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1. Abstract 

In psychological research sometimes non-parametric procedures are in use in cases, 
where the corresponding parametric procedure is preferable. This is mainly due to the fact 
that we pay too much attention to the possible violation of the normality assumption which 
is needed to derive the exact distribution of the statistic used in the parametric approach. 

An example is the t-test and its non-parametric counterpart, the Wilcoxon (Mann-
Whitney) test.  The Wilcoxon test compares the two distributions and may lead to signifi-
cance even if the means are equal due to the fact that higher moments in the two populations 
differ. On the other hand the t-test is so robust against non-normality that there is nearly no 
need to use the Wilcoxon test. In this paper results of a systematic research of the robustness 
of statistical procedures against non-normality are presented. These results have been ob-
tained in a research group in Dummerstorf (near Rostock) some years ago and have not been 
published systematically until now. Most of the results are based on extensive simulation ex-
periments with 10 000 runs each. But there are also some exact mathematically derived results 
for very extreme deviations from normality (two- and three-point distributions). Generally the 
results are such that in most practical cases the parametric approach for inferences about means 
is so robust that it can be recommended in nearly all applications. 
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2. Definition of Robustness against Non-Normality 
 
In Herrendörfer, G. (ed.) (1980) and Bock (1982) several robustness concepts like those 

of Box and Tiao (1964), Huber (1964) and Zielinsky (1977) have been discussed. The con-
cept of ε–robustness was introduced which was used in the robustness research presented in 
this paper. This concept is here introduced for the construction of confidence intervals in a 
simplified way. 

 
 

Definition 1 
 
Let 1

ad  3 be a confidence estimation based on an experimental design Vn  of size n con-
cerning a parameter θ of a class G of distributions with (nominal) confidence coefficient 1 - 
α  (0<α<1) in G. For an element h ∈ H ⊃ G of a class H of distributions which contains G 
we denote by 1–α( Vn, h) the actual confidence coefficient  of dα . Then we call dα ε–robust 
in H if α  and α( Vn, h) deviate from each other by less than ε for any element in H (some-
times we also say by less than 100ε% and than speak about 100ε% - robustness). 

If we are only interested in not too large α( Vn, h)-values (conservative procedures are 
not considered as non-robust) only, we call dα  ε*–robust in H if α( Vn, h) does not exceed α 
by more than  ε*. 

In an analogue way the ε– and ε*–robustness of tests or selection procedures can be de-
fined. Due to the fact that a test for testing a null hypothesis 0 0:H θ θ= can be performed 
by accepting 0H if θ0 is inside the confidence interval and reject it otherwise, definition 1 
includes the robustness of a test concerning the significance level. 

In this paper we use for G the family of univariate normal 2( ( , ) )N µ σ −  distributions 
and for H the Fleishman system of distributions and/or truncated normal distributions. 

 
 

Definition 2 
 
A distribution belongs to the Fleishman system (Fleishman, 1978) if its first four mo-

ments exist and  if it is the distribution of the transform 
 

 2 3y a bx cx d x= + + +  (1.1) 

 
where x  is a standard normal random variable (with mean 0 and variance 1). 

By a proper choice of the coefficients a, b, c and d the random variable y  will have any 
quadruple of first four moments 2

1 2( , , , )µ σ γ γ . By 1γ  and 2γ  we denote the skewness 
(standardized third moment) and the kurtosis (standardized fourth moment) of any distribu-
tion, respectively. For instance any normal distribution (ie. any element of G)  with mean µ 
and variance σ2 can be represented as a member of the Fleishman system by choosing a = µ, 
b = σ  and c = d = 0. This shows that we really have H ⊃ G as demanded in definition 1. 

 

                                                                                                                         
3 Random variables are underlined 
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Experimenters know that they nearly never really meet observation from normal distribu-
tions. Sometimes they know, that the underlying distribution is skew, truncated or differs in 
another way from being normal. In Herrendörfer, G. (ed.) (1980) 144 characters from ex-
periments in medicine, plant and animal breeding have been investigated. For each of the 
characters from a sample of size r the empirical skewness g1 and kurtosis g2 have been calcu-
lated. The values of r have been 64 for 2 characters, 128 for 11 characters, between 192 and 
438 for 38 characters and for all the other characters between 656 and 5466. This means that 
the point estimates for the skewness and the kurtosis in the most cases are not far from the 
unknown parameters  1γ  and 2γ  respectively.  

It is known (see Herrendörfer, G. (ed.) (1980), page 26) that all probability distributions 
(with existing fourth order moment) fulfil the inequality  

 

 2
2 1 2γ γ≥ −  (1.2) 

 
 
 

 

 
Figure 1:  

Values of empirical skewness g1 and kurtosis g2 of 144 characters in a (γ1,γ2)-plane, by ♦ the 
parameters (γ1,γ2) of  6 distributions  of the Fleishman system are denoted 
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Empirical distribution fulfil an analogue equation in the estimated skewness g1 and kur-
tosis g2 respectively 
 

 2
2 1 2g g≥ −  (1.3) 

 
The equality sign in (2) or (3) defines a parabola in the 1 2( , )γ γ – plane { 1 2( , )g g – 

plane}. 
In Figure 1 the position of the 1 2( , )g g –values calculated for the 144 characters in that 

parabola are shown. 
Therefore we selected seven 1 2( , )γ γ –values in that parabola for the robustness investi-

gations reported in this paper. The values together with the coefficient a, b, c and d of the 
elements in the Fleishman system for the case µ = 0 (what means a = - c) and  σ = 1 (what 
means b2 + 6bd + 2c2 + 15d2 = 1) are given in Table 1. they are marked in Figure 1 by  a♦. 

