GROUPS OF REE TYPE IN CHARACTERISTIC 3 ACTING ON POLYTOPES

DIMITRI LEEMANS, EGON SCHULTE, AND HENDRIK VAN MALDEGHEM

Abstract. Every Ree group $R(q)$, with $q \neq 3$ an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group G with $R(q) < G \leq \text{Aut}(R(q))$ is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank.

1. Introduction

Abstract polytopes are certain ranked partially ordered sets. A polytope is called “regular” if its automorphism group acts (simply) transitively on (maximal) flags. It is a natural question to try to classify all pairs (\mathcal{P}, G), where \mathcal{P} is a regular polytope and G is an automorphism group acting transitively on the flags of \mathcal{P}. An interesting subclass is constituted by the pairs (\mathcal{P}, G) with G almost simple, as then a lot of information is available about the maximal subgroups, centralizers of involutions, etc., of these groups, making classification possible. Potentially this could also lead to new presentations for these groups, as well as a better understanding of some families of such groups using geometry.

The study of polytopes arising from families of almost simple groups has received a lot of attention in recent years and has been very successful. We particularly refer to [17] for almost simple groups of Suzuki type (see also [14]); [19, 20, 3] for groups $\text{PSL}_2(q) \leq G \leq \text{PGL}_2(q)$; [2] for groups $\text{PSL}_3(q)$ and $\text{PGL}_3(q)$; [7] for symmetric groups; [8, 9] for alternating groups; and [11, 18, 21] for the sporadic groups up to, and including, the third Conway group Co_3, but not the O’Nan group. Recently, Connor and Leemans have studied the rank 3 polytopes of the O’Nan group using character theory [4], and Connor, Leemans and Mixer have classified all polytopes of rank at least 4 of the O’Nan group [5].

Several attractive results were obtained in this vein, including, for instance, the proof that Coxeter’s 57-cell and Grünbaum’s 11-cell are the only regular rank 4 polytopes with a full automorphism group isomorphic to a group $\text{PSL}_2(q)$ (see [19]). Another striking result is the discovery of the universal locally projective 4-polytope of type $\{\{5,3\}_5,\{3,5\}_{10}\}$, whose full automorphism group is $J_1 \times \text{PSL}_2(19)$ (see [12]); this is based on the classification of all regular polytopes with an automorphism group given by the first Janko group J_1.

The existing results seem to suggest that polytopes of arbitrary high rank are difficult to obtain from a family of almost simple groups. Only the alternating and symmetric groups
are currently known to act on abstract regular polytopes of arbitrary rank. For the sporadic
groups the highest known rank is 5.

The Ree groups $R(q)$, with $q = 3^{2e+1}$ and $e > 0$, were discovered by Rimhak
Ree \cite{24} in 1960. In the literature they are also denoted by $2G_2(q)$. These groups have a subgroup
structure quite similar to that of the Suzuki simple groups $Sz(q)$, with $q = 2^{2e+1}$ and $e > 0$.
Suzuki and Ree groups play a somewhat special role in the theory of finite simple groups,
since they exist because of a Frobenius twist, and hence have no counterpart in characteristic
zero. Also, as groups of Lie-type, they have rank 1, which means that they act doubly
transitively on sets without further structure. However, the rank 2 groups which are used
to define them, do impose some structure on these sets. For instance, the Suzuki groups
act on “inversive planes”. For the Ree groups, one can define a geometry known as a
“unital”. However, these unitals, called Ree unitals, have a very complicated and little
accessible geometric structure (for instance, there is no geometric proof of the fact that
the automorphism group of a Ree unital is an almost simple group of Ree type; one needs
the classification of doubly transitive groups to prove this). Also, Ree groups seem to be
misfits in a lot of general theories about Chevalley groups and their twisted analogues. For
instance, there are no applications yet of the Curtis-Tits-Phan theory for Ree groups; all
finite quasisimple groups of Lie type are known to be presented by two elements and 51
relations, except the Ree groups in characteristic 3 \cite{10}. Hence it may be clear that the Ree
groups $R(q)$, with q a power of 3, deserve a separate treatment when investigating group
actions on polytopes.

Now, the regular polytopes associated with Suzuki groups are quite well understood
(see \cite{14}, \cite{17}). But the techniques used for the Suzuki groups are not sufficient for the Ree
groups. In the present paper, we carry out the analysis for the groups $R(q)$. In particular, we
ask for the possible ranks of regular polytopes whose automorphism group is such a group,
and we prove the following theorem.

Theorem 1. Among the almost simple groups G with $R(q) \leq G \leq Aut(R(q))$ and
$q = 3^{2e+1} \neq 3$, only the Ree group $R(q)$ itself is a C-group. In particular, $R(q)$ admits
a representation as a string C-group of rank 3, but not of higher rank. Moreover, the non-
simple Ree group $R(3)$ is not a C-group.

In other words, the groups $R(q)$ behave just like the Suzuki groups: they allow representations
as string C-groups, but only of rank 3. We will describe a string C-group representation
for $R(q)$, $q \neq 3$, for each value of q. Also, almost simple groups $R(q) < G \leq Aut(R(q))$ can
never be C-groups (in characteristic 3).

Rephrased in terms of polytopes, Theorem 1 says that among the almost simple groups
$R(q) \leq G \leq Aut(R(q))$, only the groups $G := R(q)$ are automorphism groups of regular
polytopes, and that these polytopes must necessarily have rank 3.

Ree groups can also be the automorphism groups of abstract chiral polytopes. In fact,
Sah \cite{25} showed that every Ree group $R(3^{2e+1})$, with $2e + 1$ an odd prime, is a Hurwitz
group; and Jones \cite{13} later extended this result to arbitrary simple Ree groups $R(q)$, proving
in particular that the corresponding presentations give chiral maps on surfaces. Hence the
groups $R(q)$ are also automorphism groups of abstract chiral polyhedra.
It is an interesting open problem to explore whether or not almost simple groups of Ree type also occur as automorphism groups of chiral polytopes of higher rank.

Note that the Ree groups in characteristic 2 are also very special: they are the only (finite) groups of Lie type arising from a Frobenius twist and having rank at least 2. This makes them special, in a way rather different from the way the Ree groups in characteristic 3 are special. We think that in characteristic 2, quite geometric methods will have to be used in the study of polytopes related to Ree groups.

2. Basic notions

2.1. Abstract polytopes and string C-groups. For general background on (abstract) regular polytopes and C-groups we refer to McMullen & Schulte [23, Chapter 2].

A polytope \(P \) is a ranked partially ordered set whose elements are called faces. A polytope \(P \) of rank \(n \) has faces of ranks \(-1, 0, \ldots, n\); the faces of ranks 0, 1 or \(n-1 \) are also called vertices, edges or facets, respectively. In particular, \(P \) has a smallest and a largest face, of ranks \(-1\) and \(n \), respectively. Each flag of \(P \) contains \(n+2 \) faces, one for each rank. In addition to being locally and globally connected (in a well-defined sense), \(P \) is thin; that is, for every flag and every \(j = 0, \ldots, n-1 \), there is precisely one other (\(j \)-adjacent) flag with the same faces except the \(j \)-face. A polytope of rank 3 is a polyhedron. A polytope \(P \) is regular if its (automorphism) group \(\Gamma(P) \) is transitive on the flags. If \(\Gamma(P) \) has exactly two orbits on the flags such that adjacent flags are in distinct orbits, then \(P \) is said to be chiral.

The groups of regular polytopes are string C-groups, and vice versa. A C-group of rank \(n \) is a group \(G \) generated by pairwise distinct involutions \(\rho_0, \ldots, \rho_{n-1} \) satisfying the following intersection property:

\[
\langle \rho_j \mid j \in J \rangle \cap \langle \rho_j \mid j \in K \rangle = \langle \rho_j \mid j \in J \cap K \rangle \quad (J, K \subseteq \{0, \ldots, n-1\}).
\]

Moreover, \(G \), or rather \((G, \{\rho_0, \ldots, \rho_{n-1}\})\), is a string C-group (of rank \(n \)) if the underlying Coxeter diagram is a string diagram; that is, if the generators satisfy the relations

\[
(\rho_j \rho_k)^2 = 1 \quad (0 \leq j < k-1 \leq n-2).
\]

Let \(G_i := \langle \rho_j \mid j \neq i \rangle \) for each \(i = 0, 1, \ldots, n-1 \), and let \(G_{ij} := \langle \rho_k \mid k \neq i, j \rangle \) for each \(i, j = 0, 1, \ldots, n-1 \) with \(i \neq j \).

