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Abstract Perhaps the most important parameter for
any mobile application or service is the way it is deliv-
ered and experienced by the end-users, who usually, in
due course, decide to keep it on their software portfo-
lio or not. Most would agree that security and privacy
have both a crucial role to play towards this goal. In
this context, the current paper revolves around a key
question: Do modern mobile applications respect the
privacy of the end-user? The focus is on the iPhone
platform security and especially on user’s data privacy.
By the implementation of a DNS poisoning malware
and two real attack scenarios on the popular Siri and
Tethering services, we demonstrate that the privacy of
the end-user is at stake.
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1 Introduction

Over the last few years, mobile devices have experienced
a rapid shift from pure telecommunication devices to
small and ubiquitous computing platforms. Nowadays,
such devices (also known as handheld computers or
smartphones) are equipped with enough facilities to
even replace the usage of laptops [1]. For instance, smart-
phones are able to store a rich set of personal informa-
tion and at the same time provide powerful services, e.g.
location services, Internet sharing via tethering, and in-
telligent voice assistants to name just a few [2]. As ex-
pected, this situation draws the attention of aggressors
to steal or misuse private information, or to disrupt the
information flow [3]. Typical methods to achieve such
goal are gaining root permissions (known as Jailbreak
[4] on iOS, or Root on Android platforms [5]), exposing
new vulnerabilities [6], and developing smart and per-
ilous malware [7]. In fact, every new facility or service
offered for modern smartphones may be susceptible to
attacks and/or privacy leaks.

While more than sixty five billion mobile devices
are expected to be in use by 2012, Lookout Mobile
Security Center in its 2011 Mobile thread report [8],
estimates that almost one million people have been af-
fected by Android malware only in the first half of 2011.
In the same report it is stated that the 33.9% of free
iOS applications had some sort of hidden capability to
access user’s location and 11.2% of them to access per-
sonal contacts. Malware like iSAM [7] (for iOS) and
DroidDream [9] (for Android) are only some examples
of the dangers the users of such devices have to face
and clearly show the path of what should be expected
in the near future. Hence, knowing the increasing risk of
mobile malware, designing a secure mobile device that
protects user’s privacy is still a very challenging task.
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Under this prism, the work at hand deals with user
privacy in modern mobile devices and especially the
newly introduced iPhone 4S. Our primary aim is to
elaborate on privacy risks that may come with the in-
troduction of new mobile services. This means that new
services for smartphones may expose private informa-
tion without the user consent. In this direction, we con-
centrate on two very popular services (a) the Personal
Hotspot (PH), which is a very common way of teth-
ering an iPhone Internet connection with other WiFi
devices, and (b) Siri, the new intelligent personal voice
assistant available since iOS version 5. In the following,
we detail how an attacker can take advantage of such
technologies to trample on user privacy.

To unveil user’s privacy risks that may stem from
the aforementioned services, we implement as a first
step a DNS poisoning malware. On the one hand, this
malware is capable of poisoning the iPhone tethering
service and thus redirecting all users connected via it
to a fake Facebook website aiming to phish their cre-
dentials while they trying to access their profile. On
the other hand, by targeting on the Siri facility, the
malware manipulates the DNS service of the device in
an effort to expose sensitive user information including
its geographical location, account credentials, telephone
numbers etc. As far as we are aware of, this is the first
work in the literature to discuss and analyze ways to ex-
pose user privacy by leveraging on such popular mobile
services.

The next section brings into the foreground basic re-
quirements toward realizing a DNS poisoning malware
for iOS devices. It also contains necessary information
about the Siri and Tethering services. Details specific to
the implementation of our malware are given in section
3. Section 4 focuses on the architecture and the inner
workings of the attack. Related work on the topic is
addressed in section 5. The last section holds the con-
clusion of our paper.

2 Preliminaries

Although this paper assumes a minimum level of famil-
iarization with iOS programming and mobile services
by the reader, this section is necessary for reasons of
completeness. Thus, we briefly provide background in-
formation on iOS and jailbreaking. Also, we discuss the
basic components and functionality of both the teth-
ering and Siri services as an essential prelude to the
following sections.

