
User Association and Behavioral Characterization
during Task Offloading at the Edge

Firdose Saeik∗, John Violos∗, Aris Leivadeas ∗, Marios Avgeris†, Dimitrios Spatharakis†, Dimitrios Dechouniotis†
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Abstract—Current developments in computer vision and net-
working have made immersive applications, such as Augmented
Reality (AR), Virtual Reality (VR), and Mixed Reality (MR),
more affordable. As the driving force behind these types of
applications is the high Quality of Service (QoS), more and
more studies concentrate on offloading the application tasks
to more powerful computing infrastructures without impairing
the immersive user experience. This generates the problem of
task offloading, defined as the transfer of resource-intensive
computational tasks from a local device to an external resource-
rich platform such as Cloud and/or Edge computing. Task
offloading can be deemed extremely beneficial for low latency
applications, however introducing several challenges in terms
of task scheduling and allocation. These challenges are usually
tackled via traditional optimization algorithms that can output
at the same time which segments to offload and to which site
(e.g. an Edge or Cloud server). These algorithms usually leverage
basic input information such as task size, available computational
and communication resources, etc. Going a step beyond, in this
work, we propose a novel model that is able to blend the user
association information through Social Network Analysis metrics
and especially node centrality during the task offloading decision
in an Edge infrastructure. Our results show that our approach
can reduce the communication delay towards increasing the user
experience.

Index Terms—Edge Computing, task offloading, immersive
application, quality of service

I. INTRODUCTION

In the context of ubiquitous computing and the user-centered
networking background, mobile and personal devices play a
catalytic role. Networking and data sharing are expected to
seamlessly take place among different mobile devices by tak-
ing advantage of their increasing capabilities (i.e., processing,
storage, built-in wireless communication technologies, etc.).

Even though the mobile devices’ computational capabilities
increase, so does the computational requirements of new and
emerging applications, such as immersive applications. Thus,
lately, to increase the computing efficiency of mobile and
personal devices while saving battery power, it is important
to move computationally intensive tasks from these devices
to a more powerful infrastructure. Traditionally, Cloud had
been the de-facto platform for such solutions. Nonetheless, the
centralized and remote data centers of the Cloud often impose
restrictive delay communications not suitable for delay-critical
applications. To this end, the recent trends of Edge Computing

have enabled end devices to access the necessary computa-
tional resources at the edge of the network minimizing the
communication delay.

In particular, end-devices are now capable of offloading
their resource-intensive tasks to a nearby Edge device and
minimize the overall execution time without adding excessive
communication paths towards a distant Cloud infrastructure.
This combination of mobile and edge resources can improve
application performance by transferring computationally in-
tensive tasks to edge devices. This approach, called task
offloading at the edge, is practically a resource allocation and
scheduling optimization problem exploring which user’s tasks
can be offloaded at the edge and how they can be allocated in
the available physical infrastructure.

However, task offloading is a rather complex process and
can be greatly affected by a number of different factors such
as the application partitioning to several tasks, the offloading
decision, the distributed task execution and so on [1]–[3]. To
address these challenges, usually, multi-objective optimiza-
tion algorithms are proposed to minimize the delay and/or
maximize the lifetime of the battery-powered mobile devices
without considering if one device’s offloading decision may
affect or benefit another device.

This can be extremely important for interactive applications,
including immersive applications, where the users are expected
to be highly correlated and often consuming the same content.
Hence, task offloading could consider the frequent contacts
and interactions among the users’ devices as stemmed by their
behavior.

In reality, the analysis of users’ behaviour and their spatial
relations to define better interactions (i.e. by recognizing
repetitive patterns) has been a field of study in the context of
computer science for many years. Such analysis can investigate
how users are associated and how they behave according to
the services being used. Accordingly, users’ interactions and
users’ behaviour analysis are important for user engagements
and a stepping stone to associate the users’ behaviour to the
perceived Quality of Service (QoS) and Quality of Experience
(QoE).

In this paper, inspired by the possible intersection of recent
trends in task offloading at the Edge with the user association
behavior in the context of an immersive application, we aim
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to propose a novel user-association and behavioral charac-
terization based task offloading heuristic. Specifically, this
approach’s main goal is to consider typical user association
aspects (i.e. interaction intensity) during the task offloading to
minimize the end-to-end communication delay.

To the best of our knowledge, no model for users’ associa-
tion behaviour during task offloading exists yet. Accordingly,
this paper presents a first attempt at investigating the end
users’ behaviour who offload tasks towards maximizing the
delay performance achieved. At the same time, we aim to
respond to questions that can impact the performance of task
offloading, such as i) which users interact with each other and
ii) which access points should be used as edge nodes during
task offloading.