Each string C-group \(G \) (uniquely) determines a regular \(n \)-polytope \(P \) with automorphism group \(G \). The \(i \)-faces of \(P \) are the right cosets of the distinguished subgroup \(G_i \) for each \(i = 0, 1, \ldots, n-1 \), and two faces are incident just when they intersect as cosets; formally we must adjoin two copies of \(G \) itself, as the (unique) \((-1)\)- and \(n \)-faces of \(P \). Conversely, the group \(\Gamma(P) \) of a regular \(n \)-polytope \(P \) is a string C-group, whose generators \(\rho_i \) map a fixed, or base, flag \(\Phi \) of \(P \) to the \(j \)-adjacent flag \(\Phi^j \) (differing from \(\Phi \) in the \(j \)-face).
2.2. The Ree groups in characteristic 3. We let \(C_k \) denote a cyclic group of order \(k \) and \(D_{2k} \) a dihedral group of order \(2k \).

The Ree group \(G := R(q) \), with \(q = 3^{2e+1} \) and \(e \geq 0 \), is a group of order \(q^3(q-1)(q^3+1) \). It has a natural permutation representation on a Steiner system \(S := (\Omega, \mathcal{B}) = S(2, q+1, q^3+1) \) consisting of a set \(\Omega \) of \(q^3+1 \) elements, the points, and a family of \((q+1) \)-subsets \(\mathcal{B} \) of \(\Omega \), the blocks, such that any two points of \(\Omega \) lie in exactly one block. This Steiner system is also called a Ree unital. In particular, \(G \) acts 2-transitively on the points and transitively on the incident pairs of points and blocks of \(S \).

The group \(G \) has a unique conjugacy class of involutions (see [24]). Every involution \(\rho \) of \(G \) has a block \(B \) of \(S \) as its set of fixed points, and \(B \) is invariant under the centralizer \(C_G(\rho) \) of \(\rho \) in \(G \). Moreover, \(C_G(\rho) \cong C_2 \times PSL_2(q) \), where \(C_2 = \langle \rho \rangle \) and the \(PSL_2(q) \)-factor acts on the \(q+1 \) points in \(B \) as it does on the points of the projective line \(PG(1,q) \).

The Ree groups \(R(q) \) are simple except when \(q = 3 \). In particular, \(R(3) \cong PGL_2(8) \cong PSL_2(8) : C_3 \) and the commutator subgroup \(R(3)' \) of \(R(3) \) is isomorphic to \(PSL_2(8) \).

A list of the maximal subgroups of \(G \) is available, for instance, in [22, p. 349] and [15]. Here we briefly review the list for \(R(q) \), with \(q \neq 3 \), as the maximal subgroups are required in the proof of Theorem 1 in parentheses we also note their characteristic properties relative to the Steiner system \(S \).

- \(N_G(A) \cong A : C_{q-1} \) (stabilizer of a point), where \(A \) is a 3-Sylow subgroup of \(G \);
- \(C_G(\rho) \cong C_2 \times PSL_2(q) \) (stabilizer of a block), where \(C_2 = \langle \rho \rangle \) and \(\rho \) is an involution of \(G \);
- \(R(q') \) (stabilizer of a sub-unital of \(S \)), where \((q')^p = q \) and \(p \) is a prime;
- \(N_G(A_i) \), for \(i = 1, 2, 3 \), where \(A_i \) is a cyclic subgroup of \(G \) of one of the following kinds:
 - \(A_1 = C_{q+1} \), with \(N_G(A_1) \cong (C_2^2 \times D_{2^{q+1}}) : C_3 \);
 - \(A_2 = C_{q+1-3^{e+1}} \), with \(N_G(A_2) \cong A_2 : C_6 \);
 - \(A_3 = C_{q+1+3^{e+1}} \), with \(N_G(A_3) \cong A_3 : C_6 \).

Note here that \(q \equiv 3 \text{mod} 8 \), so \((q - 1)/2 \) is odd and \((q + 1)/2 \) is even. Moreover, since \(p \) is odd, \(q' - 1 \) and \(q' + 1 \) divide \(q - 1 \) and \(q + 1 \), respectively. Finally, \(q + 1 \) is divisible by \(4 \) but not by \(8 \).

The automorphism group \(\text{Aut}(R(q)) \) of \(R(q) \) is given by
\[
\text{Aut}(R(q)) \cong R(q) : C_{2^{e+1}},
\]
so in particular \(\text{Aut}(R(3)) \cong R(3) \).

In the proof of our theorem we need the following lemma about normalizers of dihedral subgroups of dihedral groups. The proof is straightforward.

Lemma 1. Let \(m, n > 1 \) be integers such that \(m \mid n \). The normalizer \(N_{D_{2m}}(D_{2n}) \) of any subgroup \(D_{2m} \) of \(D_{2n} \) coincides with \(D_{2m} \) if \(n/m \) is odd, or is isomorphic to a subgroup \(D_{4n} \) of \(D_{2n} \) if \(n/m \) is even.
3. Proof of Theorem 1

The proof of Theorem 1 is based on a sequence of lemmas. We begin in Lemma 2 by showing that if $R(q) < G \leq \text{Aut}(R(q))$ then G cannot be a C-group (with any underlying Coxeter diagram). Thus only the Ree groups $R(q)$ themselves need further consideration. Then we prove in Lemma 3 that $R(q)$ does not admit a representation as a string C-group of rank at least 5. In the subsequent Lemmas 9, 11 and 12 we then extend this to rank 4 and show that $R(q)$ can also not be represented as a string C-group of rank 4. Finally, in Lemma 15 we construct each group $R(q)$ as a rank 3 string C-group.

All information that we use about the groups $R(q)$ can be found in [15].

We repeatedly make use of the following simple observation. If $A:B$ is a semi-direct product of finite groups A, B such that B has odd order, then each involution in $A:B$ must lie in A. In fact, if $\rho = \alpha \beta$ with $\alpha \in A, \beta \in B$ is an involution, then $1 = \rho^2 = \alpha(\beta \alpha \beta^{-1})\beta^2$, where $\alpha(\beta \alpha \beta^{-1}) \in A$ and $\beta^2 \in B$; hence $\beta^2 = 1$, so $\beta = 1$ and $\rho = \alpha \in A$.

3.1. Reduction to simple groups $R(q)$. We begin by eliminating the almost simple groups of Ree type that are not simple.

Lemma 2. Let $R(q) < G \leq \text{Aut}(R(q))$, where $q = 3^{2e+1}$. Then G is not a C-group.

Proof. Since $\text{Aut}(R(q)) \cong R(q):C_{2e+1}$ and $2e + 1$ is odd, every involution in $\text{Aut}(R(q))$ lies in $R(q)$ (by the previous observation), and hence any subgroup of $\text{Aut}(R(q))$ generated by involutions must be a subgroup of $R(q)$. Thus no subgroup G of $\text{Aut}(R(q))$ strictly above $R(q)$ can be a C-group. (When $e = 0$ we have $\text{Aut}(R(3)) \cong R(3)$, so the statement holds trivially.) ∎

3.2. String C-groups of rank at least five. By Lemma 2 we may restrict ourselves to Ree groups $G = R(q)$. We first rule out the possibility that the rank is 5 or larger.

Lemma 3. Let $G = R(q)$, where $q = 3^{2e+1} \neq 3$. Suppose G has a generating set S of n involutions such that (G, S) is a string C-group. Then $n \leq 4$.

