Dietmar SpenglerMax Planck Society | MPG · Institute of Psychiatry
Dietmar Spengler
About
104
Publications
31,367
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,569
Citations
Introduction
Publications
Publications (104)
Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionis...
The high heritability of major psychiatric disorders suggests that disease risk is significantly encoded in the human genome. Patient-specific iPSCs capture a donor's genotype and enable to investigate genetic risk in disease-relevant cell types at varying stages of neural development in vitro. A body of iPSC studies from recent years has provided...
Chromodomain helicase domain 8 (CHD8) is one of the most frequently mutated and most penetrant genes in the autism spectrum disorder (ASD). Individuals with CHD8 mutations show leading symptoms of autism, macrocephaly, and facial dysmorphisms. The molecular and cellular mechanisms underpinning the early onset and development of these symptoms are s...
Chromodomain Helicase DNA-binding 8 (CHD8) is a high confidence risk factor for autism spectrum disorders (ASDs) and the genetic cause of a distinct neurodevelopmental syndrome with the core symptoms of autism, macrocephaly, and facial dysmorphism. The role of CHD8 is well-characterized at the structural, biochemical, and transcriptional level. By...
Progress in iPSC-based cellular systems provides new insights into human brain development and early neurodevelopmental deviations in psychiatric disorders. Among these, studies on schizophrenia (SCZ) take a prominent role owing to its high heritability and multifarious evidence that it evolves from a genetically induced vulnerability in brain deve...
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD’s role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the forma...
Early-life adversity is an important risk factor for major depressive disorder (MDD) and schizophrenia (SCZ) that interacts with genetic factors to confer disease risk through mechanisms that are still insufficiently understood. One downstream effect of early-life adversity is the activation of glucocorticoid receptor (GR)-dependent gene networks t...
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are part...
Childhood-onset schizophrenia (COS) is a rare psychiatric disorder characterized by earlier onset, more severe course, and poorer outcome relative to adult-onset schizophrenia (AOS). Even though, clinical, neuroimaging, and genetic studies support that COS is continuous to AOS. Early neurodevelopmental deviations in COS are thought to be significan...
Schizophrenia (SCZ) is a devastating mental disorder that is characterized by distortions in thinking, perception, emotion, language, sense of self, and behavior. Epidemiological evidence suggests that subtle perturbations in early neurodevelopment increase later susceptibility for disease, which typically manifests in adolescence to early adulthoo...
Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for invest...
Polycomb Group (PcG) proteins are best-known for maintaining repressive or active chromatin states that are passed on across multiple cell divisions, and thus sustain long-term memory of gene expression. PcG proteins engage different, partly gene- and/or stage-specific, mechanisms to mediate spatiotemporal gene expression during central nervous sys...
Brain development is guided by the interactions between the genetic blueprint and the environment. Epigenetic mechanisms, especially DNA methylation, can mediate these interactions and may also trigger long-lasting adaptations in developmental programs that increase the risk of major depressive disorders (MDD) and schizophrenia (SCZ). Early life ad...
Alzheimer’s disease (AD) is a fatal neurodegenerative disease which is on the rise worldwide. Despite a wealth of information, genetic factors contributing to the emergence of AD still remain incompletely understood. Sporadic AD is polygenetic in nature and is associated with various environmental risks. Epigenetic mechanisms are well-recognized in...
Early life adversity (ELA) frequently associates with maternal depression, anxiety, or trauma during pregnancy and is an important risk factor for the development of psychiatric disease. All of these maternal states manifest deregulation of the hypothalamic-pituitary-adrenal (HPA) axis and can elicit epigenetic changes that are lastingly inscribed...
Chronic stress is a major risk factor for depression. Interestingly, not all individuals develop psychopathology after chronic stress exposure. In contrast to the prevailing view that stress effects are cumulative and increase stress vulnerability throughout life, the match/mismatch hypothesis of psychiatric disorders. The match/mismatch hypothesis...
