
Fast Segmentation of 3D Point Clouds: A Paradigm on LiDAR Data for
Autonomous Vehicle Applications

Dimitris Zermas1, Izzat Izzat2 and Nikolaos Papanikolopoulos1

1Department of Computer Science and Engineering,
University of Minnesota

2Advanced Engineering Department,
DELPHI Automotive

Abstract— The recent activity in the area of autonomous
vehicle navigation has initiated a series of reactions that stirred
the automobile industry, pushing for the fast commercialization
of this technology which, until recently, seemed futuristic. The
LiDAR sensor is able to provide a detailed understanding of
the environment surrounding the vehicle making it useful in a
plethora of autonomous driving scenarios. Segmenting the 3D
point cloud that is provided by modern LiDAR sensors, is the
first important step towards the situational assessment pipeline
that aims for the safety of the passengers. This step needs to
provide accurate segmentation of the ground surface and the
obstacles in the vehicle’s path, and to process each point cloud
in real time. The proposed pipeline aims to solve the problem of
3D point cloud segmentation for data received from a LiDAR
in a fast and low complexity manner that targets real world
applications. The two-step algorithm first extracts the ground
surface in an iterative fashion using deterministically assigned
seed points, and then clusters the remaining non-ground points
taking advantage of the structure of the LiDAR point cloud.
Our proposed algorithms outperform similar approaches in
running time, while producing similar results and support the
validity of this pipeline as a segmentation tool for real world
applications.

I. INTRODUCTION

The recent activity in the area of autonomous vehicle
navigation has initiated a series of reactions that stirred the
automobile industry, pushing for the fast commercialization
of this technology which, until recently, seemed futuris-
tic. Despite the excitement of the general audience, it is
imperative for the engineering community to realise the
responsibility of bringing such product to a mass production
level. This realization has pushed for the fusion of multiple
sensors in order to enhance the sensing capabilities of the
autonomous vehicles.

One such sensor is the LiDAR, which utilizes multiple
laser beams to locate obstacles in its surroundings and is
known for its capability to depict this information in a
dense three dimensional (3D) cloud of points. The LiDAR
has been popular amongst academic research teams for its
long range and satisfactory accuracy while recent hardware
advancements that promise better, lower cost, and smaller
scale sensors have appeared to attract the interest of the
industry.

Mounted on an autonomous vehicle the sensor by itself
provides the means to acquire a 3D representation of the

surrounding environment, and the challenge is to analyze
it and extract meaningful information such as the number
of obstacles, their position and velocity with respect to the
vehicle, and their class being a car, a pedestrian, a pole, etc.

Similar to image processing, the first important step for
this type of analysis is the fine segmentation of the input
data into meaningful clusters. The work in this paper is
attacking this exact problem and is presenting a methodology
that focuses on computational speed and complexity. A fast
and low complexity segmentation process allows to redi-
rect precious hardware resources to more computationally
demanding processes in the autonomous driving pipeline.

In the case of LiDAR sensors with the ability to capture
360 degrees of information, the data is represented as a set
of 3D points called a point cloud which is organized in
layers. The points in each layer are also organized in an
elliptical fashion and the starting points of all elliptical layers
are considered to share the same orientation.The presented
methodology relies on this type of organization in the point
cloud and takes advantage of smart indexing to perform an
efficient segmentation.

Similar to preceding work in the same domain, our ap-
proach proposes the segmentation process to conclude in two
steps; (i) the extraction of the points belonging to the ground,
and (ii) the clustering of the remaining points into meaningful
sets. Both steps present original approaches to the problem
focused on real world applications and extensively tested on
the publicly available KITTI dataset [1].

In the following, the related literature review can be found
in section II. The methodology is explicitly described in
section III and results can be found in section IV, followed
by the last section V that summarises the findings of this
work.

II. LITERATURE REVIEW

In this work we are focusing on segmentation methods for
data points in three dimensions and emphasize to applications
related to autonomous vehicle driving. A common practise
for this particular application is to split the segmentation
process in two steps; first extracting the ground points and
then clustering the remaining points into objects the car needs
to be aware of.