2.1 Malware implementation requirements

iPhone was the first multi–touch smartphone equipped
with iOS (formerly iPhone Operating System). iOS has
been derived from Mac OS X and relies on the Darwin
foundation kernel. Therefore, it is a Unix–like Operat-
ing System by nature. On Feb. 2008, Apple released the
first iOS SDK allowing developers to create third–party
native applications. In this context, the implementer of
any malware needs to take into account two basic re-
quirements. First of all, it requires gaining root per-
missions to be able to hook and override OS internal
functions of interest. Second, it needs to run continu-
ously in the background of the OS being stealthy to
the end–user. But, whether rightly or wrongly, only ap-
plications inspected and signed by Apple’s Certificate
Authority (CA) can be released and are allowed to run
on an iOS device. So, considering the first requirement,
the only way to run unsigned software is by gaining root
permissions on the device using an exploitable vulnera-
bility. This process is generally referred to as Jailbreak
[6]. Upon jailbreaking, the entire iPhone file system be-
comes open for use. Also, Jailbreaking allows creating
and executing third–party software using both the offi-
cial public and the unofficial private frameworks. Public
frameworks are provided by the native SDK allowing
developers to build AppStore applications. The private
frameworks on the other hand are used only by Apple to
provide high–level programming features on the origi-
nal applications. Unfortunately, private frameworks are
neither available by the iOS SDK nor documented. The
only way to overcome this issue (as in our case) is by re-
trieving the private framework directly from the files of
a jailbroken iPhone and then use the class–dump utility
to generate the (still undocumented) header file(s).

The main exploit currently used to Jailbreak iOS
5 is Corona [10]. This is a userland exploit (i.e., an
exploit related to software) that uses both the Racoon
String Format and the HSF Heap overflows to jailbreak
the device. Besides, Apple does not offer any frame-
works that override iOS functions. To fill the gap, J.
Freeman has created the MobileSubstrate extension, a
framework that allows developers to deliver run–time
patches to system functions using Objective–C dynamic
libraries (dylib) [11]. Also, D. L. Howett has contributed
Theos, a cross–platform suite of development tools for
managing, developing, and deploying jailbreak–oriented
iOS development [12]. By creating a dylib and connect-
ing it with the MobileSubstrate extension, developers
are able to build applications capable of hooking inter-
nal system functions.

Taking into account the second requirement, the
malware needs to run continuously in the background of
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the underlying OS. Although iOS ver. 5 supports mul-
titasking through seven official Apple’s APIs for back-
grounding, it is not the best way to launch a malware
since it needs to remain hidden from the end–user. For-
tunately, iOS being a Unix–based OS, is able to pro-
vide multitasking using launchd, a launch system that
supports daemons and per–user agents as background
services. Once an iOS device has been jailbroken, any
installed application or shell script is able to behave
as daemon by creating a launch property list (plist) file
and placing it into the “/Library/LaunchDaemons” iOS
directory. Another way to support multitasking is with
dynamic libraries (dylib). Upon launching an applica-
tion, the iOS kernel loads the application code and data
into the address space of a new process. At the same
time, the kernel loads the dynamic loader, namely /Sys-
tem/MobileSubstrate/DynamicLibraries into the pro-
cess space and passes the control to it. It is also possi-
ble to load a dylib at any time through an Objective–C
function.

It is also relevant to note that although the primary
aims of a smart malware is to infect the target, self–
propagate to other targets and finally connect back to
a bot master server [7], in this paper we do not analyze
new jailbreak methods, but use already referenced ones
[6] to gain root permissions on the device and infect
it with our malware. Moreover, it is straightforward
that the malware implemented in the context of this
paper can be integrated with other similar applications
like iSAM [7], or propagate individually by incorporat-
ing some of the existing infection methods already pre-
sented in the literature [6].

2.2 mDNS

As already stated, the aim of our malware is to compro-
mise the DNS service running on the device. This is a
sine qua non for the attacks described further down to
be successful. Toward this direction, one of the main
technologies used in iOS for networking is Bonjour.
Bonjour enables a device to allocate an IP address and
advertise a service to other computers or devices plugged
into the same TCP/IP network. Also, Bonjour includes
service discovery, address assignment, and name reso-
lution. On top of that, Bonjour, being a Zero Config-
uration Networking (ZCN) facility, needs to be able to
translate name–to–address even without the presence of
a DNS server. To meet this requirement the Multicast
DNS (mDNS) protocol is used. This protocol uses the
same packet format, name structure, and DNS record
types as unicast DNS. However, two main differences
apply. The first one is that mDNS queries are sent to
all local hosts using multicast in contrast to the DNS

protocol, which queries are sent to a specific, precon-
figured name server. The second is that mDNS listens
on UDP port 5353, in contrast to DNS which listens on
standard UDP port 53. Also note that mDNS requests
use the multicast address 224.0.0.251. In case a device
triggers the Bonjour service, it listens to the multicast
requests and if it knows the answer, it replies to a multi-
cast address. mDNSResponder is the application which
is responsible for handling Bonjour on Mac OS X and
iOS devices and for listening for services out of the box.