Proof. Let $S = \{\rho_0, \ldots, \rho_{n-1}\}$, so in particular, $G = \langle \rho_0, \ldots, \rho_{n-1} \rangle$. Then ρ_0 commutes with $\rho_2, \ldots, \rho_{n-1}$, since the underlying Coxeter diagram is a string. However, ρ_0 does not commute with ρ_1, since otherwise $G = \langle \rho_0 \rangle \times \langle \rho_1, \ldots, \rho_{n-1} \rangle$; the latter is impossible since G is simple. In a similar way, we can also show that ρ_{n-1} does not commute with ρ_{n-2}. Now suppose $n \geq 5$ and consider the subgroup $H := \langle \rho_0, \rho_1, \rho_{n-2}, \rho_{n-1} \rangle$ of G. Then H must be isomorphic to $D_{2c} \times D_{2d}$ for some integers $c, d \geq 3$. However, inspection of the list of maximal subgroups of $R(q)$ described above shows that direct products of (non-abelian) dihedral groups never occur as subgroups in G. So n is at most 4. ∎
3.3. String C-groups of rank four. Next we eliminate the possibility that the rank is 4. We begin with a general lemma about string C-groups that are simple.

Lemma 4. Let \((G, S)\) be a string C-group of rank \(n\), and let \(G\) be simple. Then \(N_G(G_0) \setminus N_G(G)\) must contain an involution (namely \(\rho_0\)).

Proof. The involution \(\rho_0\) centralizes \(G_0\) and hence must lie in \(N_G(G_0)\). On the other hand, \(\rho_0\) cannot also lie in \(N_G(G)\) for otherwise \(G_0\) would have to be a nontrivial normal subgroup in the simple group \(G\).

The next two lemmas will be applied to dihedral subgroups in subgroups of type \(\text{PSL}_2(q)\) or \(C_2 \times \text{PSL}_2(q)\) of \(R(q)\), respectively.

Lemma 5. Let \(q = 3^{2e+1}\) and \(e \geq 0\). Then the order \(2d\) of a non-abelian dihedral subgroup of \(\text{PSL}_2(q)\) must divide \(q - 1\) or \(q + 1\). Moreover, \(d \not\equiv 0 \mod 4\), and \(d\) is even only if \(2d\) divides \(q + 1\).

Proof. Suppose \(D_{2d}\) is a non-abelian dihedral subgroup of \(\text{PSL}_2(q)\), so \(d \geq 3\). We claim that \(2d\) must divide \(q + 1\) or \(q - 1\). Recall that under the assumptions on \(q\), the order \(2d\) must either be 6 or must divide \(q - 1\) or \(q + 1\). It remains to eliminate 6 as a possible order. In fact, since \(q\) is an odd power of 3, the only maximal subgroups of \(\text{PSL}_2(q)\) with an order divisible by 6 are subgroups \(\text{PSL}_2(q')\) with \(q'\) a smaller odd power of 3. If we apply this argument over and over again with smaller odd powers of 3, we eventually are left with a subgroup \(\text{PSL}_2(3)\). However, \(\text{PSL}_2(3) \cong A_4\) and hence cannot have a subgroup of order 6. Thus \(2d\) must divide \(q + 1\) or \(q - 1\). This proves the first statement of the lemma. The second statement follows from the fact that \(q \equiv 3 \mod 8\). □

Lemma 6. Let \(q = 3^{2e+1}\) and \(e \geq 0\), let \(2d\) divide \(q - 1\) or \(q + 1\), and let \(D_{2d}\) be a non-abelian dihedral subgroup of a group \(C := C_2 \times \text{PSL}_2(q)\).

(a) Then there exists a dihedral subgroup \(D\) in \(\text{PSL}_2(q)\) such that \(D_{2d}\) is a subgroup of \(C_2 \times D\) of index 1 or 2, and \(N_C(D_{2d}) = N_C(C_2 \times D) = C_2 \times N_{\text{PSL}_2(q)}(D)\). Here the normalizer \(N_{\text{PSL}_2(q)}(D)\) must lie in a maximal subgroup \(D_{q+1}\) or \(D_{q-1}\) of \(\text{PSL}_2(q)\), and coincide with \(N_{D_{q+1}}(D)\) or \(N_{D_{q-1}}(D)\), according as \(2d\) divides \(q - 1\) or \(q + 1\).

(b) Let \(D_{2d} \cong D\) (that is, the index is 2). If \(2d \mid (q - 1)\) or if \(2d \mid (q + 1)\) and \((q + 1)/2d\) is odd, then \(N_{\text{PSL}_2(q)}(D) = D\) and \(N_C(D_{2d}) \cong C_2 \times D_{2d}\). If \(2d \mid (q + 1)\) and \((q + 1)/2d\) is even, then \(N_{\text{PSL}_2(q)}(D) \cong D_{4d}\) and \(N_C(D_{2d}) \cong C_2 \times D_{4d}\).

(c) If \(D_{2d} = C_2 \times D\) (that is, \(d\) is even, \(d/2\) is odd, \(D \cong D_d\), and the index is 1), then \(N_{\text{PSL}_2(q)}(D) \cong D_{2d}\) and \(N_C(D_{2d}) \cong C_2 \times D_{2d}\) (regardless of whether \(2d \mid (q - 1)\) or \(2d \mid (q + 1)\)).

(d) The structure of \(N_C(D_{2d})\) only depends on \(d\) and \(q\), not on the way in which \(D_{2d}\) is embedded in \(C\).

Proof. For the first part, suppose \(C_2 = \langle \rho \rangle\) and \(D_{2d} = \langle \sigma_0, \sigma_1 \rangle\) where \(\sigma_0, \sigma_1\) are standard involutory generators for \(D_{2d}\). Write \(\sigma_0 = (\rho^i, \sigma_0')\) and \(\sigma_1 = (\rho^i, \sigma_1')\) for some \(i, j = 0, 1\) and involutions \(\sigma_0', \sigma_1'\) in \(\text{PSL}_2(p)\). Then \(D := \langle \sigma_0', \sigma_1' \rangle\) is a dihedral subgroup of \(\text{PSL}_2(p)\), and \(D_{2d}\) lies in \(C_2 \times D\). Since the period of \(\sigma_0' \sigma_1'\) divides that of \(\sigma_0 \sigma_1\), the order of \(D\) is at most \(2d\) and \(D_{2d}\) has index 1 or 2 in \(C_2 \times D\). If this index is 1 then \(D_{2d} = C_2 \times D\) (and \(d\) is even and \(D \cong D_d\)). If the index of \(D_{2d}\) in \(C_2 \times D\) is 2, then \(D \cong D_{2d}\) and \(D_{2d} \cap \{1\} \times D\)...
must have index 1 or 2 in \(\{1\} \times D \). If the index of \(D_{2d} \cap \{1\} \times D \) in \(\{1\} \times D \) is 1 then clearly \(D_{2d} = \{1\} \times D \) and \(D_{2d} \) can be viewed as a subgroup of \(\text{PSL}_2(q) \). If the index of \(D_{2d} \cap \{1\} \times D \) is 2, then \(D_{2d} \cap \{1\} \times D \) is of the form \(\{1\} \times E \) where \(E \) is either the cyclic subgroup \(C_d \) of \(D \), or \(d \) is even and \(E \) is one of the two dihedral subgroups of \(D \) of order \(d \). (Note here that \(D_{2d} \) cannot itself be a direct product in which one factor is generated by \(\rho \), since \(\rho \) cannot lie in \(D_{2d} \).

Next we investigate normalizers. First note that the normalizer of a direct subproduct in a direct product of groups is the direct product of the normalizers of the component groups. Thus \(N_C(C_2 \times D) = C_2 \times N_{\text{PSL}_2(q)}(D) \).

We now show that the normalizers in \(C \) of the subgroups \(D_{2d} \) and \(C_2 \times D \) coincide. There is nothing to prove if \(D_{2d} = C_2 \times D \). Now suppose that \(D_{2d} \) has index 2 in \(C_2 \times D \) and \(E \) is as above. Then it is convenient to write \(D_{2d} \) in the form
\[
(1) \quad D_{2d} = (\{1\} \times E) \cup (\{\rho\} \times (D \setminus E)).
\]
If \((\alpha, \beta) \in C\) then
\[
(2) \quad (\alpha, \beta)D_{2d}(\alpha, \beta)^{-1} = (\{1\} \times \beta E \beta^{-1}) \cup (\{\rho\} \times \beta(D \setminus E) \beta^{-1}).
\]
Now if \((\alpha, \beta) \in N_C(D_{2d})\), then the group on the left in \((2)\) is just \(D_{2d} \) itself and therefore \(\beta E \beta^{-1} = E \) and \(\beta(D \setminus E) \beta^{-1} = D \setminus E \). It follows that \(\beta \) normalizes both \(E \) and \(D \), so in particular \((\alpha, \beta) \in N_C(C_2 \times D)\). Hence \(N_C(D_{2d}) \leq N_C(C_2 \times D) \).

