulal, L. Zongwei, K. Muhammad, and N. Zahid,
“Towards 6G Architecture for Energy Efficient Communication in IoT-
Enabled Smart Automation Systems,” IEEE Internet of Things Journal,
pp. 1–1, 2020.

[133] N. Zhao, S. Zhang, F. R. Yu, Y. Chen, A. Nallanathan, and V. C. M.
Leung, “Exploiting Interference for Energy Harvesting: A Survey,
Research Issues, and Challenges,” IEEE Access, vol. 5, pp. 10 403–
10 421, 2017.

[134] T. Wu, J.-M. Redoute, and M. R. Yuce, “A Wireless Implantable
Sensor Design With Subcutaneous Energy Harvesting for Long-Term
IoT Healthcare Applications,” IEEE Access, vol. 6, pp. 35 801–35 808,
2018.

[135] X. Yang, M. Matthaiou, J. Yang, C.-K. Wen, F. Gao, and S. Jin,
“Hardware-Constrained Millimeter-Wave Systems for 5G: Challenges,
Opportunities, and Solutions,” IEEE Communications Magazine,
vol. 57, no. 1, pp. 44–50, Jan. 2019.

[136] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “DeepX: A Software Accelerator for Low-
Power Deep Learning Inference on Mobile Devices,” in Proceedings
of the 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), Vienna, Austria, Apr. 2016, pp.
1–12.

[137] H. Cai, C. Gan, L. Zhu, and S. Han, “TinyTL: Reduce memory,
not parameters for efficient on-device learning,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[138] J. Yeo, T. Kim, J. Oh, S. Park, Y. Kim, and J. Lee, “Advanced
Data Transmission Framework for 5G Wireless Communications in
the 3GPP New Radio Standard,” IEEE Communications Standards
Magazine, vol. 3, no. 3, pp. 38–43, Sep. 2019.

[139] Y. Yuanyuan and C. Meng, “An Improved Algorithm for Adaptive
Communication Frame Length Based on Modbus Protocol,” in Pro-
ceedings of the 2020 IEEE 6th International Conference on Computer

and Communications (ICCC), Chengdu, China, Dec. 2020, pp. 132–
135.

[140] M. Rayani, R. H. Glitho, and H. Elbiaze, “ETSI Multi-Access Edge
Computing for Dynamic Adaptive Streaming in Information Centric
Networks,” in Proceedings of the 2020 IEEE Global Communications
Conference, Dec. 2020, pp. 1–6.

Dinh C. Nguyen (Member, IEEE) is currently
with the School of Engineering, Deakin University,
Victoria, Australia. His research interests focus on
Internet of Things, wireless communications, deep
reinforcement learning, federated learning, mobile
edge/cloud computing, security and privacy. His
works have been published on top-tier IEEE journals
and conferences, such as IEEE Wireless Commu-
nications Magazine, IEEE Communications Surveys
and Tutorials, IEEE Internet of Things Journal, IEEE
GLOBECOM, ICC, and CCGrid conferences. He

has been a recipient of the prestigious Data61 PhD scholarship, CSIRO,
Australia. He has been the TPC member of top-tier conferences including
IEEE GLOBECOM 2021.

Ming Ding (Senior Member, IEEE) received the
B.S. and M.S. degrees (with first-class Hons.) in
electronics engineering from Shanghai Jiao Tong
University (SJTU), Shanghai, China, and the Doctor
of Philosophy (Ph.D.) degree in signal and informa-
tion processing from SJTU, in 2004, 2007, and 2011,
respectively. From April 2007 to September 2014, he
worked at Sharp Laboratories of China in Shanghai,
China as a Researcher/Senior Researcher/Principal
Researcher. Currently, he is a senior research scien-
tist at Data61, CSIRO, in Sydney, NSW, Australia.

His research interests include information technology, data privacy and
security, machine learning and AI, etc. He has authored over 140 papers in
IEEE journals and conferences, all in recognized venues, and around 20 3GPP
standardization contributions, as well as a Springer book “Multi-point Coop-
erative Communication Systems: Theory and Applications”. Also, he holds
21 US patents and co-invented another 100+ patents on 4G/5G technologies
in CN, JP, KR, EU, etc. Currently, he is an editor of IEEE Transactions
on Wireless Communications and IEEE Wireless Communications Letters.
Besides, he has served as Guest Editor/Co-Chair/Co-Tutor/TPC member for
many IEEE top-tier journals/conferences and received several awards for his
research work and professional services.

Pubudu N. Pathirana (Senior Member, IEEE) was
born in 1970 in Matara, Sri Lanka, and was educated
at Royal College Colombo. He received the B.E.
degree (first class honors) in electrical engineering
and the B.Sc. degree in mathematics in 1996, and the
Ph.D. degree in electrical engineering in 2000 from
the University of Western Australia, all sponsored
by the government of Australia on EMSS and IPRS
scholarships, respectively. He was a Postdoctoral
Research Fellow at Oxford University, Oxford, a Re-
search Fellow at the School of Electrical Engineering

and Telecommunications, University of New South Wales, Sydney, Australia,
and a Consultant to the Defence Science and Technology Organization
(DSTO), Australia, in 2002. He was a visiting professor at Yale University
in 2009. Currently, he is a full Professor and the Head of Discipline,
Mechatronics, Electrical and Electronic Engineering and the Director of
Networked Sensing and Control research group at the School of Engineering,
Deakin University, Geelong, Australia. His current research interests include
Bio-Medical assistive device design, human motion capture, mobile/wireless
and IoT networks, rehabilitation robotics and signal processing.