As expected, iOS supports a hosts file configura-
tion in order to be able to map already visited host-
names to IP–addresses before DNS can be referenced.
This temporary mapping per hostname is kept in the
/etc/hosts, which is also manipulated by our malware
as described further down in section 3.1. Last but not
least, iOS holds in the Network.identification.plist the
settings of all the wireless networks with which the de-
vice has been associated sometime in the past. This
happens as part of a new feature that allows the iOS
device to remember the network settings and automati-
cally connect to it, using the same settings, without user
intervention. Therefore, our malware needs to replace
the DNS IP address of all networks logged in the Net-
work.identification.plist with a bogus one (where our
server resides) and to restart the mDNS service in or-
der the new settings to take effect. This situation is
discussed in detail in section 3.1.

2.3 The Tethering and Siri services

As already mentioned, the purpose of the attacks de-
scribed in this paper is to compromise the privacy of
the end–user by capitalizing on two popular services;
Tethering and Siri. Tethering is a network service which
gives the end–user the ability to share their mobile
phone cellular data connection with other devices
(users). This sharing can be offered over a wireless LAN
(WiFi), Bluetooth, or by a physical connection via a ca-
ble. Currently, Tethering is available only for the two
latest iPhone devices (4 and 4S), which incorporate a
software functionality known as Personal Hotspot (PH).
The PH service is in charge to transform the device into
a wireless Access Point (AP), so that iPhone users are
able to share their 3G connection. Once the PH starts
up, the device selects the first empty 802.11b/g wire-
less channel to emit the signal using the device name as
the Extended Service Set ID (ESSID) name for the AP.
From this point on, PH can support and share the In-
ternet connection with up to five simultaneous devices.
The PH service functions by default in the WPA2 Pre–
shared key (PSK) mode.
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Siri, on the other hand, is one of the highlights of
iOS 5 only provided for the iPhone 4S. It is a personal
intelligent software assistant that uses a natural lan-
guage interface to interact with the user and execute
their requests. Although, Siri is still in beta version,
it is able to carry out a variety of tasks (e.g. send
SMS, E–mail, set up meetings, make questions about
the weather, points of interest etc). To accomplish such
tasks, Siri communicates securely via https with a re-
mote server residing at https://guzzoni.apple.com:
443. This server is responsible to translate user voice
requests into text commands, and text commands into
actions. To fulfill a task, Siri can exchange a wide range
of data with the Guzzoni server, such as raw audio
data, plist files, confidence score of each word in a sen-
tence, time–stamps, location information, and more im-
portantly, information derived directly from the device
local databases (calendar, contacts etc).

Applidium [13] has very recently reverse engineered
the Siri protocol. They also provided the first evidence
about its structure as well as the open source tools they
used. For using Siri, the device must firstly authenticate
the Siri server. This is done during the SSL handshake
as the server certificate, namely guzzoni.apple.com, is
preinstalled on every iPhone 4S device. Note that the
authentication is unilateral, i.e. the client (device) does
not authenticate itself to the service by means of a cer-
tificate. Upon successful authentication and under the
protection of the SSL tunnel, Siri sends four keys to the
Guzzoni server x–ace–host, assistantID, speechID, val-
idationData. Where: x–ace–host is a unique identifier
generated by Siri on the device and updated every two
weeks; assistantID is a string containing information
about the user. It is generated by Siri on the device at
every use; speechID is a speech identifier, generated by
Siri on the device on–the–fly at every use; validation-
Data is a string that gets generated every 24 hours on
the device via FairPlayed. By using this quadruple of
keys, the Guzzoni server authenticates the device.

From the above discussion it becomes clear that at-
tacking Siri is not trivial. Specifically, as already men-
tioned, Siri is a proprietary software designed to com-
municate securely (https) with the original Siri server(s)
controlled by Apple. Therefore, to fool the protocol,
one has to somehow hijack the device–to–Siri legitimate
server communication in an undetectable manner. In
this direction, as described in [19], a solution is to cre-
ate a fake SSL Certification Authority (CA) and inject
it into the device replacing in this way the original one.
This is necessary to create and sign a fake certificate for
guzzoni.apple.com. After that, the same team man-
aged to redirect all iPhone packets, using a VPN con-
nection, through a custom DNS server for further anal-

ysis. A few weeks later, P. Lamonica [14] created an
open source server, namely SiriProxy, having the abil-
ity to handle Siri packets. Also, through the creation of
customized plugins he has been able to execute certain
actions (e.g., control a thermostat over Siri).

3 Implementation

In this section we delve into the internal workings of
the malware responsible for poisoning the DNS service
running on the device. This is a first step towards exe-
cuting the two attack scenarios described further down
in section 4.