Now suppose that \((\alpha, \beta) \in N_C(C_2 \times D)\). Then \(\beta \) normalizes \(D \). But \(\beta E \beta^{-1} \) must be a subgroup of \(D \) of index 2 isomorphic to \(E \), and hence \(\beta E \beta^{-1} \) and \(E \) are either both cyclic or both are dihedral. Clearly, if both subgroups are cyclic then \(\beta E \beta^{-1} = E \). However, the case when both subgroups are dihedral is more complicated. First recall that then \(d \) must be even. Now the normalizer \(N_{\text{PSL}_2(q)}(D) \) of the dihedral subgroup \(D \) of \(\text{PSL}_2(q) \) in \(PSL_2(q) \) either coincides with \(D \) (that is, \(D \) is self-normalized), or is a dihedral subgroup containing \(D \) as a subgroup of index 2. We claim that under the assumptions on \(q \), the second possibility cannot occur. In fact, in this case the normalizer would have to be a group of order \(4d \), and since \(d \) is even, its order would have to be divisible by 8; however, the order of \(PSL_2(q) \) is not divisible by 8 when \(q \) is an odd power of 3, so \(PSL_2(q) \) certainly cannot contain a subgroup with an order divisible by 8. Thus \(N_{\text{PSL}_2(q)}(D) = D \). But \(\beta \) belongs to the normalizer of \(D \) in \(PSL_2(q) \), so then \(\beta \) must lie in \(D \). In particular, \(\beta E \beta^{-1} = E \) since \(E \) is normal in \(D \). Thus, in either case we have \(\beta E \beta^{-1} = E \), and since \(\beta D \beta^{-1} = D \), also \(\beta(D \setminus E) \beta^{-1} = D \setminus E \). Hence, \((2)\) shows that \((\alpha, \beta) \in N_C(D_{2d})\). Hence also \(N_C(C_2 \times D) \leq N_C(D_{2d}) \).

To complete the proof of the first part, note that \(D \) must lie in a maximal subgroup \(D_{q \pm 1} \) of \(PSL_2(q) \) and \(N_{PSL_2(q)}(D) = N_{D_{q \pm 1}}(D) \).

The second and third part of the lemma follow from Lemma \(\[\text{Lemma} \] \) applied to the dihedral subgroup \(D \) of \(D_{q \pm 1} \). In particular, \(D \) is self-normalized in \(D_{q \pm 1} \) if \((q \pm 1) / |D| \) is odd, and \(N_{PSL_2(q)}(D) \) is a dihedral subgroup of \(D_{q \pm 1} \) of order \(2|D| \) if \((q \pm 1) / |D| \) is even. Bear in mind that \((q - 1)/2 \) is odd, and \((q + 1)/2 \) is even but not divisible by 4.

To establish the last part of the lemma, note that \(N_C(D_{2d}) \cong C_2 \times D_{2d} \), except when \(D \cong D_{2d}, 2d \mid (q + 1) \) and \((q + 1)/2d \) is even. However, since \(q \equiv 3 \mod 8 \), if \(2d \mid (q + 1) \) and \((q + 1)/2d \) is even then \(d \) must be odd. In other words, the situation described in the third
part of the lemma cannot occur as this would require \(d \) to be even. Thus, if \(2d \mid (q+1) \) and \((q+1)/2d \) is even, then we are necessarily in the situation described in second part of the lemma, and so necessarily \(N_C(D_{2d}) \cong C_2 \times D_{4d} \).

Our next lemma investigates possible C-subgroups of \(G = R(q) \) of rank 3. The vertex-figure of a putative regular 4-polytope with automorphism group \(G \) would have to be a regular polyhedron with a group of this kind.

Lemma 7. The only proper subgroups of \(R(q) \) that could have the structure of a C-group of rank 3 are Ree subgroups \(R(q') \) with \(q' \neq 3 \) or subgroups of the form \(PSL_2(q'), C_2 \times PSL_2(q'), \) or \(R(3)' \cong PSL_2(8) \).

Proof. It is straightforward to verify that only subgroups of maximal subgroups of \(R(q) \) of the second and third type can have the structure of a rank 3 C-group. Therefore we are left with Ree subgroups \(R(q') \) and subgroups of groups \(C_2 \times PSL_2(q') \), with \(q' \) an odd power of 3 dividing \(q \), as well as subgroups of type \(R(3)' \cong PSL_2(8) \) inside a subgroup \(R(3) \). A forward appeal to Lemma 15 shows that Ree groups \(R(q') \) with \(q' \neq 3 \) do in fact act flag-transitively on polyhedra, and by [26], so does \(R(3)' \cong PSL_2(8) \). The complete list of subgroups of \(PSL_2(q') \) is available, for instance, in [19]. As \(q' \) is an odd power of 3, the group \(PSL_2(q') \) does not have subgroups isomorphic to \(A_5, S_4, \) or \(PGL_2(q'') \) for some \(q'' \). Hence, none of the subgroups of \(PSL_2(q') \), except for those isomorphic to a group \(PSL_2(q'') \), with \(q'' \) an odd power of 3 dividing \(q' \) (and hence \(q \)), admits flag-transitive actions on polyhedra. Now the maximal subgroups of \(C_2 \times PSL_2(q') \) comprise the factor \(PSL_2(q') \), as well as all subgroups of the form \(C_2 \times H \) where \(H \) is a maximal subgroup of \(PSL_2(q') \) from the following list:

\[E_{q', C_{q'-1}}, D_{q'-1}, D_{q'+1}, PSL_2(q''). \]

A subgroup of \(C_2 \times PSL_2(q') \) of the form \(C_2 \times D_{q'-1} \) is isomorphic to \(D_{2(q'-1)} \) (since \(q' \equiv 3 \mod 8 \)), so none of its subgroups (including the full subgroup itself) can act regularly on a non-degenerate polyhedron (with no 2 in the Schlafli symbol). Similarly, a subgroup of \(C_2 \times PSL_2(q') \) of the form \(C_2 \times D_{q'+1} \) is isomorphic to \(E_4 \times D_{(q'+1)/2} \), so again none of its subgroups (including the full subgroup itself) can act regularly on a non-degenerate polyhedron. Finally, a subgroup of \(C_2 \times PSL_2(q') \) of the forms \(C_2 \times (E_{q'} : C_{(q'-1)/2}) \) has an order not divisible by 4. Hence, as in the two other cases, none of its subgroups (including the full subgroup itself) can act regularly on a non-degenerate polyhedron.

In summary, the only possible candidates for rank 3 subgroups of \(R(q) \) are of the form \(R(q'), PSL_2(q'), C_2 \times PSL_2(q') \), and \(R(3)' \cong PSL_2(8) \). We can further rule out a subgroup of type \(R(3) \), since \(R(3) \cong PTL_2(8) \) is not generated by involutions.

For a subgroup \(B \) in a group \(A \) we define \(N_0^A(B) := \langle a \mid a \in N_A(B), a^2 = 1 \rangle \). If \(B \) is generated by involutions then \(B \leq N_0^A(B) \leq N_A(B) \). We first state a lemma that will be useful in several places.

Lemma 8. Let \(H := R(3) = PTL_2(8) \), and let \(D := D_{2d} \) be a dihedral subgroup of \(H \) of order at least 6. Then \(d = 3, 7 \) or 9, and in all cases \(N^0_H(D) = D \).

Proof. Straightforward.
The following lemma considerably limits the ways in which Ree groups $R(q)$ might be representable as C-groups of rank 4.

Lemma 9. If the group $G := R(q)$ can be represented as a string C-group of rank 4, then

$$N^0_G(G_{01}) = N^0_{C_G(\rho_0)}(G_{01}).$$

Proof. Suppose that G admits a representation as a string C-group of rank 4. Thus $G = \langle \rho_0, \rho_1, \rho_2, \rho_3 \rangle$.

Since $R(3)$ is not generated by involutions, we must have $q \neq 3$.