 
 

Table 1: 

1 2( , )γ γ –values and the corresponding coefficients in (2) 
 

No of dis-
tribution 1γ  2γ  c = -a b d 

1 0 0 0 1 0 
2 0 1.5 0 0.866993269415 0.042522484238 
3 0 3.75 0 0.748020807992 0.077872716101 
4 0 7 0 0.630446727840 0.110696742040 
5 1 1.5 0.163194276264 0.953076897706 0.006597369744 
6 1.5 3.75 0.221027621012 0.865882603523 0.027220699158 
7 2 7 0.260022598940 0.761585274860 0.053072273491 

 
 
The values of b, c and d in Table 1 are taken from Table A3 in Nürnberg (1982), some of 

them can be found already in Fleishman (1972). 
 
 

1. Simulation Experiments in Robustness Research 
 
In the simulation experiments (as also in the statistical analysis of experimental results) 

we mainly use linear statistical models with an error term. We investigate the behaviour of 
statistical procedures like confidence estimation, hypotheses testing and selection procedures 
which have been derived (and thus are exact) under the assumption of normal error terms. 
The question is: „What happens with the properties of these procedures if we replace the 
normal error by an error term following a Fleishman (or a truncated normal) distribution 
with non-zero 1γ  and 2γ ?“ 

There are only very few analytical results to answer this question for sample sizes 2 and 
3 which are useless for practical purposes. For very extreme (two- and three-point distribu-
tions) exact answers have been given by Herrendörfer (1980) and Herrendörfer and Rasch 
(1981). The results in our paper are based on simulation experiments. 
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By simulation we mean that we use random numbers to simulate the observations of an 
artificial experiment for a given underlying model. In the one-sample case we denote the size 
of the artificial experiment by n.  

We use the following example to demonstrate the basic ideas. 
 
 

Example 1 
 
A sample ( that is a vector of identically and independently distributed (abbr. i.i.d.) ran-

dom variables) of size n is drawn from an – distribution. A (realized) confidence interval is 
calculated from the realization of the random sample (the observations) if σ - as usually- is 
unknown by: 
 

 [ ( 1;1 ) ; ( 1;1 ) ]
2 2

s s
y t n y t n

n n

α α
− − − + − −  (1.4) 

 
where the sample mean y  is the point estimate of µ , the sample standard deviation s  is the 

point estimate of σ and ( 1;1 )
2

t n
α

− −  is the (1 )
2

α
−  quantile of the central t-distribution  

with n – 1 d.f.. The corresponding random interval (with random bounds as functions of the 

sample) covers the unknown µ with probability (1 )
2

a
−  as long as the sample really stems 

from a normal distribution. Amongst all intervals with such a property the interval (4) is 
optimal what means it has the smallest expected width.  Non-parametric intervals have a 
larger expected width if the normal assumption is true. In this case the linear model for the n 
elements 

i
y  of the random sample has the simple form 

 
 , 1,...,i iy µ e i n= + =  (1.5) 

 
The experimental design Vn in (1) is simply given by the sample size n (there is no struc-

ture in the experiment). The robustness against truncation (occurring in any selecting process 
like in schools or in agricultural artificial selection) of normal distributions of this confi-
dence estimation (and the corresponding test) is investigated in simulation experiment 1 
below. 

We use besides the t-quantiles other abbreviations (for quantiles) as given in the follow-
ing Table.  
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Table 2: 
Abbreviations used in this paper 

 
Term  Abbreviation 
Degrees of freedom d.f. 
Identically and independently distributed i.i.d. 
P-quantile (percentile) of the N(0;1)distribution u(P) 
P-quantile (percentile) of the t-distribution with f  d.f. t(f; P) 
P-quantile (percentile) of the F-distribution with d.f. 1 2( , ; )F f f P  

P-quantile (percentile) of the 2χ -distribution with f  d.f. CQ(f; P) 

 
 
 

3.1 Pseudo-Random Number Generators 
 
Because we cannot generate random numbers by means of a  computer program, in 

simulation experiments so-called pseudo-random numbers (PRN) are used. In Herrendörfer, 
G. (ed.) (1980)  and by FEIGE et. al. (1985) 18 generators of PRN uniformely distributed in 
(0, 1) have been tested against several properties which may negatively influence the simula-
tion results (like periodicity or correlation).  

Finally we used a generator which was developed by Teuscher  (1979) according to an 
idea of Mac Laren and Marsaglia (1965). This generator is a combination of the following 
two generators: 

 

 10
12 mod1049339k kx x −=  (1.6) 

 
and 

 
28

1 08323 mod 2 , 1i iy y y−= =  

 
Within the initialisation phase the values 1 128,...,x x  will be generated. In order to calcu-

late the random values , 1...,iZ i =  we calculate the index I  with 1 128I≤ ≤ , being the 

integer part of 211 / 2iy+ . Then we select Ix  from the x-values above and calculate 

/1049339i IZ x= . Within the vector 1 128( ,..., )x x  the value Ix  will be substituted by the 

next value of the kx -values, i.e. 128 ix + . 