3.1 The DNS poisoning malware

To manipulate the mDNs service running on iOS we im-
plement a malware which, as we show in what follows,
acts as a rootkit. The malware was written in Objective-
C and compiled for iPhone ARM CPU using Theos. It
was tested to run on iOS version 5 and above. Also, it
has been built using the unofficial ways for background-
ing (daemons and dylibs), the public and private frame-
works for developing iOS applications, and the Mobile-
Substrate framework with the substrate.h header that
overrides iOS internal functions. That is why certain
modules of our malware can be classified as rootkit and
more specifically as a DNS poisoning one. The malware
assaults over the mDNS protocol, thus making possi-
ble the execution of a man–in–the–middle assault at a
later time depending on the attack scenario. That is, to
take over the control of the Siri service upon its activa-
tion by the user, or if tethering is in use, redirect any
connected device to a fake website.

As depicted in Fig. 1, the heart of the malware con-
sists of a main daemon combined with a proper launch
plist (activated at device boot time) and six subroutines
written as Objective–C functions and dylibs. The dae-
mon is responsible for managing all subroutines, namely
SirInvervine, HUpdate, NIUpdate, mDNSReloader, Net-
Detector and PHDetector, which in turn carry out the
malware tasks. In the following, we elaborate on the
functionality of each subroutine.

Recall that for using Siri, the device must first au-
thenticate the Siri server. This is done in a unilateral
fashion i.e., the client (device) does not authenticate
itself to the service. So, to act as man–in–the–middle
and hijack the https session one needs to replace the
original Siri certificate stored in the device with a fake
one. This is accomplished by SirIntervine. Upon execu-
tion, this routine installs a custom SSL CA into iOS and
at the same time adds into the com.apple.assistant.plist
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file, which is a Siri setting file, the Domain Name of our
man–in–the–middle server
(in this case spe.samos.icsd.gr). This is needed to create
and sign a fake certificate for guzzoni.apple.com.

Fig. 1 Malware module.

The HUpdate routine is responsible for poisoning
the device’s /etc/hosts file. Although information stored
in this file is mostly used when a DNS server is not avail-
able on the network, as pointed out in section 2.2, this
file is always queried upon Bonjour activation. Once
we gain root permissions, the /etc/hosts file is vulner-
able as it is stored in plaintext. For our attack sce-
narios, HUpdate inserts two hostname records into the
/etc/hosts file which correspond to the IP–address of
our man–in–the-middle server. The two hostnames that
are poisoned are “guzzoni.apple.com” and
“facebook.com”. In this way all packets sent to the
aforementioned domain names will eventually be sent
to man–in–the–middle entity controlled by us. HUpdate
adds the poisoned hostnames in the /etc/hosts file using
the public NSFileManager class (only if not poisoned al-
ready). Fig. 2 depicts a snapshot of the /etc/hosts file
after poisoning has taken place. Note that the two last
entries correspond to our man–in–the–middle server.

Fig. 2 The /etc/hosts file after poisoning.

NIUpdate is the subroutine responsible for poison-
ing the IP address of any DNS server found in the
Network Identification file, with a malicious one. Ev-
ery time an iPhone device connects to a WiFi or a

3G / GPRS network, an entry is created in the Net-
work.identification.plist file containing all settings spe-
cific to this network, i.e. router’s IP address, subnet
mask, DNS server IP address, MAC address etc. Hence,
every time the device tries to connect to a known net-
work, it will load the settings used during the previ-
ous session. Once NIUpdate is activated, it changes all
the predefined DNS servers’ IP addresses with the one
of our man–in–the–middle server. Once again, the Net-
work.identification.plist file is stored in plaintext (plist),
thus it can be easily modified using the NSMutalbeDic-
tionary class.

mDNSReloader is a dylib responsible for shutting
down or restarting the mDNSResponder service (dea-
mon) running on the device aiming to activate new net-
work settings. Specifically, by disabling the mDNSRe-
sponder service one also terminates the Unicast DNS
resolution. By doing so, we block the mDNS service,
meaning that instantly the device cannot resolve host-
names. Once the service gets restarted, the mDNSRe-
sponder will parse the /etc/hosts and
Network.identification.plist files in an effort to use the
default settings before obtaining new ones. Note that
mDNSReloader enables or disables the service by sim-
ply modifying the “ProgramArguments” settings (in
the com.apple.mDNSResonder.plist file) which is re-
sponsible for the activation of the service into “Yes”
or “No”. Fig. 3 depicts a snapshot of the source–code
responsible for this modification.

Fig. 3 Source code snippet for disabling / enabling
mDNSResponder.