Early brain development is highly plastic due to rapid changes in cell numbers and neural connectivity that together allow the integration of a broad scope of intrinsic and environmental cues important to normal function and the risk for future disease. While cellular mechanisms are well-known for their role in neuronal plasticity, molecular epigen...
Genome-wide association studies (GWAS) have remarkably advanced insight into the genetic basis of schizophrenia (SCZ). Still, most of the functional variance in disease risk remains unexplained. Hence, there is a growing need to map genetic variability-to-genes-to-functions for understanding the pathophysiology of SCZ and the development of better...
The field of neuroendocrinology has extended from the initial interest in the hypothalamic control of pituitary secretion to embrace multiple reciprocal interactions between the central nervous system (CNS) and endocrine systems in the coordination of homeostasis and various physiological responses from adaptation to disease. Most recently, epigene...
Recent advances in the understanding of the multilayered biology of mammalian genomes have revived interest in the role of epigenetic variation. Common genetic variations at transcription factor binding sites are the primary source of allele-specific differences in nucleosome occupancy, chromatin accessibility, histone modifications, regulatory ele...
Transient neonatal diabetes mellitus 1 (TNDM1) is a rare genetic disorder representing with severe neonatal hyperglycaemia followed by remission within one and a half year and adolescent relapse with type 2 diabetes in half of the patients. Genetic defects in TNDM1 comprise uniparental isodisomy of chromosome 6, duplication of the minimal TNDM1 loc...
Epigenetic mechanisms encode information above and beyond DNA sequence and play a critical role in brain development and the long-lived effects of environmental cues on the pre- and postnatal brain. Switch-like, rather than graded changes, illustrate par excellence how epigenetic events perpetuate altered activity states in the absence of the initi...
Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted...
Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a...
Mutations in the X-linked gene MECP2, the founding member of a family of proteins recognizing and binding to methylated DNA, are the genetic cause of a devastating neurodevelopmental disorder in humans, called Rett syndrome. Available evidence suggests that MECP2 protein has a critical role in activity-dependent neuronal plasticity and transcriptio...
Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure ste...
Early-life stress (ELS) increases the vulnerability thresholds for stress-related diseases such as major depression and anxiety by inducing alterations in the structure and function of neural circuits and endocrine pathways. We previously demonstrated the contribution of epigenetic mechanisms to the long-term programming of the hypothalamo-pituitar...
Early-life stress (ELS) in mice causes sustained hypomethylation at the downstream Avp enhancer, subsequent overexpression of hypothalamic Avp and increased stress responsivity. The sequence of events leading to Avp enhancer methylation is presently unknown. Here, we used an embryonic stem cell-derived model of hypothalamic-like differentiation tog...
Imprinted genes play a critical role in brain development and mental health, although the underlying molecular and cellular
mechanisms remain incompletely understood. The family of basic helix-loop-helix (bHLH) proteins directs the proliferation,
differentiation, and specification of distinct neuronal progenitor populations. Here, we identified the...
Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders, and posttraumatic stress disorder (PTSD). A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD...
Cell-fate decisions and differentiation of embryonic and adult neural stem cells (NSC) are tightly controlled by lineage-restricted and temporal factors that interact with cell-intrinsic programs and extracellular signals through multiple regulatory loops. Imprinted genes are important players in neurodevelopment and mental health although their mo...
To consider the evidence that human and animal behaviors are epigenetically programmed by lifetime experiences.
Extensive PubMed searches were carried out to gain a broad view of the topic, in particular from the perspective of human psychopathologies such as mood and anxiety disorders. The selected literature cited is complemented by previously un...
Toxischer Stress kann lebenslange Spuren im Gehirn hinterlassen, die das Risiko fur Angst und Depressionen sowie fur Herz-Kreislauf-Krankheiten erhohen. Vor allem in kritischen Zeitfenstern wahrend der pra- und neonatalen Entwicklung reagiert der Organismus sensibel auf Stress. Er fuhrt zur anhaltenden Hyperaktivitat der zentralen Stressachse, char...