The rest of the paper is structured as follows. Section II
provides a brief literature review. Section III presents the user
association models considered in our work. The proposed task
offloading solution is found in Section IV. Following, Section
V provides the evaluation of our solution in a simulated
environment. Finally, Section VI concludes the paper.

II. RELATED WORK

Some user association approaches, which have recently
attracted much attention, emphasize on reducing the latency
and/or energy, and optimizing resource allocation in a cellular
communication context. More specifically, in terms of reduc-
ing the latency, [4] aims to study the trade-off between maxi-
mizing the energy efficiency and minimizing both the wireless
latency and the interference level. Similarly, the authors in [5]
focus to minimize latency in a small cell base stations (SBS)
scenario by adopting an appropriate caching strategy under
Spatio-temporal traffic demands. In [6], authors present user-
centric backhauling, which exploits the diversity of the radio
and backhaul networks and that of the users QoE expectations
and maximize system-centric and user-centric performance. In
[7], a theoretical and practical framework is developed for
BS energy savings that encompasses dynamic BS operation
and user association during latency minimization. In [9], the
joint optimization of content placement, user association, and
unmanned aerial vehicles’ positions is studied, aiming at
minimizing the total transmit power of UAVs while satisfying
the requirement of user experience.

Interestingly, the above works try to investigate the impact
of user association or user behaviour. However, they are not
specifically addressing the offloading mechanisms. Accord-
ingly, some interesting studies examine offloading traffic in
reducing the latency, bandwidth, and transmission cost [11]–
[14]. A simple approach to reduce the bandwidth in the context
of device-to-device communication (D2D) is presented in [11]
where network traffic is expressed as a transmission cost
that needs to be minimized. Similarly, network traffic can
be minimized through an intelligent radio spectrum allocation
proposed in [12]. Specifically, the authors present a novel spec-
trum sharing paradigm called inter-operator proximal spectrum
sharing (IOPSS). A base station (BS) intelligently offloads
users to the neighboring BSs based on spectral proximity to

enhance the users’ QoE and spectral resource utilization. A
similar approach is proposed in [13], where a base station
(BS) intelligently offloads users to neighbouring BSs based on
spectral proximity while also leveraging the predictability of
the user’s mobility through a novel spectrum sharing paradigm
(memory-based content-aware hybrid scheme). Another simple
way to reduce the overall network traffic and thus increase
the users’ QoE is to decrease the downloading delay of the
application addressed in [14].

Regarding task offloading for interactive applications such
as VR, AR, the academic and industrial community identified
that distant cloud resources are not always suitable. Thus,
computational resources closer to users need to be leveraged.
Hence, for each computational request, the requested tasks
may be computed at various network locations, either locally
on the VR/AR device, on the Edge of the network, or globally
on the Cloud. Additional computational and delivery/delay
costs can be incurred, depending on the location where the
tasks are executed [1]–[3], [11].

Finally, only a few studies investigate the user association
or user behavior with the task offloading problem at the Edge
[15], [16]. Specifically, in [16] a joint computation offloading
and user association problem is formulated for minimizing
the energy consumption of mobile users and edge servers.
The authors proposed a novel multi-user association scheme
that takes both computation task size and delay requirement
into consideration. Specifically, a mobile user chooses a base
station that provides the data rate that satisfies the delay
constraint instead of the base station with the maximum data
rate. However, delay minimization has not been considered
in the user association decision. In [15] the authors propose
a heuristic offloading decision algorithm (HODA), which is
semi-distributed and jointly optimizes the offloading decision,
and communication and computation resources to maximize
the system utility. The system utility metric is a QoE measure
based on task completion time and energy consumption of a
mobile device. Particular emphasis is given on mobile devices’
variability in capabilities and user preferences on the user QoE.

Similarly, with [15], our work tries to create a link between
the users, the user experience, and the task offloading problem.
However, going a step beyond, we try to find how the asso-
ciation between the users and their interactions can affect the
user experience (expressed in terms of latency) during the task
offloading problem. This encounter between Edge and user
interaction (expressed through social theory) is expected to be
beneficial. It could facilitate the task offloading mechanism,
the data exchange, the optimization of the network and user
resources, and new applications.

III. USER ASSOCIATION

One of the proposed solutions novelties is its interaction
and information-centric nature since this seems to be the basic
foundation of applications able to distribute information in
edge networks. Hence, the proposed solution will investigate
the balance between user association aspects and node inter-
action when offloading resource-intensive computational tasks.
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To duly model this user association, appropriate metrics should
be defined as described below.