The subgroup $G_{01} = \langle \rho_2, \rho_3 \rangle$ is a dihedral subgroup D_{2d} (say) of the centralizer $C_G(\rho_0)$ of ρ_0, and $C_G(\rho_0) \cong \langle \rho_0 \rangle \times PSL_2(q)$. Here $d \geq 3$, by arguments similar to those used in the proof of Lemma 8. Thus

$$D_{2d} \cong \langle \rho_2, \rho_3 \rangle = G_{01} \leq G_1 = \langle \rho_0, \rho_2, \rho_3 \rangle \leq C_G(\rho_0) \cong C_2 \times PSL_2(q).$$

By Lemma 8, applied to G_{01} and $C_G(\rho_0)$, there exists a dihedral subgroup D in the $PSL_2(q)$-factor of $C_G(\rho_0)$ such that G_{01} is a subgroup of $\langle \rho_0 \rangle \times D = C_2 \times D$ of index at most 2 and

$$N_{C_G(\rho_0)}(G_{01}) = N_{C_G(\rho_0)}(C_2 \times D) = C_2 \times N_{PSL_2(q)}(D).$$

In fact, the proof of Lemma 8 shows that this subgroup $C_2 \times D$ is just given by G_1. But $\rho_0 \not\in G_{01}$, so G_{01} has index 2 in $C_2 \times D = G_1$, and $D \cong G_{01} \cong D_{2d}$. Then Lemma 5, applied to D, shows that $2d$ must divide either $q + 1$ or $q - 1$.

The structure of the normalizer $N_{C_G(\rho_0)}(G_{01})$ can be obtained from Lemma 8. In fact, $N_{C_G(\rho_0)}(G_{01}) \cong C_2 \times D_{2d}$, unless $2d \mid (q + 1)$ and $(q + 1)/2d$ is even; in the latter case $N_{C_G(\rho_0)}(G_{01}) \cong C_2 \times D_{4d}$. In particular, $N_{C_G(\rho_0)}(G_{01})$ is generated by involutions and its order is divisible by 4. We will show that the normalizer of G_{01} in $C_G(\rho_0)$ captures all the information about the full normalizer $N_G(G_{01})$ of G_{01} in G that is relevant for us. A key step in the proof is the invariance of the structure of the normalizer of G_{01} in arbitrary subgroups of G of type $C_2 \times PSL_2(q)$; more precisely, the structure only depends on d and q, but not on the way in which G_{01} is embedded in a subgroup $C_2 \times PSL_2(q)$ (see Lemma 8).

The full normalizer $N_G(G_{01})$ of G_{01} in G must certainly contain $N_{C_G(\rho_0)}(G_{01})$ and also have an order divisible by 8. We claim that all involutions of the full normalizer $N_G(G_{01})$ must already lie in $C_G(\rho_0)$ and hence in $N_{C_G(\rho_0)}(G_{01})$.

First note that $N_G(G_{01})$ must certainly lie in a maximal subgroup M of G and then coincide with $N_M(G_{01})$. (Since G is simple, the normalizer of a proper subgroup of G cannot coincide with G.) Inspection of the list of maximal subgroups of G shows that only maximal subgroups M of type $R(q')$, $C_2 \times PSL_2(q)$ or $N_G(A_1)$ have an order divisible by 4. Only those maximal subgroups could perhaps contain $N_{C_G(\rho_0)}(G_{01})$ and hence $N_G(G_{01})$. We investigate the three possibilities for M separately.

Suppose M is a group of type $C_2 \times PSL_2(q)$. Then the invariance of the structure of the normalizer of G_{01} shows that $N_M(G_{01}) \cong N_{C_G(\rho_0)}(G_{01})$. However, $N_{C_G(\rho_0)}(G_{01}) \leq N_G(G_{01})$ and $N_G(G_{01}) = N_M(G_{01})$, so this gives $N_G(G_{01}) = N_{C_G(\rho_0)}(G_{01})$. But $N_{C_G(\rho_0)}(G_{01})$ is generated by involutions, so $N_{C_G(\rho_0)}(G_{01}) = N_{C_G(\rho_0)}^0(G_{01})$ and Lemma 8 must hold as well.
Let M be a group of type $N_G(A_1) \cong (C_2^2 \times D_{(q+1)/2}) : C_3$ where A_1 is a group $C_{(q+1)/4}$ (recall that $(q + 1)/4$ is odd). Then all involutions of M must lie in its subgroup $K := C_2^2 \times D_{(q+1)/2} = C_2 \times D_{q+1}$. In particular, all involutions of $N_M(G_0)$ must lie in K and hence in $N_K(G_0)$; that is, $N_{K'}(G_0) \leq N_K(G_0)$. Also, G_0 itself must lie in K and its order $2d$ must divide $q + 1$. The subgroup K lies in the centralizer of the involution generating the C_2-factor in the direct product factorization $C_2 \times D_{q+1}$ for K, and $N_K(G_0) \leq N_C(G_0)$.

This subgroup C is of type $C_2 \times PSL_2(q)$, and so again the invariance of the structure of the normalizers implies that $N_C(G_0) \cong N_{C_C(\rho_0)}(G_0)$. But $N_G(G_0) = N_M(G_0)$ and therefore

$$N_{C_G(\rho_0)}(G_0) = N_{C_G(\rho)}^0(G_0) \leq N_{C_G(\rho_0)}^0(G_0) = N_{M}(G_0) \leq N_K(G_0) \leq N_C(G_0).$$

Thus $N_{C_G(\rho_0)}^0(G_0) = N_{C_{C_G(\rho_0)}}^0(G_0)$, as required.

Now let M be a Ree group $R(q')$ where $(q')^p = q$ and p is a prime. We first cover the case when M is a Ree group $R(3) = PSL_2(8) : C_3$, that is, $q = 3^p$ where p is a prime. In that case, by Lemma $N_{C_G(\rho_0)}^0(G_0) = N_{C_{M}}^0(G_0) = G_0$. Hence, since also $G_0 \leq N_{C_{C_G(\rho_0)}}^0(G_0) \leq N_{C_G(\rho_0)}^0(G_0)$, we must have $N_{C_G(\rho_0)}^0(G_0) = N_{C_{C_G(\rho_0)}}^0(G_0)$.

Now suppose $q' \neq 3$, so in particular M is simple. Then $2d$ must divide $q' \pm 1$, since $N_{C_{G(\rho_0)}}^0(G_0)$ lies in M and therefore $\rho_0 \in M$, giving $G_0 \leq N_{C_{M(\rho_0)}}^0(G_0) \cong C_2 \times PSL_2(q')$. Since the subgroup $N_G(G_0)$ of M must have an order divisible by 4, it must lie in a maximal subgroup M' of M of type $R(q'')$, $C_2 \times PSL_2(q'')$, or $N_{R(q')}^0(A'_1) \leq A'_1 \cong C_2 \times PSL_2(q+1)/4$. The maximal subgroups M' of $M = R(q')$ of types $C_2 \times PSL_2(q')$ and $N_{R(q')}^0(A'_1)$, respectively, lie in maximal subgroups of G of type $C_2 \times PSL_2(q)$ or $N_G(A_1)$, so they are subsumed under the previous discussion. (Alternatively we could dispose of these cases for M' directly, using arguments very similar to those in the two previous cases for M.) Then this leaves the possibility that M' is of type $R(q'')$, in which case we are back at a Ree group. Now continuing in this fashion to smaller and smaller Ree subgroups that could perhaps contain $N_G(G_0)$, we eventually arrive at either a Ree subgroup $M^{(k)}$ (say) whose parameter $q^{(k)} \pm 1$ (say) is no longer divisible by $2d$, or a Ree group $R(3)$. In the first case, $R(q')$ does not contribute anything new to $N_{C_G(\rho_0)}^0(G_0)$, and the normalizer $N_{C_G(\rho_0)}(G_0)$ must already lie in one of the maximal subgroups of type $C_2 \times PSL_2(q)$ or $N_G(A_1)$ discussed earlier; in particular, $N_{C_G(\rho_0)}^0(G_0) = N_{C_G(\rho_0)}^0(G_0)$, as required. In the second case, the normalizer $N_{C_G(\rho_0)}(G_0)$ lies in a Ree subgroup $R(3) \cong PSL_2(8) : C_3$, and its involutory part $N_{C_G(\rho_0)}^0(G_0)$ must lie in the $PSL_2(8)$ subgroup. Again, by Lemma $N_{C_G(G_0)}^0(G_0) = N_{M(G_0)}^0(G_0) = G_0$, hence $N_{C_G(\rho_0)}^0(G_0)$ must also hold in this case.