The Z-values generated from (6) are PRN uniformly distributed in the interval (0,1). 
They have to be transformed into PRN with a standard normal distribution and then by (1) in 
PRN of the Fleishman system. FEIGE et. al. (1985) tested 5 different transformations of the 
Z- values into standard normal PRN u and proposed the following for further use. At first we 
define for 0.5Z <  

 

2 lnz Z= −  and c = 1 
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and for 0.5Z ≥  
 

( )2ln 1z Z= − −  and c = -1 

 
Then with coefficients given by Odeh and Evans (1974) (see also Feige et. al., 1985, 

page 31) calculate 
 

[
( ){ }
( ){ } ]4 3 2 1 0

4 3 2 1 0

p z p z p z p z p
u c z

q z q z q z q z q

 ⋅ + + + + = ⋅ +
 ⋅ + + + + 

. 

 
These N(0;1)-PRN have been used directly (after truncation) in simulation experiment 1 

and have been transformed by (1) into Fleishman variates for the other experiments. 
 
 

3.2 Planning the Size and the Scope  of the Simulation Experiments 
 
A simulation experiment has to be planned in the same way as experiments in psychol-

ogy (see Rasch, 2003) or other fields. The aim of the simulation experiments discussed in 
this papers is to evaluate probabilities as the significance level of a test or the confidence 
coefficient of an interval estimation or the probability of a correct selection in selection 
procedures. More specific are we interested to find out, whether under non-normality the 
nominal probability differs by more than an ε from the actual value. We restrict ourselves in 
the present paper on a significance level of α = 0.05, a confidence coefficient 1-α =0.95 and 
a probability of a correct selection β = 0.05. For ε* in definition 1 we choose 20% of α and 
this is 0.01. That means on the basis of the simulation of N samples of size n each we will 
test the pair of hypotheses (for selection problems α must be replaced by β) :   

 

0 : 0.05

: 0.05A

H

H

α
α

=

>
 

 
(if α is smaller than 0.05 we do not exceed the nominal significance level). 

To determine the number of simulated samples we proceed like an experimenter in life 
science planning a real life experiment. We follow the principle explained in paragraph 4.4 
in Rasch (2003) and fix the significance level of this test at α*=0.01 and the value of the 
power function at α + d = 0.05 + 0.006 = 0.056 at 0.85. To determine the number of simu-
lated samples we edit the constants above into the CADEMO module MEANS, branch 
„Comparing a probability with a constant” and receive the result 9894. Therefore 10 000 
runs were used in each of the simulation experiments  below. 

 
 

3.3 The Layout of the Simulation Experiments for several problems 
 
We report simulation experiments for the investigation of the robustness of tests, confi-

dence estimation and selection procedures. Each of the statistical inference methods was 



D. Rasch, V. Guiard 8 

perfomed 10 000 times for each case included in the research program. Then the number  R 
of negative results has been observed and used to calculate the observed error rate by α)  as 
an estimate of the actual risk α . The elements h of the Fleishman system are given in Table 
1. In paragraph 4 we report only the results for the nominal risk α = 0.05 but in Herrendör-
fer, G. (ed.) (1980), Guiard, V. (ed.) (1981), Rasch, D. und G. Herrendörfer (ed.) (1982), Rasch, 
D. (ed.) (1985), Rudolph, P.E. (ed.) (1985 a), and Guiard, V. und Rasch, D. (ed.) (1987) results 
for α = 0.01 and α = 0.1 are also given. The normal distribution was included on one hand to 
check the correctness of the programs. On the other hand – like in the investigation of as-
ymptotic tests – the results for the normal have been of interest too. 

We demonstrate this in the following example which is also used to show how more 
complicated cases than that in example 1 can be handled. 

 
 

Example 2 
 
Let us consider the non-linear regression model with unknown parameters α, β and γ. 

 

 ix
i iy e eγα β= + +           1,..., )i n=  (1.7) 

 
with i.i.d. random errors ie . Here Vn is given not only by the sample size n but by the alloca-
tion of the n x-values. We define a design with k different x-values kxxx ,...,, 21  which 
occur with the frequencies knnn ,...,, 21 , respectively, by 
 

 







=≥= ∑

=

nnk
n

x

n

x

n

x
V

k

j
j

k

k
n

12

2

1

1 ,3,
...

...
 (1.8) 

 
The distribution of the least squares estimators of the three parameters is unknown for fi-

nite samples even if the error terms are normally distributed. What is known is the asymp-
totic distribution on which statistical tests can be based (see RASCH, 1995).  

Let us now describe the simulation experiments whose results will be reported in para-
graph 4. The first 6 experiments deal with tests for means and variances. But the results are 
also useful for the construction of confidence intervals. Between a confidence interval with 
coefficient 1-α and a test with a significance level α a one-to-one correspondence exist. As 
long as the hypothesis value µ0 lies inside the interval, H0 is accepted and rejected otherwise. 
On the other hand, all accepted µ0 – values are inside the interval and all rejected outside. We 
report the tests here because they give additional information about the power (or the risk of 
the second kind). 
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Simulation Experiment 1 – One-sample tests for the mean 
 
This experiment has been planned and performed by TEUSCHER (1985).  

In this experiment three test have been compared to test the hypothesis H0 : µ = µ0 against: 
 

a) 0:AH µ µ+ > , 

b) 0:AH µ µ− <  and 

c) 0:AH µ µ≠ . 

 
with a sample of size n. 