A. User association metrics

User association has been extensively used in cellular net-
works, and various models have been proposed, leveraging
mobile phone and usage-related features. For example, mobile
phone features could be used to predict personality traits, i.e.,
in physical encounters (people’s co-presence) and interactions
in the context of the cellular network. The co-presence is de-
fined as the potential for nodes to be in the same community. In
our view, this information does not suffice to model nearness
to express the association/similarity between users. Nearness
is a metric that can be decisive in reducing latency, when
users offload common tasks to the same edge location. Usually,
the spatial property resulting from a relatively small distance
[17] has been used in exploring nearness contextualization
[18] via the use of short or medium-range wireless technology
(i.e. Bluetooth, Wi-Fi). In contrast, in our study, the nearness
definition can be represented by the inter-contact distribution,
expressed by the node degree metric, widely used in social
network analysis (SNA) [20], [21].

Specifically, for the task offloading problem, user associa-
tion’s inclusion is of considerable importance for offloading as
it directly affects the rate of communication data and requests
made to offload. Unlike user association schemes in conven-
tional heterogeneous networks [7]–[9], the user association
scheme in task offloading at the edge should also take into
account both the size of the computation data in terms of
million instructions per set (MIPS) and the delay requirements
of applications. Based on this, we define the following user
association metric to be used in the context of task offloading.

Interaction Intensity: The interaction intensity can be
perceived differently in terms of the network point of view
and application point of view. From the network perspective,
interaction intensity can be considered as the interconnection
between the nodes. From the application perspective, interac-
tion intensity can be modeled based on the time the application
transfers data (e.g. average inter-contact/contact duration) to
the associated base station. In the particular study we model
the interaction intensity from the network point of view.

B. User Association through SNA

In the above sub-section we have defined the interaction
intensity as the main metric to express the user association. In
this sub-section, we try to formally model it by resorting to
the SNA theory, and specifically to social communities.

A social community is naturally formed according to social
relations among people, and it defines groups of individuals
sharing the same social interests or behaviours [19]. In net-
works, communities may represent real social groupings by
location, interests or background, and different communities
are usually interested in different mobile contents [25]. Thus,
detecting this community information can help improve data
transmission efficiency among distributed and intermittently
connected users.

Towards this end, a useful SNA metric that can help
correlate the interaction intensity model with the community
is the centrality. The term centrality evaluates the relative
auxiliary significance of a node within a community [20],
[22]. Some devices/people are more popular and interact
with more devices/people than others, and thus they act as
communication hubs in a community. Thus, a central node
tends to have a higher proximity-encounter possibility and
interaction frequency with the nearby devices. There are
several ways to measure centrality; the most widely used are
Freeman’s degree, closeness, and betweenness measures [20],
[23]. Closeness centrality is a metric for assessing whether a
user is close to other users in a social network and thus able
to communicate quickly with them. Betweenness centrality
is a metric to check whether a specific user is an important
node that lies in a high proportion of paths between other
social networks users. Degree centrality indicates whether
someone in a social network is involved in a large number
of interactions.

Accordingly, in this paper, we focus on the user asso-
ciation intensity model expressed as the centrality (degree
distribution). Specifically, the node that shares the most links
(common content) to other nodes will be the most central and
appropriate to act as an offloading point (e.g. edge node).

IV. TASK OFFLOADING ALGORITHM

In this section, we model our task offloading algorithm
based on the user association scheme presented above and
emphasizing on the social awareness aspects such as node
centrality for immersive and interactive services in the context
of future mobile networks and services.

A. System model

In this subsection, we first introduce the system model,
while providing the necessary terminology. Finally, we math-
ematical formulate the interaction intensity.

Let G = (V,E) be an undirected graph where V repre-
sents the set of devices (end users) and E denotes the set
of undirected links. Each link characterizes the contextual
nearness of devices in accordance with the network point’s of
view interaction intensity. In other words, two nodes that are
connected consume the same content. Existing works focused
on link partitions [24] and link communities [25] to create the
necessary social communities. In this work, we follow both a
link and a node perspective as shown below, when calculating
the interaction intensity.

Regarding the Edge infrastructure, it is modeled as a di-
rected Graph:

GE = (H,L) (1)

where H is the set of host nodes (Edge nodes) and L the
network connections between the nodes. Each Edge node h ∈
H is characterized by a vector of capacities U(h) such that
U(h) = (CPU,RAM,Storage)

Edge nodes are interconnected via a set of links L, where
each link li,j ∈ L is characterized by a latency value
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LAT (li,j) between source node i and destination node j,
with LAT (li,i) = 0 and a bandwidth value BW (li,j), with
BW (li,i) = ∞. In the particular work, we assume that the
Edge nodes are connected according to a full mesh topology.