Lemma 10. If the group $G := R(q)$ can be represented as a string C-group of rank 4, then $q \neq 3$ and both the facet stabilizer G_3 and vertex stabilizer G_6 have to be isomorphic to $PSL_2(8) = R(3)'$ (i.e. the commutator subgroup of $R(3)$) or a simple Ree group $R(q')$ with $q = q'^m$ for some odd integer m.

Proof. We consider the possible choices for G_0 in the given C-group representation of G of rank 4. Our goal is to use Lemma 4 to limit the choices for G_0 to just $R(3)'$ or $R(q')$. First recall from Lemma 7 that the only possible candidates for G_0 are either Ree subgroups $R(q')$ with $q' \neq 3$ or subgroups of the form $PSL_2(q')$, $C_2 \times PSL_2(q')$, or $R(3)' \cong PSL_2(8)$. To complete the proof we must eliminate the second and third types of candidates. This
is accomplished by means of Lemmas 4 and 3 proving in each case that \(N_C(G_{01}) \setminus N_C(G_0) \) cannot contain an involution, or equivalently \(N^0_G(G_{01}) \leq N_G(G_0) \). Bear in mind that \(G_{01} \leq G_0 \).

First observe that all subgroups of \(G \) of the form \(C_2 \times \text{PSL}_2(q') \) are self-normalized in \(G \); and the normalizer of a subgroup of \(G \) of the form \(\text{PSL}_2(q') \) is isomorphic to \(C_2 \times \text{PSL}_2(q') \). In other words, \(N_C(G_0) = G_0 \) if \(G_0 \) is of type \(C_2 \times \text{PSL}_2(q') \), and \(N_C(G_0) = C_2 \times G_0 \) if \(G_0 \) is of type \(\text{PSL}_2(q') \). We show that \(N^0_G(G_{01}) \leq N_G(G_0) \) for each of these three choices of \(G_0 \).

Suppose that \(G_0 \cong C_2 \times \text{PSL}_2(q') \). We first claim that then \(2d \mid q' \pm 1 \). To see this, note that the intersection of \(G_{01} \) with the \(\text{PSL}_2(q') \)-factor of \(G_0 \) is a subgroup of index 1 or 2 in \(G_{01} \). If the index is 1, the statement is clear by Lemma 3 since then \(G_{01} \) lies in the \(\text{PSL}_2(q') \)-factor; and if the index is 2 and the intersection is a cyclic group \(C_d \), the statement follows by inspection of the possible orders of cyclic subgroups of \(\text{PSL}_2(q') \). Now if the index is 2 and the intersection is a dihedral group \(D_d \), then Lemma 6 shows that \(d \) must be even, \(2d \mid q + 1 \), and \(d/2 \) must be odd; moreover, \(d \mid q' + 1 \) since \(D_d \) lies in \(\text{PSL}_2(q') \), and hence \(2d \mid q' + 1 \) since \(q' + 1 \) is divisible by 4. Thus \(2d \mid q' \pm 1 \), as claimed.

Now, since \(G_0 \cong C_2 \times \text{PSL}_2(q') \), the normalizer \(N_{C_G(\rho_0)}(G_{01}) \) coincides with the normalizer \(N_H(G_{01}) \) of \(G_{01} \) taken in a suitable subgroup \(H \) of \(C_G(\rho_0) \) of type \(C_2 \times \text{PSL}_2(q') \). In fact, from Lemma 6 we know that

\[
N_{C_G(\rho_0)}(G_{01}) \leq C_2 \times D_{q' \pm 1} \leq C_G(\rho_0) \cong C_2 \times \text{PSL}_2(q).
\]

But \(2d \mid q' \pm 1 \), so we must have \(N_{C_G(\rho_0)}(G_{01}) \leq C_2 \times D_{q' \pm 1} \). However, \(C_2 \times D_{q' \pm 1} \) lies in a subgroup \(H \) of \(C_G(\rho_0) \) isomorphic to \(C_2 \times \text{PSL}_2(q') \).

To complete the argument (for any given type of group \(G_0 \)) we show that \(N^0_G(G_{01}) \) must lie in \(N_{G_0}(G_{01}) \) and therefore also in \(G_0 \) and \(N_G(G_0) \). When \(G_0 \) is a group of type \(C_2 \times \text{PSL}_2(q') \), the normalizer \(N_{G_0}(G_{01}) \) can be determined using Lemma 6 (with \(q \) replaced by \(q' \)). In fact, by the invariance of the normalizers of \(G_{01} \) we know that \(N_{G_0}(G_{01}) \) and \(N_H(G_{01}) \) are isomorphic and that both subgroups are generated by involutions. However, then by Lemma 6

\[
N_{G_0}(G_{01}) = N^0_{G_0}(G_{01}) \leq N^0_G(G_{01}) = N^0_{C_G(\rho_0)}(G_{01}) = N^0_H(G_{01}) = N_H(G_{01}),
\]

so clearly \(N_{G_0}(G_{01}) = N_H(G_{01}) \). Thus \(N^0_G(G_{01}) = N_{G_0}(G_{01}) \leq G_0 \leq N_G(G_0) \).

Now let \(G_0 \) be of type \(\text{PSL}_2(q') \). Then \(C := N_C(G_0) \) is a group of type \(C_2 \times \text{PSL}_2(q') \) containing \(G_0 \), so we can replace \(G_0 \) by \(C \) and argue as before. In fact, using the same subgroup \(H \), we see that the normalizers \(N_C(G_{01}) \) and \(N_H(G_{01}) \) are isomorphic subgroups generated by involutions. In particular,

\[
N_C(G_{01}) = N^0_C(G_{01}) \leq N^0_G(G_{01}) = N^0_{C_G(\rho_0)}(G_{01}) = N^0_H(G_{01}) = N_H(G_{01}),
\]

and therefore \(N_C(G_{01}) = N_H(G_{01}) \). Hence \(N^0_G(G_{01}) = N_C(G_{01}) \leq C = N_G(G_0) \).

Let us now show that \(G_0 \neq R(3)' \).

Lemma 11. If \(R(q) \) has a representation as a string \(C \)-group of rank 4 with \(G_0 \cong R(3)' \), then \(q = 27 \).
Proof. Suppose $G := R(q)$ is represented as a string C-group of rank 4 with generators ρ_0, \ldots, ρ_3. Then we know that $G_{01} \leq G_1 \leq C_G(\rho_0) \cong C_2 \times \text{PSL}_2(q)$.

The abstract regular polyhedra with automorphism group $R(3)' = \text{PSL}_2(8)$ are all known and are available, for instance, in [21]. There are seven examples, up to isomorphism, but not all can occur in the present context. In fact, the dihedral subgroup G_{01} of G_0 must also lie $C_G(\rho_0) \cong C_2 \times \text{PSL}_2(q)$ and hence cannot be a subgroup D_{18}. It follows that the polyhedron associated with G_0 (that is, the vertex-figure of the polytope for G) must have Schläfli symbol $\{3, 7\}, \{7, 3\}, \{7, 7\}, \{7, 9\}$ or $\{9, 7\}$. We can further rule out the possibility that $G_{01} \cong D_6$ or D_{18} by Lemmas 5 and 4 giving that $C_2 \times \text{PSL}_2(q)$ has no dihedral subgroup of order 6 or 18. Hence $G_{01} \cong D_{14}$.

The fixed point set of every involution in G is a block of the corresponding Steiner system $S(2, q + 1, q^3 + 1)$, and vice versa, every block is the fixed point set of a unique involution. Hence, two involutions with two common fixed points must coincide, since their blocks of fixed points must coincide. Suppose B_0 denotes the block of fixed points of ρ_0. As ρ_2 and ρ_3 centralize ρ_0, they stabilize B_0 globally. However, ρ_2 cannot have a fixed point among the $q + 1$ points in B_0, since otherwise two points of B_0 would have to be fixed by ρ_2 since $q + 1$ is even. Thus ρ_2, and similarly ρ_3, does not fix any point in B_0. Moreover, in order for $G_{01} \cong D_{14}$ to lie in a subgroup of G of type $C_2 \times \text{PSL}_2(q)$, we must have $7 \mid q + 1$ or $7 \mid q - 1$. Using $q = 3^{2e+1}$ and working modulo 7 the latter possibility is easily seen to be impossible. On the other hand, the former possibility occurs precisely when $e \equiv 1 \text{ mod } 3$, and then $3 \mid 2e + 1$. Hence G must have subgroups isomorphic to $R(27) = R(3^3)$.