If the variance 2σ of the assumed normal distribution is known, the u-test was used as 
follows: 

 
 

Test 1 
 
Calculate 0y -

u z  n
µ

σ
= =  and reject H0 : 

 
a) if  u > u(1-α), 
b) if u < - u(1-α), 

c) if 1
2

u u
α > − 

 
. 

 

For unknown 2σ two tests have been investigated: 
 
 

Test 2 
 
The one-sample t-test: 
 
Calculate 0y  

t  = 
s

n
µ−

 and reject H0 : 
 
a) if  t > t(n-1;1-α), 
b) if t <- t(n-1;1-α), 

c) if 1;1
2

t t n
α > − − 

 
. 

 
 

Test 3 
 
The modified Johnson-test based on JOHNSON N, J. (1978) 
Calculate with an estimate g1 of the skewness γ1: 
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( )21 1
0 02 46 3

J
g g n

t y y
ss n s n

µ µ
 

= − + + − 
 

 and reject H0 : 

 
a) if tJ> t(n-1;1-α), 
b) if tJ < - t(n-1; 1-α), 

c) if 1;1
2Jt t n
α > − − 

 
. 

 
This test corrects the test statistic by the empirical skewness g1. There is no correction for 

kurtosis. 
In this experiment the class H in definition 1 was not the Fleishman system but the sys-

tem of truncated normal distributions. If a standard normal distribution is truncated at v 
(lower truncation point) and w (upper truncation point) then the truncated distribution is 
skew if w v≠ −  and it has a non-zero kurtosis for most (v, w). 

Teuscher used the distributions 1-7 of Table 3 and sample sizes of n = 5, 10, 30 and 50. 
 
 

Table 3:  
Values of v and w and of the skewness and kurtosis of the simulated distributions 

 
No of distribution v w 

1γ  2γ  

1 -6 6 0 -0.06 
2 -2.2551 2.2551 0 -0.5 
3 -1.183 1.183 0 -1.0013 
4 -1 6 0.5918 0.0014 
5 -0.29 2.743 0.75 0 
6 -0.7041 2.2778 0.5 -0.5 
7 1 1.52513 1.3159 1.998 
8 0.5 3 1.0057 0.5915 
9 -1.5 3 0.348 -0.3481 
10 2.85 4.71 1.505 3.75 

 
 

Simulation Experiment 2 – one-sample sequential tests for the mean 
 
RASCH (1985a, b) investigated the behaviour of three sequential one – sample tests for 

non-normal situations. These tests are sequential tests analogue to those of experiment 1. 
The null hypothesis: 

 

0 0:H µ µ=  

was tested against: 

( )2 2 2
0:AH dµ µ σ− =  
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The test statistics t1, t2, and t3 of the three tests can be found in the reference, test 1 was 
based on the original WALD-test. 

For each of the tests with test statistic t (t1, t2, and t3) and fixed risk α of the first and β of 
the second kind, respectively, the decision rule was as follows: 

 
Accept H0 if 
 

1 2, lnt t b B≤ =  or if 3t B≤  

 
Reject H0 if 
 

1 2, lnt t a A≥ = or if 3t A≥  

 
and take a further observation otherwise. Here we put 
 

 
1

;
1

A B
β β

α α
−

= =
−

 (1.9) 

 
with (α, β) = (0.05; 0.1); (0.05, 0.2); (0.1; 0.2) and (0.1; 0.5); d =0.6; 1 and 1.6. 

In the simulation a normal distribution (no 1 in Table 4), the distributions 3-6 of Table 1 
(number 5-8 in Table 4) and 8-10 of Table 3 (2-4 in Table4) have been used. Further the 
average sample size of the 10 000 replication has been calculated for each situation. 

 
 

Table 4:  
Simulated distributions and their skewness and kurtosis 

 
No of distribution  Type of distribution γ1 γ2 

1 Normal 0 0 
2 Truncated normal 1.0057 0.5915 
3 Truncated normal 0.348 -0.3481 
4 Truncated normal 1.505 3.75 
5 Fleishman system 0 3.75 
6 Fleishman system 0 7 
7 Fleishman system 1 1.5 
8 Fleishman system 1.5 3.75 

 
 

Simulation Experiment 3 and Posten’s experiment – Tests for comparing two means  
 
Comparing the means of two distributions may be one of the most frequent applications 

of statistics in many research fields. We discuss here the independent samples case, this 
means, the samples of size n1  and n2 have been drawn independently from two populations 

with parameters 2
1 1 11 12, , ,µ σ γ γ  and 2

2 2 21 22, , ,µ σ γ γ , respectively. The dependent sam-

ples case as it occurs if the same persons are investigated before and after a treatment can be 
reduced to the one-sample case discussed in experiment 1. 
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Our purpose therefore  is to take two independent random samples (y 11, ..., y1n1
) and  

(y21, ..., y2n2
) of sizes n1 and n2 from the two populations in order to test the null hypothesis  

 
Ho : µ1 = µ2 
 

against one of the following one- or two-sided alternative hypotheses 
 
a) a)HA : µ1 > µ2 
b) b)HA : µ1 < µ2 
c) c)HA : µ1 ≠ µ2 
 

The following tests were investigated: 
 
 

Test 1 – two sample t-test: 
 

Calculate 
 

 
221

2
.22

1

2
.11

12

21

-n+n

)y-y( + )y-y(
 = s

i

n

=i
i

n

=i
p

∑∑
 (1.10) 

 
and the test statistic 
 

n+n

nn 
s

y-y
 = t

p 21

2121 . 