Both NetDetector and PHDetector are dylibs trig-
gered directly from the iOS Notification Center (more
specifically the CFNotificationCenterGetDarwinNotify-
Center) every time the device connects to any wireless
network interface, e.g. WiFi, GPRS, 3G, or after PH
activation. As soon as one of these dylibs is executed,
it will re–run all the aforementioned subroutines to up-
date the network settings for the device.

Lastly, our man–in–the–middle server incorporates
three basic modules:
(a) A typical DNS recursive server that provides fab-
ricated answers for every domain name that is queried
for. Specifically, for the first scenario this is the Siri le-
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gitimate server, while for the second, a bogus version
of the Facebook website.
(b) The open source SiriProxy Ruby script [14] which
allows us to manipulate Siri packets and create our own
custom plugins to violate user’s privacy though the Siri
technology.
(c) An http server used during the first attack scenario.

The server runs on a typical laptop machine which
incorporates a 2.53 GHz Intel Core 2 Duo T7200 CPU
and 4 GB of RAM. The OS of this machine is OS X
Leopard Snow. The lightweight open source DNS Server
named Dnsmasq has been used to provide DNS ser-
vice. We also tinkered with the pre–alpha version of
the SiriProxy that runs on our server to handle (i.e.,
decipher, encipher, modify) Siri packets.

Both Dnsmasq and SiriProxy server, which is the
main software employed for realizing man–in–the-middle
and handling Siri Packets, are able to accommodate
multiple users by design.

4 Attack Scenarios

In this section it is demonstrated how the aggressor is in
position to collect private user information while they
using Tethering or interact with Siri. We analyse these
two attacks cenarios in detail and show that any private
information the user provides for the benefit of both of
these services (e.g., passwords, account numbers, tele-
phone numbers, emails, user’s location etc) is at stake.
The overall attack architecture is given in Fig.4 . It is
stressed that all experiments had 100% accuracy in log-
ging private and sensitive information without exposing
any malicious behavior to the user of the device.

Fig. 4 Network architecture used during the attack scenar-
ios.

4.1 Scenario I: Tethering DNS Hijacking

According to this scenario, we use an already infected
with our malware iPhone 4S to tether its 3G connec-
tion and therefore enable it to act as an IEEE 802.11
hotspot. This situation is given in the lower part (cloud)
of Fig. 4 . From this time forth, the device behaves as a
Wi–Fi router meaning that any Wi–Fi device (the lap-
top in Fig. 4) will be able to connect via the iPhone PH
service to the Internet. Once a device gets connected, it
will allocate an IP address in the range of 172.20.10.2
to 172.20.10.14 using the Dynamic Host Configuration
Protocol (DHCP). Since then, all network packets will
be routed via the smartphone behaving as PH. One of
the main iPhone tasks when acting as a PH is to trans-
late any hostname into a valid IP address. To do so,
firstly it lookups into the /etc/hosts file and if it does
not find the answer, it will query the DNS server. Nev-
ertheless, the device is infected with our malware and
both the /etc/hosts file and the network DNS IP ad-
dress have been fabricated to contain the IP address
of our man–in–the–middle server. This means that all
the traffic generated by the users connected via the PH
will be redirected to a server under the control of the
attacker. To show the hazardous effects of this attack
we have built a webpage that appears exactly the same
as that of Facebook and stored the page on our server.
We chose Facebook as it is a very popular website and
most people check their profiles once they connect to
the Internet. In fact, the only functionality of our fake
webpage is to log into a MySQL database the creden-
tials of the user in plaintext, once they try to login into
the site. As soon as the credentials are stored, the fake
website returns a message that the page is temporally
unavailable due to heavy loads.

4.2 Scenario II: Privacy leak over Siri

The second attack scenario takes advantage of the Siri
service. Once more, the malware compromises the mDN
protocol with a view to redirect all (or selected) Inter-
net traffic to our man–in–the–middle server. In this way
we achieve to place a malicious entity between the de-
vice and the legitimate Siri server controlled by Apple.
After that, we are able to intercept user’s private infor-
mation transferred over Siri. At present, this is realized
through the implementation of three custom plugins for
SiriProxy [14]. To exemplify these, in Fig. 5 we present
the basic message flow happening between the Siri ser-
vice running on the mobile device and its legitimate
server, but when our server is placed in the middle.

Upon Siri activation (1), an SSL handshake between
Siri and our man–in–the–middle server is performed
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and at the same time a second handshake is conducted
between the man–in–the–middle server and the Apple’s
original Siri server.

Fig. 5 Siri protocol flow.