For the first step, a grid-based approach was introduced
by Thrun et al. [2] which are dividing the grid cells as
ground and non-ground based on the maximum absolute
difference between the heights of points inside the cell. On
the other hand, Himmelsbach et al. [3] are treating the point
cloud in cylindrical coordinates and taking advantage of the
distribution of the points in order to fit line segments to
the point cloud. The segments, based on some threshold of
the slope are considered to capture the ground surface. In
an attempt to recognize the ground surface, Moosmann et
al. [4] are creating an undirected graph and compare local
changes of plane normals in order to characterize changes in
the slope. Douillard et al. [5] are introducing GP-INSAC, a
gaussian-process based iterative scheme that classifies points
in ground and non-ground based on the variance of their
height from the mean of a gaussian distribution. Similarly,
gaussian processes for ground extraction were later used
by Chen et al. [6], while probabilistic approaches utilizing
Markov Random Fields can be seen in the work of Tse et
al. [7] and Byun et al. [8].

Consecutively, the grouping of the remaining well sep-
arated non-ground points is usually treated as a clustering
problem where appropriate well known clustering algorithms
are employed. Such are the cases for clustering algorithms
that are popular for their simplicity, easy deployment, and
high execution speed. Examples include the euclidean cluster
extraction [9] whose implementation can be found in the
point cloud library (PCL) [10], DBSCAN [11], and Mean-
Shift [12]. The use of voxelization techniques to compress
and then cluster the remaining non-ground points is also
considered popular ([3], [5]). These algorithms traverse the
point cloud in an irregular way and upon finding an unlabeled
point, they assign a new label which is then propagated to
neighboring unlabeled points based on some rules. Inside a
three dimensional space, such irregular accessing of points
can lead to exhaustive search for neighbors that slow down
the whole process. Although this is necessary for unorga-
nized point clouds, in the targeted application the layer-based
organization of the point cloud is not exploited.

III. METHODOLOGY

The following paragraphs describe in detail the complete
methodology for the segmentation of a point cloud received
by a 360o coverage LiDAR sensor. First, we present a
deterministic iterative multiple plane fitting technique we
call Ground Plane Fitting (GPF) for the fast extraction of
the ground points, followed by a point cloud clustering
methodology named Scan Line Run (SLR) which is inspired
by algorithms for connected components labeling in binary
images.

Each paragraph is conceptually divided in three sections
including a brief reasoning behind the algorithm selection
along with the definition of new terms, the overview of
the algorithm according to the pseudocode diagrams, and
discussion of algorithm implementation details.

Algorithm 1: Pseudocode of the ground plane fitting
methodology for one segment of the point cloud.

Result: Pg : points belonging to ground surface
Png : points not belonging to ground surface

1 Initialization:
2 P : input point cloud
3 Niter : number of iterations
4 NLPR : number of points used to estimate the LPR
5 Thseeds : threshold for points to be considered initial

seeds
6 Thdist : threshold distance from the plane

7 Main Loop:
8 Pg = ExtractInitialSeeds(P, NLPR, Thseeds);
9 for i = 1 : Niter do

10 model = EstimatePlane(Pg);
11 clear(Pg, Png);
12 for k = 1 : |P| do
13 if model(pk) < Thdist then
14 Pg ← pk;
15 else
16 Png ← pk;
17 end
18 end
19 end

20 ExtractInitialSeeds:
21 Psorted = SortOnHeight(P);
22 LPR = Average(Psorted(1 : NLPR));
23 for k = 1 : |P| do
24 if pk.height < LPR.height+ Thseeds then
25 seeds← pk
26 end
27 end
28 return(seeds);

A. Ground Plane Fitting

Cloud points that belong to the ground surface constitute
the majority of the point cloud and their removal significantly
reduces the number of points involved in the proceeding
computations. The identification and extraction of ground
points is rather suitable for this application for two main
reasons; (i) they are easily identifiable since they belong to
planes, which are primitive geometrical objects with a simple
mathematical model, and (ii) it is acceptable to assume that
points of the point cloud with the lowest height values are
most likely to belong to the ground surface. This prior
knowledge is used to dictate a set of points for the initiation
of the algorithm and is eliminating the random selection seen
in typical plane-fit techniques such as the RANdom SAmple
Consensus (RANSAC), resulting in much faster convergence.

Generally, a single plane model is insufficient for the
representation of the real ground surface as the ground points
do not form a perfect plane and the LiDAR measurements
introduce significant noise for long distance measurements.
We have observed that in most instances the ground surface

exhibits changes in slope which need to be detected. The pro-
posed ground plane fitting technique extends its applicability
to such instances of the ground surface by dividing evenly
the point cloud into a number of segments Nsegs along the
x-axis (direction of travel of the vehicle), and applying the
ground plane fitting algorithm in each one of those segments.