 
and reject H0  
 

in case a) if t > t(n1+n2–2; 1–α),  
in case b) if t<–t(n1+n2–2; 1–α) and 

in case c) if │t│ > t(n1+n2–2; 1–
2

α
), 

and otherwise accept H0. 
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Test 2 – Welch test 
 
WELCH (1947) proposed  the following test statistic: 
 

 

n

s + 
n

s

y - y
 = t W

2

2
2

1

2
1

21  (1.11) 

 

where 2
1s  and 2

2s  are the two sample variances.  Taking  f*  as 

 

 

( ) ( )

22 2
1 2

1 2

4 4
1 2

2 2
1 1 2 2

*

1 1

s s

n n
f

s s

n n n n

 
+  

 =

+
− −

 (1.12) 

 
reject H0: 
 

in case a), if t > t(f*; 1-α),  
in case b) if t < - t(f*; 1-α) and 
in case c), if │t│ > t(f*; 1- α/2)  
 

and accept it otherwise (the three cases correspond to those in test 1). 
 
 

Test 3 Wilcoxon (Mann-Whitney) test 
 
WILCOXON (1945) and later MANN and WHITNEY (1947) proposed a two-sample 

test based on the ranks of the observations. This test is not based on the normal assumption, 
in its exact form only two continuous distributions with all moments existing are assumed, 
we call it the Wilcoxon test. As it can be seen from the title of the second paper, this test is 
testing whether one of the underlying random variables is stochastically larger than the 
other. It can be used fo testing the equality of means under additional assumptions: The null 
hypothesis tested by the Wilcoxon test corresponds with our null hypothesis Ho : µ1 = µ2  if 
and only if all higher moments of the two populations are equal. Otherwise a rejection of the 
Wilcoxon hypothesis says few about the rejection of Ho : µ1 = µ2. The test runs as follows: 

Calculate: 
 

 
1 2

1 2

1 , if

0 , if

i j
ij

i j

y y
d

y y

>=  <
 (1.13) 

 
and then 



D. Rasch, V. Guiard 14 

 
( ) 1

1 1
12

1 1

1

2

jnn

ij
i j

n n
W W d

= =

+
= = + ∑∑ . (1.14) 

 
Reject Ho 

 
in case a), if W  > ( )1 2, ;1W n n α−  

in case b) if W < ( )1 2, ;W n n α  and 

in case c), if  either W < 1 2, ;
2

W n n
α 

 
 

or W > 1 2, ;1
2

W n n
α − 

 
  

 
and accept it otherwise (the three cases correspond to those in test 1). Extensive tables of the 
quantiles ( )1 2, ;W n n α  are given by VERDOOREN (1963). 

 
 

Test 4 – Range test of Lord 
 

LORD (1947) proposed the following test for small samples: 
Calculate the ranges (maximum minus minimum sample value) w1 and w2 of the two 

samples and then 
 

21

21

ww

yy
TLord +

−
=  

 
and reject Ho 

 

in case a), if LordT  > ( )1 2, ;1n nτ α−  

in case b) if LordT  < ( )1 2, ;n nτ α , and 

in case c), if  either LordT  < 1 2, ;
2

n n
ατ  

 
 

or LordT > 1 2, ;1
2

n n
ατ  − 

 
  

 
and accept it otherwise (the three cases correspond to those in test 1). Tables of the quantiles 

( )1 2, ;n n Pτ  are given in Lord’s paper. 

The following tests are due to TIKU (1980). 
 
 

Test 5 Tiku’s T-test 
 
A modified maximum likelihood test for censored samples described in TUCH- 

SCHERER (1985, page 161 as test T12). 
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Test 6 Tiku’s Tc-test 
 
A Welch type modification of test 5 described in TUCHSCHERER (1985, page 161 as 

test T13). 
The situation of experiment 3 concerning test 1 and test 3 was one of the few studies al-

ready investigated with a sufficient large number of runs before our robustness research 
started. These simulations were done by Posten (1985) using 40 000 runs for test 3 and100 
000 runs for test 1.  

Posten used the union of Pearson system distributions with the normal distributions as 
the class H of distributions in definition 1. He simulated distributions in the Pearson system 
in a grid of (γ1 , γ2) – values with γ1 = 0(0.4)2 and γ2 = - 1.6(0.4)4.8 and sample sizes of 
5(5)30 equal in both samples. 

Posten stated in his 1985 paper: 
„It would seem , therefore, that further studies of the effects of variance heterogeneity on 

the two tests would be needed over an extensive practical family of non-normal distributions 
before a single procedure might be specified as a somewhat general choice for the two-
sample location problem” 

This was the reason that Tuchscherer started a further experiment (Tuchscherer 1985, 
Tuchscherer and PiererI 1985). 

The authors of the second paper used the 7 Fleishman distributions of Table 1, first kind 
risks of 0.01; 0.05 and 0.1; the test 1-6 and 7 further tests and a ratio of the two variances of 
0.5; 1; and 1.5 and a sample size of 5 in population 1 and of 5 and 10 in population 2.  

In Guiard and Rasch (ed.) (1987) for the tests 1 – 4 further results can be found for trun-
cated normal distributions with (γ1 , γ2) – values: ( 1.0057; 0.5915); (0.348; -0.3488) and 
(1.505; 3.75). 