To mathematical formulate the interaction intensity, we first
calculate the centrality per end-user v ∈ V , as follows :

Centralityv =
∑

e(s,d)∈E,s=v

|e(s, d)| (2)

The above Equation, goes through all the links/interactions
in the graph G between two end users s, d ∈ V and finds the
number of links (degree), that an end user v has (i.e. when
s = v.

Based on the centrality, we can now model the interaction
intensity as follows:

InteractionIntensity = Centralityv/|E| (3)

Specifically, the interaction intensity for an end user v is
the fraction of the centrality degree of the same end user v
divided by the total number of interactions |E| between all the
end users V , where |E| is the cardinality of the link vector E
in graph G.

B. Algorithm

The goal of the algorithm 1 is to leverage the user be-
haviour when offloading tasks towards increasing the delay
performance. The ultimate goal is to select the most popular
nodes between the end-devices to act as edge nodes and thus
to model our edge network.

The algorithm starts by getting as an input the users’
interactions (i.e. which users share the same content or field
of view) and will output the edge nodes that will be used
to execute the offloaded tasks, along with the total execution
time.

As a first step, the graph G is generated that contains
the end user devices and their interactions. Based on the
information provided by the graph, the centrality can be
extracted, that will help calculate the interaction intensity,
conforming to Eq. 3. Following, we sort the end devices
according to their interaction intensity (i.e. popularity) and
we select the |H| most significant nodes. In the particular
work, we assume that 25% of the nodes will act as edge nodes
(e.g. |H| = 0.25 ∗ |V |). These edge nodes will formulate our
edge infrastructure GE = (H,L), where the tasks would be
offloaded. In particular, each edge node will act as an SBS
that will execute the tasks generated from its associated users.

As a next step, we start the simulation by generating the
tasks from the users. Tasks are associated with the following
information, sender s, receiver r, and time stamp t. If the
sender and receiver correspond to the same SBS and share
the same content, we calculate directly the task execution
time. In particular, the execution time is calculated based
on the control theory model proposed in [27]. If the sender
and receiver correspond to a different SBS, we need to take
into consideration a delay penalty that includes the delay of

transferring the task through the edge infrastructure to the right
Edge node.

Algorithm 1: User association model - Algorithm
Input: user interactions
Output: offloading decision and execution time
Pseudo code:

1) Create a graph G = (V,E) representing the
interactions between the end users

2) Calculate the centrality (degree) of each node v ∈ V
and extract their interaction intensity.

3) Sort nodes in V according to Eq. 3 to extract the
interaction intensity

4) Select the most popular nodes |H| = k ∗ |V |
5) Create a graph GE = (H,L)
6) Generate tasks t

a) if source and destination of the task are on the
same SBS calculate the task execution time.

b) if source and destination of the task are on
different SBS add the delay overhead of
transferring the task between the corresponding
SBSs.

V. PERFORMANCE EVALUATION

In order to evaluate our proposed methodology we used
the CloudSim Plus simulator [28]. CloudSim Plus is widely
used from researchers for modeling, simulation, and experi-
mentation of Cloud computing infrastructures and application
services. CloudSim Plus is available on GitHub 1 with multiple
useful examples. In our experiments we used typical CloudSim
components such as Data Centers, Brokers, Virtual Machines
(VM), and Cloudlets.

In particular, we simulated an edge infrastructure topology
that consists of one Data Center (that can act as the main macro
Base Station), four processing edge nodes (Small-cell Base
Stations) and sixteen user devices that continuously generate
tasks according to a uniform distribution. Both users and
processing edge nodes are distributed in the area that covers
the edge computing infrastructure. The simulated application
is an augmented reality application with different Field of
View (FoV) resolutions that provides a sense of immersion
with high quality. The application of FoV supports rendering
technologies that run on the processing edge nodes and enables
end users to benefit from a high-quality immersive experience.
The end users generate tasks that arrive to the edge of the
network and at the same time users interact the one with the
other in the virtual environment of the application.

The tasks produced by users that interact should be ideally
offloaded in the same processing edge nodes. Application users
that have significant interaction generate tasks with data and
intercommunication dependencies. If these tasks are offloaded
to the same processing edge nodes, they will be executed more
efficiently compared to be offloaded to different processing

1https://github.com/manoelcampos/cloudsim-plus
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TABLE I
EXPERIMENTAL EVALUATION.