As depicted in the main loop of Alg. 1, for each of
the point cloud segments the ground plane fitting starts by
deterministically extracting a set of seed points with low
height values which are then used to estimate the initial plane
model of the ground surface. Each point in the point cloud
segment P is evaluated against the estimated plane model
and produces the distance from the point to its orthogonal
projection on the candidate plane. This distance is compared
to a user defined threshold Thdist, which decides whether
the point belongs to the ground surface or not. The points
belonging to the ground surface are used as seeds for the
refined estimation of a new plane model and the process
repeats for Niter number of times. Finally, the ground points
resulting from this algorithm for each of the point cloud
segments can be concatenated and provide the entire ground
plane.

Our approach for the selection of initial seed points
introduces the lowest point representative (LPR), a point
defined as the average of the NLPR lowest height value
points of the point cloud. The LPR guarantees that noisy
measurements will not affect the plane estimation step. Once
the LPR has been computed, it is treated as the lowest height
value point of the point cloud P and the points inside the
height threshold Thseeds are used as the initial seeds for the
plane model estimation.

For the estimation of the plane, we utilize the simple linear
model:

ax+ by + cz + d = 0

nTx = −d,
(1)

with n = [a b c]T and x = [x y z]T , and solve for
the normal n through the covariance matrix C ∈ R3x3 as
computed by the set of seed points S ∈ R3:

C =
∑

i=1:|S|

(si − ŝ)(si − ŝ)T , (2)

where ŝ ∈ R3 is the mean of all si ∈ S.
The covariance matrix C captures the dispersion of the

seed points and its three singular vectors that can be com-
puted by its singular value decomposition (SVD), describe
the three main directions of this dispersion. Since the plane
is a flat surface, the normal n, which is perpendicular to the
plane, indicates the direction with the least variance and is
captured by the singular vector corresponding to the smallest
singular value.

After the acquisition of n, d is directly computed from
Eq. 1 by substituting x with ŝ which is a good representative
for the points belonging to the plane.

Fig. 1: The four stages exemplify the processes of the SLR clustering
algorithm. Circles represent points and triangles report the cluster labels.

B. Scan Line Run

The remaining points Png that do not belong to the ground
surface need to form clusters to be used in higher level post
processing schemes. Our goal is for each point pk ∈ Png

to acquire a label l that represents its cluster identity while
using simple mechanisms that will ensure the fast running
time and low complexity of the process.

In the case of 360o LiDAR sensor data, the multi-layer
structure of the 3D point cloud resembles strongly the row-
wise structure of 2D images with the main differences being
the uneven number of elements in each layer and its circular
form. The proposed solution treats the 3D points as pixels of
an image and adapts a two-run connected component labeling
technique from binary images [13] to produce a real time 3D
clustering algorithm.

We call a layer of points that are produced from the same
LiDAR ring a scan-line. Within each scan-line, its elements
are organized in vectors of contiguous points called runs.
The elements within a run share the same label and are the
main building blocks of the clusters.

According to Alg. 2 and without loss of generality, we
assume the point cloud Png is traversed in a raster counter-
clockwise fashion starting from the top scan-line. The runs
of the first scan-line are formed and each receives its own
newLabel which is inherited by all of its point-elements.
The runs of the first scan-line then become the runsAbove
and are used to propagate their labels to the runs in the
subsequent scan-line. The label is propagated to a new run,
when the distance between a point of the new run and its
nearest neighbor in the above scan-line is less than Thmerge.
When many points in the same run have nearest neighbors
with different inheritable labels, the winning label is the
smallest one. On the other hand, when no appropriate nearest
neighbors can be found for any of the points in the run, it
receives a newLabel. The above are performed in a single
pass through the point cloud and when this is done, a second
pass is performed for the final update of the point’s labels
and the extraction of the clusters.

The following example accompanying Fig. 1 covers the
main instances of the proposed algorithm with the white and
colored circles representing ground and non-ground points
respectively. The blue circles are non-ground points not yet

Algorithm 2: Pseudocode of the scan line run clustering.
Result: labels : labels of the non ground points

1 Initialization:
2 P : input point cloud
3 Nscanlines : number of scan lines
4 Thrun : threshold for points to belong in the same run
5 Thmerge : threshold to merge neighboring runs
6 newLabel = 1 : label identity

7 Main Loop:
8 runsAbove = FindRuns(scanline1);
9 for i = 1 : |runsAbove| do

10 runsAbovei.label = newLabel;
11 newLabel ++;
12 end
13 for i = 2 : Nscanlines do
14 runsCurrent = FindRuns(scanlinei);
15 UpdateLabels(runsCurrent, runsAbove);
16 runsAbove = runsCurrent;
17 end
18 ExtractClusters();