 
 

Simulation Experiment 4 – Sequential tests for comparing two means 
 
FRICK (1985) investigated the robustness of two tests against non-normality. Besides 

the normal distribution the Fleishman distributions in Table 4  and two truncated distribution 
have been used. In some of the simulations different distributions have been generated in the 
two samples. The null hypothesis. 

 

0 1 2:H µ µ=  

 
was tested against: 
 

( )2
1 20 2

2
:AH d

µ µ

σ

−
=   
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Test 1 – Hajnal’s test 
 
HAJNAL (1961) proposed the following procedure: 
 
Calculate  

 

( )
2 2 2

2

1 1
exp , ,

2 2 2 2

d f d t
Q H

K K f t

  − + =      +    

 

 
with 

 

2 2
1 2

1 2

1 1
, 2, pK f n n s

n n
= + = + − , 

 
from (10),  
 

1 2

P

y y
t

s K

−
=

⋅
 

 
and the confluent hyper-geometric function H. 

With A and B as in experiment 2, we accept H0 if Q<B and reject it, if Q>A. Otherwise 
experimentation continues. 

 
 

Test 2 – a Welch modification of test 1 
 
Reed and Frantz (1979) proposed to proceed as follows: 

In both populations observations could be taken with different probabilities  
 

( )1 2 1 2, ; 0 1; 1, 2 ; 1i iπ π π π π< < = + = .  

 
Replace Q in test 1 by: 
 

( )
2 2 2

2

1 1
exp , ,

2 2 2 2

W W W W
W

W W

d f d t
Q H

K K f t

  − + =      +    

 

 

with fW   = f* in (12), Wt  from (11), 
( )2

1 2
2 2

1 1 2 2

2
Wd

µ µ

π σ π σ

−
=

+
 and the other symbols as in test 1. 

The decision rules are as for test 1 with QW in place of Q. 
We announce here that Häusler (2003) investigated the robustness of the triangular  se-

quential test described by Schneider (1992) for some Fleishman distributions. 
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Simulation Experiment 5 - Comparing more than two means 
 
If we take independent samples from k normal distributions and in each distribution a 

model analogue to (5) can be assumed in the form  
 

2, 1,..., ; ( ) 0;var( )i i i i iy e i k E e eµ σ
− −

= + = = =  

 
for all i. 

Several hypothesis can be tested. If both risk of a pair-wise comparison of all the µi are 
defined pair-wise, the pair-wise t-test is the appropriate procedure. This means, for each 
comparison a two-sample t-test with a pooled variance estimate is applied. The tests of 
STEEL (1959) and NEMENY (1963) mentioned below can be applied in this case, too. 
Their properties are investigated for comparing means with a control. 

To test 
 

0 1 2: ... kH µ µ µ= = =  

 
against the alternative that at least two of the means are different, the F-test  (of a one-way 
ANOVA) usually is used. 

There are many multiple comparison procedures parametric and non-parametric ones for 
several situations and comparison-wise or experiment-wise significance levels  (see the post 
hoc tests in SPSS ANOVA branch). 

If the risk of the first or the second kind must be understood for one comparison only, 
this risk is called comparison-wise. If the risk must be understood for any comparison in the 
experiment, it is called experiment-wise. 

This is also true for comparing k –1 means with a standard or control where compar-
ing the k-1 non-standard procedures with each other is not the aim of the experiment. To test 
(if the standard mean is kµ ) the null hypotheses 

 

0 :ik i kH µ µ=  against :Aik i kH µ µ≠  

 
we use for a comparison-wise significance level the t-test for each comparison with a 
pooled variance estimate (equal variances assumed): 
 

 

( )
2

.
1 12

1

ink

ij i
i j

k

i
i

y y

s

n k

= =

=

−

=
−

∑∑

∑
 (1.15) 

 
A Wilcoxon type rank test of Steel (1959) rejects (based on samples of size n) for the 

significance level α 
 

H0ik
: µi = µk (i = 1, ...,  k - 1), if 
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( ) ( )*max ; 1, ,1 ,S ik ikT W W r k n α= > − −  1,..., 1,i k= − . 

 
For the bounds ( )1, ,1 ,r k n α− −  1,..., 1,i k= −  see Steel (1959). The Wik are defined 

analogue to (14) and the W*ik are the corresponding values for the inverse rank order. 
The non-parametric Kruskal – Wallis –test in the version of NEMENY (1963) is based 

on  
 

( )
1 1

1 1
, 1,..., 1

n n

KW kj ij
j j

T R R i k
n n= =

= − = −∑ ∑  

 
with the ranks ljR of the j-th element of the l-th sample in the overall ranking of all observa-

tions. 
 

H0ik
: µi = µk (i = 1, ..., k - 1) is rejected, if ( ) ( 1) 2

1; ;1
12KW

kn kn
T d k

n
α +

> − ∞ −  with 

the ( )1; ;1d k α− ∞ −  of Dunnett’s test below. 

For an experiment-wise significance level we use the Dunnett-test (see RASCH et.al., 
1999, page 133): 

Reject H0ik
: µi = µk (i = 1, ..., k - 1) with experiment-wise significance level αe, whenever 

 

 2 1 1
i. k.

i k
   >  +  .y y s

n n

 
−  

 
d*   

 

holds.  The value of d* is for α = 0.05, n1 = n2 = ... = np = n and nk = n 1k −  the value d(k-
1;f;0.95) from Table A5 and for nl = n (l = 1,..., k) it is d(k-1;f;0.95) from Table A6 in 
RASCH et.a.l., 1999.  