The development of chromatin immunoprecipitation assays (ChIP) as a tool to examine the interactions between nuclear proteins and DNA has enhanced essentially our understanding of the dynamic association of transcription factors and chromatin modifiers with target DNA sequences. Still in vivo ChIP experiments of the central nervous system continue...
Social stress is a major factor contributing to early-life adversity that has taken on an epidemic scale. Early social stress leads to long-lasting changes in behavior, cognition, mood and neuroendocrine responses predisposing to or sheltering from stress-related diseases later in life. Epigenetic mechanisms are thought to mediate the effects of ea...
Exposure to diet, drugs and early life adversity during sensitive windows of life 1,2 can lead to lasting changes in gene expression that contribute to the display of physiological and behavioural phenotypes. Such environmental programming is likely to increase the susceptibility to metabolic, cardiovascular and mental diseases 3,4.
DNA methylation...
The foundations of brain architecture are established early in life through a continuous series of dynamic interactions in which environmental conditions and personal experiences have a significant impact on how genetic predispositions are expressed. New scientific research shows that early social experiences can actually influence how genes are ex...
The biallelic expression of the imprinted gene ZAC1/PLAGL1 underlies ∼60% of all cases of transient neonatal diabetes mellitus (TNDM) that present with low perinatal insulin secretion.
Molecular targets of ZAC1 misexpression in pancreatic β cells are unknown. Here, we identified the guanine nucleotide exchange
factor Rasgrf1 as a direct Zac1/Plagl1...
DNA methylation and chromatin modifications regulate gene expression and contribute to changes in brain transcriptomes underlying neurodevelopmental and psychiatric disorders. Clinical genetics and preclinical animal models highlight the crucial importance of the correct establishment of epigenetic marks during sensitive windows of development for...
Epigenetic modifications such as DNA methylation play an important role for gene expression and are regulated by developmental and environmental signals. DNA methylation typically occurs in a highly tissue- and cell-specific manner. This raises a severe challenge when studying discrete, small regions of the brain where cellular heterogeneity is hig...
Stress during early life can impact the developing brain and increase vulnerability to mood disorders later in life. Here, we argue that epigenetic mechanisms can mediate the gene-environment dialogue in early life and give rise to persistent epigenetic programming of adult physiology eventually resulting in disease. Early life stress in mice leads...
Alternative splicing serves to increase biological diversity and adaptation. Many genes, including the glucocorticoid receptor (GR), contain multiple 5'-untranslated exons in their promoter regions that can give rise to various mRNA isoforms encoding the same protein. To date, information on the mouse GR promoter remains sparse. Here, we extensivel...
Comprehensive clinical studies show that adverse conditions in early life can severely impact the developing brain and increase vulnerability to mood disorders later in life. During early postnatal life the brain exhibits high plasticity which allows environmental signals to alter the trajectories of rapidly developing circuits. Adversity in early...
Sexual differentiation of the brain takes place during a perinatal-sensitive time window as a result of gonadal hormone-induced activational and organizational effects on neuronal substrates. Increasing evidence suggests that epigenetic mechanisms can contribute to the establishment and maintenance of some aspects of these processes, and that these...
Early-life stress induces persistent memory traces on our genes and programs the life-long risk for depression. Epigenetic marking of the arginine vasopressin (AVP) gene by early-life stress in mice underpins sustained expression and increased hypothalamic-pituitary-adrenal axis activity, triggering endocrine and behavioral alterations that are fre...
The zinc-finger protein Zac1 has a role as transcription factor and coregulator and plays an important role in pituitary development, maturation and tumorigenesis. Zac1 target genes control cell proliferation and hormone synthesis. While Zac1 is highly expressed in all hormone-producing cells of the pituitary, loss of expression frequently occurs i...
Early-life stress induces persistent memory traces on our genes and programs the life-long risk for depression. Epigenetic marking of the arginine vasopressin (AVP) gene by early-life stress in mice underpins sustained expression and increased hypothalamic-pituitary-adrenal axis activity, triggering endocrine and behavioral alterations that are fre...