19 UpdateLabels:
20 for i = 1 : |runsCurrent| do
21 for j = 1 : |PrunsCurrenti | do
22 pNN =

FindNearestNeighbor(pj , runsAbove);
23 labelsToMerge← pNN .label;
24 end
25 if isEmpty(labelsToMerge) then
26 runsCurrenti.label = newLabel;
27 newLabel ++;
28 else
29 lR = min(labelsToMerge);
30 runsCurrenti.label = lR;
31 MergeLabels(labelsToMerge);
32 end
33 end

visited. In step a), the first scan-line is initialized with two
runs (orange and green) each receiving a newLabel (1 and 2
inside the triangles). Step b) demonstrates the assignment of
a newLabel and the propagation of two labels. In particular,
the nearest non-ground neighbor of 8 is 2 and their distance is
greater than Thmerge. In this case, labelsToMerge is empty
and point 8 represents a new cluster. On the other hand, the
nearest non-ground neighbor of 10 is 3 with their distance
smaller than Thmerge, which makes label 1 to propagate
over to point 10. Similarly, points 12 and 13 are both close
to their respective neighbors 5 and 6, and based on the
non-empty labelsToMerge, label 2 is assigning to them.
Next, the final scan-line is considered in step c) where one
run is present. Points 17 and 19 have neighbors 10 and 12
which belong to different clusters and are both appropriate
to propagate their label. According to our algorithmic logic
the smallest of the two labels (namely label 1) is inherited.

Fig. 2: An example of the label conflict resolving technique based on
Fig. 1.

Fig. 3: Example on bridging the two ends of a circular scan-line.

In step d) the merging of the two labels 1 and 2 is noted
and handled accordingly by the label equivalence resolving
technique which is discussed below.

Implementation Details: The outline of the algorithm is
straight forward, but for an efficient implementation we
propose solutions on (i) how to create runs, (ii) how to
look for the nearest neighbor, and (iii) how to resolve label
conflicts when merging two or more connected components.

i) A run is created upon the first visit of the scan-line
as a vector of indeces and holds information on which
consecutive points are close enough to be considered a single
block inside a scan-line. Considering the circular form of the
scan-lines, a run may bridge over the first and last indeces.
When detected, this case is resolved by attaching the indeces
of the ending of the scan-line at the beginning of the indeces
of the first run as seen in the example of Fig. 3.

ii) When the input point cloud is expressed in cylindrical
coordinates with points x = [r θ z], then indexing the
nearest neighbor in the scan-line above can be viewed as
simply comparing θ values. In autonomous vehicle applica-
tions though, clustering is one small component of a much
larger system of sensors and algorithms, and the cartesian
coordinate system is preferred for compatibility reasons.
Implementation-wise, the naive solution is to build a kdtree
structure with all the non-ground points in the scan-line
above and use this to find each nearest neighbor, resulting in
a suboptimal but viable solution that can be further refined.

Under the assumption that the points in a scan-line are
evenly distributed along the whole scan-line, we are utilizing
a smart indexing methodology that overcomes the problem
of the uneven number of elements in the different scan-
lines and significantly reduces the number of queries for the
nearest neighbor. Assume that each scan-line has Ni number
of points and that each point owns two indeces; one global
indg which represents its position in the whole point cloud,
and one local indl that identifies the point inside the scan-
line. One can easily alternate between the indeces of the
scan-line K by:

indlK = indg −
K−1∑
i=0

Ni, N0 = 0. (3)

Fig. 4: Examples of smart indexing; (a) when the two scan-lines have
a significant difference in points (Nouter is almost double Ninner), and
(b) when points in both lines are missing because of noise and physical
limitations of the sensor.

Given a point index in scan-line i with local index indli
it is possible to directly find the local index of a neighbor
indlj in the close vicinity of the actual nearest neighbor in
the above scan-line j by the following equation:

indlj = floor(
Nj

Ni
indli), (4)

as well as computing its global index from Eq. 3.
Depending on the distribution of the points inside the scan-

line, the index might not indicate the nearest neighbor but a
close enough point. In this case, it may be necessary to search
through a number of its surrounding points for the nearest
neighbor, but this number is far smaller than considering the
whole scan-line.

In a run, identifying potential neighbors and searching
through their surroundings for the best match results in
a large overhead that undermines the performance of the
algorithm. Bearing this in mind, the proposed solution is to
find the nearest neighbors of the first and last points of a run
via the smart indexing, form a kdtree structure with all the
non-ground points within that range, and use this to search
for nearest neighbors.