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103320, IEEE Internet of
Things Journal

25

Aruna Seneviratne (Senior Member, IEEE) is cur-
rently a Foundation Professor of telecommunications
with the University of New South Wales, Australia,
where he holds the Mahanakorn Chair of telecom-
munications. He has also worked at a number of
other Universities in Australia, U.K., and France,
and industrial organizations, including Muirhead,
Standard Telecommunication Labs, Avaya Labs, and
Telecom Australia (Telstra). In addition, he has held
visiting appointments at INRIA, France. His current
research interests are in physical analytics: technolo-

gies that enable applications to interact intelligently and securely with their
environment in real time. Most recently, his team has been working on using
these technologies in behavioral biometrics, optimizing the performance of
wearables, and the IoT system verification. He has been awarded a number of
fellowships, including one at British Telecom and one at Telecom Australia
Research Labs.

Jun Li (M’09-SM’16) received Ph. D degree in
Electronic Engineering from Shanghai Jiao Tong
University, Shanghai, P. R. China in 2009. From
January 2009 to June 2009, he worked in the De-
partment of Research and Innovation, Alcatel Lu-
cent Shanghai Bell as a Research Scientist. From
June 2009 to April 2012, he was a Postdoctoral
Fellow at the School of Electrical Engineering and
Telecommunications, the University of New South
Wales, Australia. From April 2012 to June 2015,
he is a Research Fellow at the School of Electrical

Engineering, the University of Sydney, Australia. From June 2015 to now, he
is a Professor at the School of Electronic and Optical Engineering, Nanjing
University of Science and Technology, Nanjing, China. He was a visiting
professor at Princeton University from 2018 to 2019. His research interests
include network information theory, game theory, distributed intelligence,
multiple agent reinforcement learning, and their applications in ultra-dense
wireless networks, mobile edge computing, network privacy and security, and
industrial Internet of things. He has co-authored more than 200 papers in IEEE
journals and conferences, and holds 1 US patents and more than 10 Chinese
patents in these areas. He was serving as an editor of IEEE Communication
Letters and TPC member for several flagship IEEE conferences. He received
Exemplary Reviewer of IEEE Transactions on Communications in 2018, and
best paper award from IEEE International Conference on 5G for Future
Wireless Networks in 2017.

Dusit Niyato (M’09-SM’15-F’17) is currently a
professor in the School of Computer Science and
Engineering, at Nanyang Technological University,
Singapore. He received B.Eng. from King Mongkuts
Institute of Technology Ladkrabang (KMITL), Thai-
land in 1999 and Ph.D. in Electrical and Com-
puter Engineering from the University of Manitoba,
Canada in 2008. His research interests are in the area
of energy harvesting for wireless communication,
Internet of Things (IoT) and sensor networks.

Octavia Dobre (F’20) is a Professor and Research
Chair at Memorial University, Canada. She was
a Royal Society and a Fulbright Scholar, and a
Visiting Professor at Massachusetts Institute of Tech-
nology. Her research interests include technologies
for beyond 5G, as well as optical and underwater
communications. She published over 300 referred
papers in these areas. Dr. Dobre serves as the Editor-
in-Chief (EiC) of the IEEE Open Journal of the
Communications Society. She was the EiC of the
IEEE Communications Letters, a senior editor and

an editor with prestigious journals, as well as General Chair and Technical
Co-Chair of flagship conferences in her area of expertise. Dr. Dobre is the
recipient of diverse awards, such as Best Paper Awards at IEEE ICC, IEEE
Globecom, and IEEE WCNC conferences. She is a Distinguished Lecturer of
the IEEE Communications Society, a Fellow of the IEEE and the Engineering
Institute of Canada.

H. Vincent Poor (S’72, M’77, SM’82, F’87) re-
ceived the Ph.D. degree in EECS from Princeton
University in 1977. From 1977 until 1990, he was
on the faculty of the University of Illinois at Urbana-
Champaign. Since 1990 he has been on the faculty
at Princeton, where he is the Michael Henry Strater
University Professor. From 2006 until 2016 he also
served as Dean of Princeton’s School of Engineering
and Applied Science. Dr. Poor’s research interests
are in the areas of information theory, machine learn-
ing and network science, and their applications in

wireless networks, energy systems, and related fields. Among his publications
in these areas is the forthcoming book Machine Learning and Wireless
Communications (Cambridge University Press, 2021).

Dr. Poor is a member of the National Academy of Engineering and the
National Academy of Sciences, and is a foreign member of the Chinese
Academy of Sciences, the Royal Society, and other national and international
academies. Recent recognition of his work includes the 2017 IEEE Alexander
Graham Bell Medal and a D.Eng. honoris causa from the University of
Waterloo, awarded in 2019.

Authorized licensed use limited to: Deakin University. Downloaded on August 10,2021 at 23:39:49 UTC from IEEE Xplore.  Restrictions apply. 