Method Makespan Throughput Average Median Std Dev Skewness Kurtosis Tail Latency
RandomHostMIPS:1000 118.15 2900.77 0.371 0.481 0.129 -0.636 -1.171 0.481
SNA4HostMIPS:1000 118.14 2900.72 0.362 0.481 0.138 -0.520 -1.455 0.481
RandomHostMIPS:1000-3000 118.25 2898.16 0.483 0.494 0.215 0.312 -0.786 0.862
SNA4HostMIPS:1000-3000 118.24 2898.56 0.472 0.492 0.221 0.334 -0.861 0.863

Fig. 1. End-user interaction with random network generator

edge nodes. Otherwise, there will be an additional overhead in
communication between processing edge nodes, data transfer
and execution time. In our experiments, we will see the
improvements in the execution times of the tasks when we
apply the offloading algorithm proposed in section IV.

Every user in the simulated Edge infrastructure use the
augmented reality application and generates multiple tasks.
The interaction between users can be represented with the
graph G as modeled in Section IV and an example is depicted
in Figure 1. To generate the interaction between users, we used
the Erdos–Renyi model via the Networkx tool.

We run four different task generation and offloading
cases. In the first case named RandomHostMIPS:1000, the
edge node selection happens randomly. In the second case
named SNA4HostMIPS:1000, we use the SNA task offload-
ing mechanism. In both cases we use a fixed amount of
1000 MIPS for the tasks. Next we use again the random
task offloading mechanism and the SNA task offloading
mechanism but with a variable tasks size in a range from
1000 to 3000 MIPS according to the FoV of each user.
These cases are named RandomHostMIPS:1000-3000 and
SNA4HostMIPS:1000-3000 respectively. During the experi-
ments 342720 tasks are generated.

A. Evaluation Metrics

In our experimental setup we used multiple evaluation met-
rics. Some of these metrics have different interpretations in the
distributed computing literature. Thus, we describe them in the
context of our experiments. Makespan declares the total time
taken by all infrastructure resources to complete the execution
of all tasks during the experiment. Makespan depends on the

infrastructure resources, the task offloading mechanism and
the task generation process. Throughput declares the average
number of tasks completed per second for all processing edge
nodes.

The average, median and standard deviation of the execution
times are the widely used statistical measurements of the
execution times for the task. Average and median declare
the middle values. Standard deviation declares how much the
execution times of the tasks differ from the mean value. Two
additional statistical measures are the skewness and kurtosis.
Skewness indicates the symmetry of the time values and
kurtosis indicates if the distribution of the time values is heavy-
tailed or light-tailed. An additional evaluation metric is the
tail latency. Tail latency is the 98th percentile and declares the
smallest value of the 2% highest response times.

B. Results and Discussion

The experimental results in Table I show an improvement in
the execution times using the user association model compared
to a random task offloading. We see an improvement in the
average execution times in both cases of constant and variable
task sizes. We also see a small improvement in makespan and
throughput. The improvement is small cause of the nature of
task generation process meaning that the tasks are generated
in a constant rate independent from the completion rate. The
change in skewness means that the tail on the left side of the
distribution of the execution times became longer or fatter
and we have a transposition of execution times to smaller
values. The SNA task offloading mechanism achieves greater
values of negative kurtosis which means that the distribution
of execution times becomes flatter. We expect, that for a larger
network topology the benefits of the user association model
will be even more evident, and thus this constitutes part of our
future work.

VI. CONCLUSION

In this paper, we have presented an algorithm to study users’
behaviour who offload tasks towards improving the delay
performance. Particular emphasis is given on the social aspects
of the communication expressed by the centrality metric
(degree distribution). At the same time, we tried to address the
questions that can impact task offloading performance, such as
i) Which users interact with each other and ii) which access
points should be used during task offloading. Specifically, we
devised an algorithm to prioritize the nodes that share the most
links to other nodes, expressed by the interaction intensity
user association metric. These nodes are the most central and
appropriate to act as an offloading point.
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In the experimental evaluation of our proposed model we
saw improvements with the SNA task offloading mechanism in
all evaluation metrics. The reason that the improvements were
small is the nature of our experiments and not the applicability
of the proposed model. In our experiments the overheads of
communication between different processing edge nodes were
small and the rate of tasks that have communication and data
dependencies in comparison with the total number of tasks
was also small. This is a preliminary research work with
the goal to confirm the proposed model surpass a random
baseline. As a first step of our future work, we aim to test our
model in a larger infrastructure, while taking into consideration
energy constraints of the devices. Finally, we also aim to run
additional experiments in a testbed and see the amount of
improvements in the evaluation metrics with a real augmented
reality application in an edge computing environment.
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