Two visual examples of the smart indexing can be seen in
Fig. 4. In a), although the number of points in the two scan-
lines is quite different, the randomly selected points with
local indeces 8, 16, 26, and 32 in the outer scan-line are
indicated as the nearest neighbors of the points with local
indeces 5, 9, 15, and 18 respectively in the inner scan-line.
In addition, in b) the distribution of points is highly uneven
but smart indexing still succeeds to indicate appropriate
neighbors. These cases are common to the first few scan-
lines when some of their laser beams never return, because
of absorption or very high distance. In rare cases where the
number of points between consecutive scan-lines is vastly
different or a significant portion of the scan-line is missing,
the smart indexing will most likely fail. In these cases, the
naive solution where the whole scan-line is considered as
potential nearest neighbors still produces good results.

iii) The methodology to resolve label merging conflicts is
being introduced in [13] where all the details for the imple-
mentation and deep understanding are provided. Following,

a brief presentation of the essentials along with a simple
example is given.

The label merging conflicts arise when two or more
different labeled components need to merge. According to
He et al. [13], the solution is given by accumulating their
labels l in the same set S and utilizing a sophisticated
methodology with three 1-dimensional arrays to capture their
hierarchies and connections. All three vectors have the size
of the number of total labels that have been created during
the first pass through the point cloud. Each entry of the first
vector ”next” stores the next l in its S and the entry for
the last l in the S is -1. Next, the vector ”tail” stores the
index to the last l of the S. The last vector ”rtable” has
the assistive role of reporting what the final label of each l
would be at any given moment. At the end of the first pass,
rtable is used as the look-up table for the final labelling.

Let us examine the example of Fig. 2 from the point-view
of the three vectors. In the first step a), two labels are created
(1 and 2) and the l1, l2 entries are filled. Each of the two
sets has only one element thus next entries are both -1, tail
entries show the index of the last element in the S which
is 1 and 2 respectively for the two sets S, and rtable shows
the final representative label. Next, in b) the l3 is created
and the vectors are filled the same as before. Finally, the S1

and S2 merge which means that the first entry of next will
point to the index of the next element in S1, the tail for both
elements in S1 is the same and points at the index of the last
element of the set, and rtable is updated to properly depict
the final labels.

IV. EXPERIMENTAL RESULTS

In order to test the proposed pipeline, we experimented
on the KITTI dataset for ground-points extraction and clus-
tering. We provide performance comparisons with indicative
algorithms that are used in similar scenarios, show the final
results and stress the speed differences in our proposed
solutions.

The calibration of the parameters for this application is
rather intuitive as it mostly reflects distances between 3D
points. In our experiments, the parameters for the GPF were
set as Nsegs = 3, Niter = 3, NLPR = 20, Thseeds = 0.4m
and Thdist = 0.2m. For SLR the parameters were Thrun =
0.5m and Thmerge = 1m, while the radius for the euclidean
cluster extraction used for comparison was set to 0.5m.

A. Ground Plane Fitting

The GPF is compared to a RANSAC plane fitting imple-
mentation which is used in similar scenarios. The 3D point
labelling results are similar and our method performs faster
(Fig. 5a).

In Fig. 6 the comparison between the results of the GPF for
fitting a single plane versus fitting multiple planes are shown.
By splitting the initial point cloud into multiple segments,
and fitting a plane to each segment, it is possible to correct
erroneous labeling for the ground points.

(a) GPF algorithm scalability with respect to the number of points. (b) SLR algorithm scalability with respect to the number of points.

Fig. 5: Average running time performance of the GPF versus RANSAC (a), and SLR versus the Euclidean Cluster Extraction algorithm (b) with
increasing number of points. RANSAC does not have a stable running time because of its random character.

Fig. 6: Top: Output of the GPF for fitting a single plane to the entire
point cloud. Bottom: Output of the GPF for fitting a plane to each one of the
segments. The red boxes indicate areas with wrong labeling in the case of
a single plane fit and the correct labelling in the multiple planes fit. In both
images the blue points belong to the ground and the green to non-ground
points.