Again, s2 is a pooled estimator of σ2 with f d.f.. 
RUDOLPH (1985 a,b) compared in a simulation experiment the properties of the Dun-

nett test with those of the test of Steel and Kruskal and Wallis for k = 3, n = 6 and n = 21;  
α = 0.01 and α = 0.05 and the following variance structures: 
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Table 5:  
Variance structures of the simulation experiment 

 
Case 2

1σ  2
2σ  2

3σ  

1 0.5 1 1 
2 0.5 0.5 1 
3 0.5 2 1 
4 2 2 1 
5 1 2 1 
6 1 1 1 

 
 
The power was estimated as the relative frequency Pi of rejecting 0 3:ik iH µ µ= (i =1,2) 

if  
 

 3

2 2
1 2

i
i

nµ µ

σ σ

− ⋅
= ∆

+
 (1.16) 

 
 
Simulation Experiment 6 – Tests for comparing variances 

 
For comparing two variances we assume samples (y 11, ..., y1n1

) and (y21, ..., y2n2
) of size n1  

and n2 drawn independently from two populations with parameters 2
1 1 11 12, , ,µ σ γ γ  and 

2
2 2 21 22, , ,µ σ γ γ , respectively.  

Our purpose is to test the null hypothesis  
 

2 2
0 1 2:H σ σ=  

 
against 
 

2 2
1 2:AH σ σ≠  

 
The usual test for comparing two variances is the F-test based on the two sample vari-

ances on the statistic 
 

( )
2 2
1 2
2 2
1 2

max( ; )

min ;

s s
F

s s
=  

 

and to reject H0  if ( )1 21; 1;1F F n n α> − − − , if 2 2
1 2s s> ; otherwise the d.f. in the F-

quantile have to be interchanged. NÜRNBERG (1982) compared the power of this F-test 
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with that of 10 further tests (Bartlett, modified Bartlett, modified 2χ , Cochran, Range, Box-

Scheffé, Box-Andersen, Jackknife, Levene-z, Levene-s). We report here only the most im-
portant members of this set only. 

Levene Test: For this test we use the observations y1i and y2i to calculate the quantities 
 

1 1 1 2 2 2;i i i iu y y u y y= − = −  for Levene’s  z-test 

 
and 
 

( ) ( )2 2
1 1 1 2 2 2;i i i iv y y v y y= − = −  for Levene’s  s-test. 

 
Then we carry out an independent samples t-test with the u-values  or the v-values for the 

z- and s-version of the test, respectively.  
For the Box-Scheffé-test (also known as Box-test or Box-Kendall-test)  (Box, 1953, 

Scheffé, 1963) the samples are randomly divided into c groups, c given. These groups con-

tain ijm , 1, 2; 1,...,i j c= = , observations. Let 2
ijs  denote an estimator of 2

iσ  and define 

2ln( )ij ijz s=  and 

 
2 2

1
2 2

1 1

2( 1) ( )

( )

ii
c

ij ii j

c c z z
F

z z

⋅ ⋅⋅+ =

⋅= =

− −
=

−

∑
∑ ∑

 

 

The null hypothesis will be rejected if (1,2( 1),1 )F F c α+ > − − . In his simulation 

study, Nürnberg (1985) considered the cases 2c =  and 3c = . 
 
 

Simulation Experiment 7 – Tests for the parameters in regression analysis 
 
Tests and confidence estimation in linear and quasi-linear (for instance polynomial)  re-

gression can be expected to behave like the corresponding inferences for means. Because in 
psychological research intrinsically non-linear regression – like exponential regression – 
play no important role, we only summarize the results briefly. The different non-linear re-
gression functions investigated in the robustness research are described in Rasch (1995, 
chapter 16).  

In the intrinsically non-linear regression  problems arise which are not known in the pro-
cedures discussed so far. Parameters can be estimated only iteratively and even for normal 
distributions the distribution of the estimators (inclusive their expectation and variance) are 
only known asymptotically (i.e. for a sample size tending to infinity). Therefore we investi-
gated together with the robustness also the behaviour of the estimators and the tests for the 
regression parameters in the normal case for small samples. 
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Simulation Experiment 8 - Selection procedures 
 
As already mentioned in Rasch et al (1999) and Rasch (2003) selection procedures 

should be preferred to multiple comparison because most practical problems are selection 
problems. 

Let us take independent samples from a  normal distributions. If the model of the simu-
lation experiment 5 is applied, than we are interested  to find the greatest value of the expec-
tations iµ  ( 1,..., )i a= . Without loss of generality, we assume, that  

 

1 2 aµ µ µ≤ ≤ ≤L . 

 
But this order is not known for the user. There are two formulations of this problem:  

 
 

The Indifference-zone formulation (Bechhofer, 1954)  
 
We apply the following selection rule.  

Choose that value iµ  which belongs to the sample with the greatest mean iy .  

In order to describe the error probability we define the event of d-correct selection 
(dCS): 

A dCS occurs, if the selected iµ  is greater as a dµ −  (Guiard, 1996).  

If P(dCS) is the probability of d-correct selection, than 1 ( )P dCSβ = −  denotes the 

probability of an error. For given values of d and β  an appropriate value of n can be calcu-

lated (e.g. Rasch, Herrendörfer, Bock, Victor, Guiard, 1996). 
We denote a selection rule to be robust if it’s actual error probability Aβ  is smaller than 

1.2 β⋅ , where β  denotes the required error probability. Using other estimations ˆiµ of the 

iµ  the selection rule can be modified. Following Domröse (1987), we get further selection 

rules R  using the following estimations ˆiµ . 