We claim that G itself is isomorphic to $R(27)$, that is, $q = 27$. Now the subgroup $G_0 \cong R(3)'$ lies in a unique subgroup $K \cong R(3)$ of G, namely its normalizer $N_G(G_0)$. This subgroup K, in turn, lies in a unique subgroup $H \cong R(27)$ of G. All Ree subgroups of G are self-normalized in G, so in particular K and H are self-normalized. Relative to the Ree subgroup H, the normalizer $N_H(C_7)$ in H of the cyclic subgroup C_7 of G_{01} is a maximal subgroup of type $N_H(A_1) = (C_2^2 \times D_{14}) : C_3$ in H, which also contains G_{01} (see Section 2.2 or [3, p. 123]). Note here that this subgroup C_7 is a 7-Sylow subgroup of both K and H, and is normalized by G_0. Thus, $N_H(C_7) = (C_2^2 \times D_{14}) : C_3$. We claim that $N_H(G_{01}) = N_H(C_7)$. Clearly, $N_H(G_{01}) \leq N_H(C_7)$. For the opposite inclusion observe that $(C_2^2 \times D_{14}) : C_3$ has four subgroups isomorphic to D_{14}, including G_{01}. The subgroup G_{01} is normalized by the C_3-factor, and the three others are permuted under conjugation by C_3. Hence, among these four subgroups only G_{01} is normal and can be thought of as the subgroup D_{14} occurring in the factorization of the semi-direct product. It follows that the subgroups C_2^2 and C_3 normalize G_{01}. Thus

$$N_H(G_{01}) = N_H(C_7) = (C_2^2 \times D_{14}) : C_3.$$
by the upper box. There are also two numbers on each edge. The number at the top gives the number of subgroups in the conjugacy class for the lower box that are contained in a given subgroup in the conjugacy class for the upper box. The number at the bottom similarly is the number of subgroups in the conjugacy class for the upper box that contain a given subgroup in the conjugacy class for the lower box. If we know the lengths of the conjugacy classes for the upper box and lower box, then knowing one of these two numbers on the connecting edge gives us the other. For instance, in Figure 1 if we know that there are 36 (conjugate) subgroups D_{14} in a given subgroup $R(3)'$, then there are

$$\frac{|G|}{|R(3)'|} \cdot \frac{36}{|G|_{2^2 \cdot 3 \cdot 14}} = 4$$

(conjugate) subgroups $R(3)'$ containing a given subgroup D_{14}.

Returning to our line of argument, Figure 1 tells us that $G_0 \cong R(3)'$ is in a unique subgroup isomorphic to $R(27)$, namely H (because of the lower 1’s on the edges joining the boxes). It also shows that G_{01} is contained in a unique subgroup $(C_2^2 \times D_{14}) : C_3$, which, in turn, is contained in a unique $R(27)$, namely H. As we saw above, this subgroup $(C_2^2 \times D_{14}) : C_3$ is necessarily the normalizer $N_H(G_{01})$ of G_{01} in H. Moreover, ρ_0 has to lie in this unique conjugate $(C_2^2 \times D_{14}) : C_3$, which itself is a subgroup of H, and therefore $\langle \rho_0, G_0 \rangle \leq H$. This holds because $N_G(G_{01}) = N_H(G_{01})$. That these normalizers coincide can be seen as follows. Clearly, $N_H(G_{01}) \leq N_G(G_{01})$. Now for the opposite inclusion observe that for $g \in N_G(G_{01})$ we have $G_{01} = gG_{01}g^{-1} \leq gN_H(G_{01})g^{-1}$ and (trivially) $G_{01} \leq N_H(G_{01})$. But then Figure 1 shows that a subgroup D_{14} of H must lie in a unique conjugate of $(C_2^2 \times D_{14}) : C_3 = N_H(G_{01})$, so necessarily $gN_H(G_{01})g^{-1} = N_H(G_{01})$. Similarly, since $N_H(G_{01}) \leq H$ and hence $N_H(G_{01}) = gN_H(G_{01})g^{-1} \leq gHg^{-1}$, Figure 1 (at box $R(27)$) gives $gHg^{-1} = H$, so $g \in H$ since H is self-normalized. Thus $G = \langle \rho_0, G_0 \rangle = H \cong R(27)$. \hfill \Box

Figure 1. A sublattice of the subgroup lattice of $R(q)$
Lemma 12. The group $R(27)$ cannot be represented as a string C-group of rank 4.

Proof. Let $G \cong R(27)$. By the previous lemmas we may assume that $G_0 \cong G_3 \cong \text{PSL}_2(8)$. In all other cases we know that G cannot be represented as a rank 4 string C-group. Moreover, from the proof of the previous lemma we already know that G all other cases we know that is also a unique conjugacy class of subgroups D. As there is a unique conjugacy class of subgroups D_3 in $R(27)$, and there is also a unique conjugacy class of subgroups D_14 in $R(3)'$, the choice of ρ_2, ρ_3 is therefore unique up to conjugacy in $R(27)$. Once ρ_2, ρ_3 have been chosen, there are three candidates for ρ_0, namely the elements of the subgroup C_3^2 that centralizes D_14, and these are equivalent under conjugacy by C_3. Hence there is a unique choice for $\{\rho_0, \rho_2, \rho_3\}$ up to conjugacy. By duality we also know that $G_3 \cong R(3)'$ and $G_3 \cong D_14$, and that the pair (G_3, G_3) is related to (G_0, G_0) by conjugacy in $R(27)$. Hence there must exist an element $g \in R(27)$ such that

- $\rho_0^g = \rho_3, \rho_2^g = \rho_1, \rho_3^g = \rho_0$, or
- $\rho_0^g = \rho_3, \rho_2^g = \rho_0, \rho_3^g = \rho_1$.

The second case can be reduced to the first, as the centraliser of ρ_0 contains an element that swaps ρ_2 and ρ_3 (any two involutions in D_14 are conjugate). Hence, we may assume without loss of generality that g swaps ρ_0 and ρ_3. In particular, $\langle \rho_0, \rho_3 \rangle$ is an elementary abelian group of order 4 normalized by g. All such subgroups are known to be conjugate and have as normalizer a group $(C_3^2 \times D_14) : C_3$. In this group, there is no element that will swap ρ_0 and ρ_3 under conjugation. All elements that will conjugate ρ_0 to ρ_3 will necessarily conjugate ρ_3 to $\rho_0\rho_3$. Hence we have a contradiction. \hfill \square

We therefore know that if a string C-group representation of rank 4 exists for $R(q)$, both G_0 and G_3 must be subgroups of Ree type. Thus from now on we can assume $G_0 \cong R(q')$ with $q' > 3$.

In a Ree group, the dihedral subgroups D_{2n} are such that n must divide one of

$9, q - 1, q + 1, \alpha_q := q + 1 - 3^{e+1}, \beta_q := q + 1 + 3^{e+1}$.

Note that

$\alpha_q \beta_q = q^2 - q + 1$,

so in particular if H is a Ree subgroup $R(q')$ of G then similarly $\alpha_{q'} \beta_{q'} = q'^2 - q' + 1$.

Lemma 13. Let $G \cong R(q)$ with $q = 3^{2e+1}$ and $\langle \rho_0, \rho_1, \rho_2, \rho_3 \rangle$ be a string C-group representation of rank 4 of G. Then

1. G_{01} is a dihedral subgroup D_{2d} with d a divisor of $q + 1$ and of either α_q or β_q, for some q' such that $q = q'^m$ with m odd (where q' is determined by $G_0 = R(q')$);
2. $m = 3$, and G_0 and G_3 are conjugate Ree subgroups $R(q')$ with $q = q'^3$;
3. G_{03} is a dihedral subgroup D_{2t} with t a divisor of $\alpha_{q'}$ or $\beta_{q'}$.