Recall, that SiriProxy runs on our server to handle
(i.e., decipher, encipher, modify) Siri packets. Specif-
ically, to initiate the handshake, Siri sends a “Hello”
message which is redirected to our server and forwarded
to the original one. The Siri server replies and sends
over its original server certificate containing its public
key. The man–in–the–middle entity transmits to Siri
its fake server certificate containing the corresponding
(fake) public key. This certificate has been created from
the same CA authority with the one been injected to
the device when infected by our malware. Once Siri ver-
ifies the fake certificate and subsequently authenticates
our fake server, it sends a premaster secret (premaster
secret 1) to our server encrypted with the correspond-
ing fake public key. At this moment, both sides (Siri
and man–in–the–middle) calculate a session key (ses-
sion key 1) and establish an SSL session (tunnel 1).
After that, our server acting as Siri client sends a sec-
ond premaster secret to Siri server encrypted with the
original server’s public key. As a result, the man–in–
the–middle entity and the Siri server calculate another
session key (session key 2) and establish a second SSL
session (tunnel 2).

Under the protection of tunnel 1, Siri generates and
sends the quadruple of keys necessary to authenticate
the device with the server (2). Our server captures the
keys and forwards them to the original Siri server but
this time through tunnel 2. Upon reception, Siri server
will check if the received keys correspond to a legitimate

iPhone 4S and if true, it will answer with “YES” (else
“NO”) (3). Assuming a positive answer, Siri is ready
to listen to user commands (4,5). Otherwise, it will re-
spond with a “Siri server unavailable” message. From
this point on, the user is able to make questions by
speaking to the service. Siri records the voice contain-
ing the user query (or an answer to a question posed
by Siri during a transaction), converts it into raw audio
files and sends them to Siri server. The server trans-
lates the audio file to text and sends back the translated
text which is eventually passed to the user by synthetic
speech. It is therefore obvious that every personal infor-
mation being transmitted from the user side it becomes
available to the man–in–the–middle entity as well.

To further analyse this situation, we implemented
three custom SiriProxy plugins specially crafted to ex-
pose usual private information. This means that once
our server receives a Siri message from the device it will
try to match its context with one of this plugins. Fig.
6 depicts a basic example of such a plugin that is acti-
vated once the translated string coming from the user
side is “iPhone privacy”. Upon activation, our server
will respond with the string “Siri is having some privacy
leaks!” to the Siri service. Siri will complete the request
by displaying the message on device’s screen and at the
same time by pronouncing it. The next three sections
describe in detail how we were able to intercept valu-
able user private information through the employment
of such plugins.

Fig. 6 Basic source code example of a custom plugin.

4.3 Exposing the user’s geographical location

Using the first plugin we were able to successfully re-
trieve user’s location in the form of GPS coordinates.
This happened after the user asked Siri about
the weather, e.g. “How is the weather today?”. Note
that with minor modifications, the same plugin is able
to retrieve user’s location for any posed question such
as “How can I get to Ocean Park?”, “Where is the near-
est metro station and bus stop?” etc. It is stressed that
Siri obtains the geographic coordinates without directly
asking the user about their location. This happens be-
cause Siri has access to the device’s location services
by default (assuming that the user has not changed the
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default settings; in this case the user will be alerted to
enable GPS). Fig. 7 depicts part of the plugin source
code responsible to retrieve the geographical location
of the user. After the Siri server asks Siri about the
location of the device, the plugin activates and waits
for the standard value (header) “SetRequestOrigin” to
filter the exact user’s location.

Fig. 7 Part of the plugin responsible to retrieve user’s loca-
tion.

4.4 Obtaining sensitive information via SMS

The second plugin capitalizes on Short Message Ser-
vice (SMS). According to this scenario, the user sends
an SMS by just speaking to Siri. The plugin intercepts
the telephone number of the receiver of the message,
the SMS payload and the final outcome, i.e., whether
the end–user finally gave their consent to send the SMS
or not. By this use case scenario it is made clear that
a variety of private information sent to Apple’s servers
can be exposed to an intruder without the user be aware
of it. Fig. 8 illustrates the log file created by the corre-
sponding plugin on our man–in–the–middle entity un-
der this scenario. In the same figure we can easily iden-
tify the user’s private information leaked out (a, b, c,
d). Note that the lines starting with [Info–iPhone] cor-
respond to messages sent from Siri, while those start-
ing with [Info–Guzzoni ] to messages deriving from the
Siri original server. Also, messages being transmitted
from SiriProxy are marked with [InfoPlugin Manager ].
For emphasis, each privacy leak is placed within a gray
frame.