Aging is arguably the most familiar yet least-well understood aspect of human biology. The role of epigenetics in aging and age-related diseases has gained interest given recent advances in the understanding of how epigenetic mechanisms mediate the interactions between the environment and the genetic blueprint. While current concepts generally view...
Recent studies of the nematode dauer state provide new insights into epigenetic processes that underlie cellular memory.
Adverse early life events can induce long-lasting changes in physiology and behavior. We found that early-life stress (ELS) in mice caused enduring hypersecretion of corticosterone and alterations in passive stress coping and memory. This phenotype was accompanied by a persistent increase in arginine vasopressin (AVP) expression in neurons of the h...
ZAC1 (zinc finger protein regulating apoptosis and cell cycle arrest) is a member of the new subfamily of zinc-finger transcription factors, designated as PLAG (pleomorphic adenoma gene) family. The ZAC1 gene is maternally imprinted and is linked to developmental disorders such as growth retardation and transient neonatal diabetes mellitus. We want...
To investigate neurobiological correlates of trait anxiety, CD1 mice were selectively bred for extremes in anxiety-related behavior, with high (HAB) and low (LAB) anxiety-related behavior mice additionally differing in behavioral tests reflecting depression-like behavior.
In this study, microarray analysis, in situ hybridization, quantitative real-...
The generally accepted paradigm of transcription by regulated recruitment defines sequence-specific transcription factors
and coactivators as separate categories that are distinguished by their abilities to bind DNA autonomously. The C2H2 zinc finger protein Zac1, with an established role in canonical DNA binding, also acts as a coactivator. Commen...
Two animal models of trait anxiety, HAB/LAB rats and mice, are described, representing inborn extremes in anxiety-related behavior. The comprehensive phenotypical characterization included basal behavioral features, stress-coping strategies and neuroendocrine responses upon stressor exposure with HAB animals being hyper-anxious, preferring passive...
Zac is a C2H2 zinc finger protein, which regulates apoptosis and cell cycle arrest through DNA binding and transactivation. During tumorigenesis and in response to mitogenic activation, Zac gene expression is down-regulated in a methylation-sensitive manner. As yet, no target genes have been identified that could explain the potent antiproliferativ...
Zac is a C2H2 zinc finger protein that regulates apoptosis and cell cycle arrest through DNA binding and transactivation. The coactivator
proteins p300/CBP enhance transactivation through their histone acetyltransferase (HAT) activity by modulating chromatin structure.
Here, we show that p300 increases Zac transactivation in a strictly HAT-dependen...
Two inbred rat lines have been developed that show either high (HAB) or low (LAB) anxiety-related behavior. The behavioral phenotype correlates with arginine vasopressin (AVP) expression at the level of the hypothalamic paraventricular nucleus (PVN), but not supraoptic nucleus, with HAB animals overexpressing the neuropeptide in both magnocellular...
Glucocorticoid hormones influence manifold neuronal processes including learning, memory, and emotion via the glucocorticoid receptor (GR). Catecholamines further modulate these functions, although the underlying molecular mechanisms are poorly understood. Here, we show that epinephrine and norepinephrine potentiate ligand-dependent GR transactivat...
ZAC encodes a zinc finger protein with antiproliferative activity, is maternally imprinted and is a candidate for the tumor suppressor gene on 6q24. ZAC expression is frequently lost in breast and ovary tumor-derived cell lines and down-regulated in breast primary tumors. In this report, we describe ZACDelta2, an alternatively spliced variant of ZA...
Glucocorticoid hormones influence manifold neu- ronal processes including learning, memory, and emotion via the glucocorticoid receptor (GR). Cat- echolamines further modulate these functions, al- though the underlying molecular mechanisms are poorly understood. Here, we show that epineph- rine and norepinephrine potentiate ligand-depen- dent GR tr...