B. Scan-Line Run

The resulting clusters can be seen in Fig. 7 inside yellow
bounding boxes. The SLR algorithm takes advantage of the
structure of the point cloud and performs much faster than
algorithms that traverse the point cloud in an irregular way.
The diagram seen in Fig. 5b shows an linear increase in
time as the number of points increase. In comparison, the
Euclidean Cluster Extraction (ECE) algorithm gets exponen-
tially slower with the increase of the number of points. The
clustering algorithms that need to search for neighbors within
the whole dataset, base their performance on the total number
of points of the cloud. On the other hand, the search for SLR
is restricted by the size of its runs and considers neighbors
only on one scan-line achieving better performance.

As seen in Fig. 8, reduction of the point density in the
point cloud affects the SLR segmentation with a case of over-
segmentation being presented in 8b. The algorithm behaves
satisfactorily for objects in the proximity of the sensor as
the adjacent vehicles have been correctly segmented. More
results for the comparison between the SLR and the ECE
are provided in Fig. 9, where the similar behavior of the
two algorithms is noted. Small variations are present due

Fig. 7: Top: Output of the GPF and SLR pipeline. Bottom: Output of the
GPF and Euclidean Cluster Extraction pipeline for comparison.The KITTI-
dataset point cloud is cropped on the two sides along the y-axis for reduction
of points. The blue points belong to the ground and the rest of the colors
depict non-ground clusters.

to differences in the threshold parameters and the 3D point
accessing order.

V. CONCLUSIONS AND FUTURE WORK

We have examined the problem of segmenting point cloud
data for applications in autonomous driving vehicle and have
proposed a pipeline that initially extracts the ground points
and consequently groups the remaining points into clusters
based on their distance. The proposed solution is tailored
around the specific application and performs significantly
faster than general purpose segmentation pipelines, which
makes it ideal for real time operations on data gathered by
LiDAR sensors.

The algorithm has been successfully tested in several
sequences of the publicly available KITTI dataset and its
performance has been verified for a plethora of different
scenes and number of points. An additional step is to verify
how the pipeline behaves when encountering rough, uneven
terrain and rapid slope changes. For this we plan to collect
our own data that will capture corner cases and will allow
us to verify the robustness of our algorithms.

Segmentation is the first step in the autonomous scene
understanding. Once the detection of the obstacles in the
environment surrounding the vehicle is captured, the next

(a) Dense point cloud (b) Sparse point cloud

Fig. 8: The results of SLR for the same LiDAR scan in the original form (a) and subsampled (b). Out of the 104,863 points, every fifth point is kept
to reduce the number down to 20,973 points. The algorithm managed to handle the sparse point case.

Fig. 9: Results of two LiDAR point clouds from the KITTI dataset. Each row depicts the same point cloud; Left: SLR segmentation. Right: ECE
segmentation.

processing step is to identify the obstacles as static or
dynamic and perform tracking on the dynamic ones.

ACKNOWLEDGEMENTS

For the completion of this work, Dimitris Zermas has
been supported by DELPHI. In addition, this material
has been partially supported by the National Science
Foundation through grants #CNS-0934327, #CNS-1439728,
#IIS-1427014, #OISE-1551059, #CNS-1531330, and #CNS-
1544887.

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the darpa grand challenge,” Journal of field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[3] M. Himmelsbach, F. v. Hundelshausen, and H. J. Wuensche, “Fast
segmentation of 3d point clouds for ground vehicles,” in Intelligent
Vehicles Symposium (IV), 2010 IEEE, June 2010, pp. 560–565.

[4] F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3d lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicles Symposium, 2009 IEEE, June 2009, pp. 215–220.

[5] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d lidar point
clouds,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, May 2011, pp. 2798–2805.

[6] T. Chen, B. Dai, R. Wang, and D. Liu, “Gaussian-process-based
real-time ground segmentation for autonomous land vehicles,” Journal
of Intelligent & Robotic Systems, vol. 76, no. 3, pp. 563–582, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10846-013-9889-4

[7] R. Tse, N. Ahmed, and M. Campbell, “Unified mixture-model based
terrain estimation with markov random fields,” in 2012 IEEE In-
ternational Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), Sept 2012, pp. 238–243.

[8] J. Byun, K.-i. Na, B.-s. Seo, and M. Roh, Drivable Road Detection
with 3D Point Clouds Based on the MRF for Intelligent Vehicle.
Cham: Springer International Publishing, 2015, pp. 49–60. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-07488-7 4

[9] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” Ph.D. dissertation, Computer Science
department, Technische Universitaet Muenchen, Germany, October
2009.

[10] PCL. Point cloud library. [Online]. Available: http://www.http:
//pointclouds.org/

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[12] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[13] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling
algorithm,” IEEE Transactions on Image Processing, vol. 17, no. 5,
pp. 749–756, 2008.