To exemplify this, once the user activates Siri and
starts speaking to it, Siri sends user voice towards the
server in many fragmented packets. After the user stops
speaking, Siri sends a flag message (1). Then Siri trans-
lates the voice into text and sends it back to our server
(2). Upon reception, SiriProxy tries to match the trans-
lated text with a custom plugin (3). The plugin is in
charge to log the translated text when a user tries to
send an SMS (4). Once the text is logged, the message
is sent to Siri. As a final step, the Siri original server
sends a message to inform Siri to create a graphical
view for presenting the translated text (5).

Fig. 8 Log file created by the plugin when sending an SMS.

4.5 Acquiring user’s password

One of Siri highlights is that the user can engage in a
form of conversational dialog with the assistant using
any of a number of available input and output mecha-
nisms, e.g. speech, graphical user interfaces, text entry,
and so on. So, for the last use case, we developed a
smarter plugin able not only to eavesdrop on private
information but also to interact with the user and ask
them custom questions. By doing so, it becomes very
likely for our man-in-the-middle entity to intercept con-
fidential information such as the user’s e–mail address
or even the password of their e-mail account(s). Due to
the fact that Siri uses artificial intelligent to interact
with the user in order to accomplish a task, e.g. send
out an email, the question about the password would
not bear any evidence of malicious behavior.

Fig. 9 presents the message flow when the user at-
tempts to send an e-mail using Siri. This results to the
activation of the corresponding plugin residing on the
man–in–the–middle entity (1). Once SiriProxy receives
the translated text from the original Siri server - in
this case “Send an email” – it will match it against
the plugin settings (2). As a consequence, the plugin
will temporally block the original text message from
being transmitted towards the original Siri server, and
instead, it will send back a custom question to Siri ask-
ing the user which sender’s email address it should use.
Since the e-mail address is generally considered public
information the user is highly probable to reply pro-
viding its email address to Siri (3). As a next step, the
plugin shall force Siri to pose a second question to the
user. This time Siri will ask for the password of the
e–mail address the user gave in the previous step (5).
Typically, a naive user will trust Siri and think that the

DRAFT PAPER



User privacy and modern mobile services: Are they on the same path? 9

password is necessary for the e-mail to be sent. Hence,
they will respond with the password, thus enabling the
plugin to log it in cleartext (6).

Fig. 9 Message flow for acquiring user’s password.

5 Related Work

Mobile devices are used in everyday life to store a vari-
ety of users’ sensitive information. So, it should come as
no surprise that they attract the attention of resource-
ful attackers. In this context, over the last few years,
traditional malware also seem to evolve in an effort to
catch up with the so called mobile era. Mainly, such
malwares affect the most popular OS, namely Android,
Symbian and iOS. It is also relevant to note that accord-
ing to [15] the most common behavior of the propagat-
ing malicious application on smartphones is the collec-
tion of private information. Due to its novelty, litera-
ture about the privacy level of advanced mobile services
like Siri and Tethering, other than those mentioned in
section 2 is, at least for the time being, scarce. How-
ever, malware and fraudulent applications for modern
smartphones have been outlined in several lines of work.
This section attempts to review the existing literature
in chronological order and with respect to the impact
of the threat.

The first appearance of malware that spreads
through mobile devices infecting them has been reported
back in June 2004 with the appearance of Cabir worm
for Symbian OS. Soon after, a more serious threat was
released; the first trojan spy for Symbian called Pb-
stealer. This malware has been based on Cabir, and
thus spreads via Bluetooth. Once it infects a device
searches for the address book and sends the contained
data to the first device discovered in range [16]. In the
following months, another trojan that violates user pri-
vacy has been detected. StealWar presents similar func-
tionality to Pbstealer, but it has been given the ability
to propagate via MMS as well [16]. Flexispy is another
trojan that takes over control of smartphones running
Symbian and sends call information and SMS data to
the herder of the Trojan [16]. A different malware is de-
scribed in [17] with the functionality of taking pictures
from the phone’s camera without the user’s knowledge
and send it to a predefined phone number via MMS.
The creators of the particular malware aimed to demon-
strate that it is quite easy to implement a privacy vio-
lation attack for mobile devices.

In 2008 two modern OS platforms for smartphones,
Apple’s iOS and Google’s Android have been intro-
duced. Since then, the research community focused its
attention on the security level of these OS. For the case
of Android the beginning of privacy concerns arises with
the first Android commercial smartphone, namely G1
which was shipped with the initial version of this OS.
This version was accompanied with vulnerability to the
web browser application. Hence, a determined attacker
could gain access to any data that the browser stores,
like cookies, text typed in form fields or even saved user
passwords [16]. In the same year, as described in [18],
some serious privacy concerns appeared with several ap-
plications within the AppStore market administered by
Apple.