Proof. (1) By Lemmas 10, 11, and 12 we may assume that G_0 is a simple Ree subgroup of G. Let G_0 be a Ree subgroup $R(q')$, with $q' \neq 3$ such that $q'^m = q$ with m a positive odd integer and let $G_{01} \cong D_{2d}$. As $G_{01} \leq C_G(\rho_0)$ we have that $2d \mid q \pm 1$ by Lemma 5. In order to have involutions in $N_G(G_{01}) \backslash N_G(G_0)$, the only possibility is that $N_G(G_{01})$ (of order divisible by 4) lies in a maximal subgroup of type $N_G(A_1)$ but not in a maximal subgroup $N_G(C_{q'+1})$.

of G_0; for otherwise, the same techniques as in Lemma 10 show that there is no involution in $N_G(G_{01}) \setminus N_G(G_0)$. Hence $2d$ divides $q + 1$. Observe that $N_G(A_t) \cong (C_2^2 \times D_{q+1}) : C_3$ has exactly four subgroups D_{q+1} because of the subgroup C_3^2. These four subgroups are not all normalised by the C_3 because of the semi-direct product. Hence the C_3 must conjugate three of them and normalise the fourth one. Similarly, in $R(q')$, there are four subgroups $D_{q'+1}$ in each $N_{R(q')}(A_t')$ and it is obvious that $N_{R(q')}(D_{2d}) = N_{R(q)}(D_{2d})$ for every divisor d of $q' + 1$. Hence, in order to find some involutions in $N_{R(q)}$ we can conclude that d is a divisor of either $\alpha_{q'}$ or $\beta_{q'}$ in order for D_{2d} to be a dihedral subgroup of $R(q')$.

(2) Observe that $q'^3 + 1 = (q' + 1)\alpha_{q'}\beta_{q'}$ divides $q'^3 + 1$. Let us first show that $2e + 1$ must be divisible by 3 in order for d to satisfy (1). Suppose $(3, 2e + 1) = 1$. Then $q' = 3^{2f+1}$ with $2e + 1 = m(2f + 1)$ and $(3, m) = 1$. Let p be an odd prime dividing $(\alpha_{q'} \beta_{q'}, q + 1)$ but not dividing $q' + 1$. Then p divides $(q'^3 + 1, q + 1)$ and hence p divides

$$(q'^6 - 1, q'^{2m} - 1) = q'^{2(3m)} - 1 = q'^2 - 1 = (q' + 1)(q' - 1)$$

and hence also $q' - 1$. As p divides $q + 1$, and $q' - 1$ divides $q - 1$, and since $(q - 1, q + 1) = 2$, we have that $p \mid 2$, a contradiction. Hence m must be divisible by 3 and so does $2e + 1$. Suppose $m \neq 3$. Then $m = 3m'$ and given a Ree subgroup $R(q')$ of $R(q)$ with $q'^m = q$, there exists a Ree subgroup $R(q'^3)$ such that $R(q') < R(q'^3) < R(q)$. Using similar arguments as in the proof of Lemma 11, it is easy to show that, since $\alpha_{q'} \beta_{q'}$ divides $q'^3 + 1$, we must have $\langle \rho_0, \rho_1, \rho_2, \rho_3 \rangle = R(q'^3)$ and therefore $m = 3$.

Indeed, as we stated in (1), $N_{R(q'^3)}(D_{2d}) = N_{R(q)}(D_{2d})$ for every divisor d of $q'^3 + 1$. Hence $\rho_0 \in R(q'^3)$. This implies that $m = 3$ and $G_0 \cong R(q')$ with $q'^3 = q$. Dually, $G_3 \cong R(q')$. As all subgroups $R(q')$ are conjugate in $R(q)$, we have that G_0 and G_3 are conjugate.

(3) is due to the fact that $G_0 \cap G_3 = G_{03}$ and that, by (2), G_0 and G_3 are conjugate in G. Hence, $N_G(G_{03}) \setminus G_0$ has to be nonempty and G_{03} must not be contained in a subgroup H of G_0 such that $N_G(H) \geq N_G(G_{03})$, for if such a subgroup H exists, then $G_0 \cap G_3 \geq H$. If t divides 9 or one of $q' \pm 1$, this does not happen. Hence t divides one of $\alpha_{q'}$ or $\beta_{q'}$. \hfill \Box

Lemma 14. The small Ree groups have no string C-group representation of rank 4.

Proof. Suppose G is a Ree group that has a string C-group representation of rank 4. By Lemma 10 and part (2) of Lemma 13, we may assume that $G := R(q)$ where $q = q'^3$ with $q' = 3^m$ for an odd integer m. Moreover, G_0 and G_3 are conjugate simple Ree subgroups isomorphic to $R(q')$. By part (3) of Lemma 13, if $G_{03} = D_{2t}$ then t must be a divisor of either $\alpha_{q'}$ or $\beta_{q'}$, and since $q = q'^3$, we also have

$$q + 1 = (q' + 1)(q'^2 - q' + 1) = (q' + 1)\alpha_{q'}\beta_{q'}.$$

Thus t is also a divisor of $q + 1$. We claim that then $G_0 \cap G_3 > G_{03}$, which gives a contradiction to the intersection property. Indeed, since G_{03} lies in a subgroup $H := C_t : C_6$ of G_0, and the normaliser of G_{03} is not contained in G_0 (for otherwise, D_{2t} would have to lie in a unique subgroup $R(q')$, whereas already G_0 and G_3 give two examples of such subgroups, by the previous lemma), we have $N_G(G_{03}) \cong (E_4 \times D_{2t}) : C_3$. This group contains
H = C_6 ∼ D_{2t} : C_3 as a normal subgroup, and G_{03} is normal in H. We also have that
N_G(H) = N_G(G_{03}). But then, as G_{03} is normal in H, any subgroup R(q') containing G_{03} must contain H. In particular this applies to G_3. Thus G_0 ∩ G_3 ≥ H > G_{03}, and the intersection property fails.

3.4. String C-groups of rank 3. It remains to investigate the possibility of representing R(q) as a string C-group of rank 3. The following lemma gives an affirmative answer and completes the proof of Theorem 1.

Lemma 15. Let G = R(q), with q ≠ 3 an odd power of 3. Then there exists a triple of involutions S := \{ρ_0, ρ_1, ρ_2\} in G such that (G, S) is a string C-group.

Proof. Recall that the fixed point set of an involution in G is a block of the Steiner system S := S(2, q + 1, q^3 + 1). Pick two involutions ρ_0, ρ_1 from a maximal subgroup M of G of type N_G(A_3) such that ρ_0ρ_1 has order q + 1 + 3^{k+1}, and let B_0, B_1, respectively, denote their blocks of fixed points. Obviously, B_0 ∩ B_1 = ∅, for otherwise ⟨ρ_0, ρ_1⟩ would lie in the stabilizer of a point in B_0 ∩ B_1, which is not possible because of the order of ρ_0ρ_1. Recall here that the point stabilizers are maximal subgroups of the form N_G(A) = A : C_{q-1}, where A is a 3-Sylow subgroup of G. Now choose an involution ρ_2 in C_G(ρ_0) distinct from ρ_0 such that its block of fixed points B_2 meets B_1 in a point. Then B_1 ∩ B_2 must consist of a single point p (say), and B_0 ∩ B_2 = ∅ since the stabilizer of a point does not contain Klein 4-groups. Then ⟨ρ_1, ρ_2⟩ lies in the point stabilizer of p, and hence must a dihedral group D_{2n}, with n a power of 3. As ⟨ρ_0, ρ_1⟩ is a subgroup of index 3 in M, and ρ_0 does not belong to M, we see that ⟨ρ_0, ρ_1, ρ_2⟩ = G. Moreover, since the orders of ρ_0ρ_1 and ρ_1ρ_2 are coprime, the intersection property must hold as well. Thus (G, S), with S := \{ρ_0, ρ_1, ρ_2\}, is a string C-group of rank 3.

We have not attempted to enumerate or classify all representations of R(q) as a string C-group of rank 3.

4. Acknowledgements

This research was sponsored by a Marsden Grant (12-UOA-083) of the Royal Society of New Zealand.

REFERENCES