In 2009, the authors in [19] presented a vulnera-
bility in SMS messages, which enables an attacker to
inject malformed SMS messages to cause DoS or gain
unauthorized permission to the underlying OS. During
the same period, the first iPhone worm namely Ikee
was released and a barrage of worm attacks started.
Ikee was simply changing the iPhone’s wallpaper. Also
Ikee was a self–propagating worm to attack only jail-
broken iPhones using the installed SSH server vulner-
ability and the default root password. The same vul-
nerability has been also used by Dutch 5e ransom, a
worm that locked the iPhone screen asking 5 to be
paid on a PayPal account. Privacy.A, was another worm
running in stealth mode aiming to steal personal data
from an iPhone device. In Nov. 2009, a new highly haz-
ardous version of Ikee, namely iKee.B appeared [20].
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Although iKee.B acts similar to Ikee, it includes Com-
mand & Control (C&C) logic to control all infected
iPhone devices via a botnet server, making iKee.B the
first iPhone botnet. Moreover, iKee.B was the first mal-
ware that through a script was able to poison iPhone’s
DNS cache (/etc/hosts) to redirect specific requests to
a given IP address. On the Android camp, LeNa, de-
scendant of Legacy virus family, was hiding in seem-
ingly useful apps to gain the required root privilege and
expose private information [16]. Moreover, two known
applications, MobileSpy and MobiSteath, exhibit the
previously approach by sending the recorded data (e.g.
SMS, call history, GPS coordinates, contact details,
Video and Pictures Logging) to a remote server. On
top of that, the latest trend of malware propagation on
Android devices is via Quick Response (QR) codes. Ac-
cording to this, whenever a user reads a malicious QR
code, it is directed to a site that instantly downloads a
malware to its device [16].

In 2010 the authors in [18] presented some inter-
esting attack scenarios on how a malicious application
can use official and public frameworks, provided by Ap-
ple. Also, five Android malware families, namely Base-
Brigde, JiFake, DroidKungFu, Hongtoutou, Geinimi,
have been identified after trying to expose the victim’s
geographic location, International Mobile Subscriber
Identity (IMSI), bookmarks and/or place calls, send
SMS to premium phone numbers [16].

In 2011 the first rootkit–similar, multifarious mal-
ware that is capable of infecting iPhone devices has
been presented [7]. Its aim is to stealthily execute six
malware routines, self–propagate wirelessly to other de-
vices and finally connect back to a bot master server to
update its programming logic or to obey commands.
During the same year several researchers and hacking
teams have presented novel techniques that may lead
to exposing iOS security [6,10,21]. Another important
disclosure occurred when a researcher found that many
smartphones OS including Android, BlackBerry, Sym-
bian, and iOS had pre–installed a rootkit / keylogger
developed by Carrier IQ [22].

6 Conclusions

Mobile devices have evolved and experienced an im-
mense popularity over the last few years providing users
with intelligent services, e.g. personal hotspots, per-
sonal assistants over voice, augmented reality etc. Nev-
ertheless, such services are generally regarded to be an
attractive target for attackers hoping to compromise
the service and expose user’s privacy. This paper con-
centrates on the popular iPhone device and as a case

study examines the privacy level of two attractive ser-
vices, namely Tethering and Siri. To do so, we imple-
ment a DNS poisoning malware with the mission of
redirecting all or a subset of DNS requests to a DNS
resolver which is under the control of the attacker. It is
then obvious that such a setting can severely influence
the way the user experiences the Internet and expose
them to serious threats. On the one hand, the malware
poisons the device’s tethering service to force all users
connected via it and trying to access their Facebook
page to be redirected to a bogus Facebook website. Af-
ter that, those users are left defenseless to phishing at-
tacks. On the other hand, we demonstrate that by lever-
aging the Siri facility, the attacker is able to intercept
sensitive user information including their geographical
location, account credentials, address book etc. Gener-
ally, such attacks stem from the fact that security and
user–privacy is commonly not within the first priori-
ties for new operating systems and features/services for
mobile devices. Naturally, this results in poor privacy
protection even for the security–savvy user, which most
of the time is unaware of such privacy degradation.

As future work we consider the implementation of
an intrusion detection tool able to identify smartphone
malware and more specifically those having the intent
to modify the hosts file. This way DNS poisoning at-
tacks can be thwarted. Apple should also consider up-
dating the Siri protocol to support mutual authentica-
tion between the iOS device and the Siri server every
time Siri is used. Another effective countermeasure for
preventing such attacks relies on iOS per se. It should
incorporate a mechanism that inspects the authentic-
ity of the certificates contained in the device’s certifi-
cate store, i.e. examine if they are issued by a trusted
authority.
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