RB: The classical selection rule, RB,  proposed by Bechhofer (1954), uses 
 

1

1
ˆ

n

i i ij
j

y y
n

µ
=

= = ∑ . 

 
For normal distributions Rasch (1995) presents tables for planning the sample size n . 

RTr0.1 and RTr0.2: The trimmed means 
(1 )

( )
1

1

(1 2 )

n

i i j
j n

y y
n

α

α
αα

−

= +
=

− ∑  are less sensitive 

to outliers. Here 
( )i j

y  denotes the  order statistics 
(1) (2) ( )i i i n

y y y≤ ≤ ≤L  of the variables 

ij
y , 1,...,j n= . If n α⋅  is not integer, [ ]( 1)i n

y
α +

 and [ ]( (1 ) 1)i n
y

α− +
 have to be counted by 

weights [ ]1 ( )n nα α− − , where [ ]x  denotes the integer part of x . We consider the estima-

tors 
0,1

ˆi i
yµ =  for rule RTr0.1, and 

0,2
ˆi i

yµ =  for rule RTr0.2, respectively. 
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RTi0.1 and RTi0.3: Tiku (1981) proposed the estimators 
 

' ( ) ( 1) ( )
1

1
ˆ '( )

2 2 '

n r
T

i ir i j i r i n r
j r

y y r y y
n r r

µ β
β

−

+ −
= +

 
= = + + 

− +   
∑ , 

 
where [ ]0.5 'r r n= + ⋅  and ' ( )( ( )) / ) /t t t n r n rβ ϕ ϕ= − − ⋅  (0 ' 1)β< <  with t from 

1 ( ) /t r n− Φ = . Following Tiku (1981) we use ' 0.1r = , for RTr0.1 and ' 0.3r =  for RTr0.3, 

respectively. 
RA: Randlers, Ramberg, and Hogg (1973) described an adaptive selection rule. This rule 

works in two steps. In the first step by means of a particular estimator of the kurtosis, the 
distribution of the data is grouped into one  of the three groups  „light-tailed“, „medium-
tailed“ and „heavy-tailed“. In the second step a selection rule is applied depending on the 
group, found within the first step. 

RRS: The selection rule RRS uses the rank sums 
1

n
i ijj

R r== ∑  instead of ˆiµ , where 

ijr  denote the rank of ijy  among all n a⋅  observations. 

For the simulation we apply the so called least favourable configuration: 
 

1 2 1a a dµ µ µ µ−= = = = −L  

 
with different values for d . For all other configurations the ( )P dCS  would be greater. The 

distributions used in the simulation study of Domröse and Rasch (1987) are shown in Table 
6. 

 
Table 6: 

1 2( , )γ γ -values used in the simulation experiment 

 
type of distribution N U F F F F 

1γ  = 0 0 0 1 2 - 2 

2γ  = 0 - 1.2 6 1.5 6 6 

N: normal, U: uniform, F: Fleishman 
 
 
Moreover, the following combinations of n  and /d σ  are used: 
 

n  /d σ  
11     1;       0.75 
21     1;       0.75 
47     0.75;  0.5 
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Subset selection formulation (Gupta, 1956)) 
 
The goal of a subset selection procedure consists in selecting a subset, s , of the a distri-

butions such, that the probability ( )P CS , that the „best“ distribution belongs to this subset, 

is not smaller than a prespecified value *P . The first of the following developed the follow-

ing selection rules was developed by Gupta for the case of normal distributions 2( , )iN µ σ : 

RG: (Gupta, 1956, 1965) Calculate the sample means iy , 1,...,i a= , and the pooled 

variance estimate (15) . Select the distribution i , if 
 

2
1

1
max ( . ., *) 2 /i l a

l a
y y t d f P s n−

≤ ≤
≥ − .4 

 
Here 1( . .; *)at d f P−  denotes the *P -quantile of the ( 1)a − -dimensional t-distribution 

with . .d f  degrees of freedom and equal correlations 0.5ρ = . 

RH: (selection rule of Hsu, 1980): Let 2
( ) ( )
[1] [n ]

ij ijD D≤ ≤K  denote the ordered differences 

ig jhy y−  ( , 1,..., )g h n=  between the samples of the distributions i  and j . Then select 

distribution i  if (ij)
[c( *)-n(n+1)/2]min 0P

j i
D

≠
>  and/or ( )

[medium]min 0ij

j i
D

≠
> , using 

 
( ) 2

( ) [ 1]
( ) ( )[medium] 21
[ ] [ 1]2

                ,  if 2 1

( ) , if  =2k 

ij
ij k

ij ij
k k

D n k
D

D D n
+

+

 = += 
+

. 

 

The values ( *)c P  are given as ( *)c P rα=  (one-tailed, 1 *Pα = − ) in Table VIII of 

Miller (1966) 
RA: The rule RA (Hogg, 1974) is an adaptive selection rule which switches between the 

rules GR  an HR  in dependence of special estimators of skewness and kurtosis and of the 

Levene-s-test for comparing the variances (Levene, 1960; Nürnberg, 1985). 
Within their simulation experiment Listing and Rasch (1996) used the following distribu-

tions: 
 

Table 7:  
Simulated distributions 

 
type of distribution U N F F F Chi F F 

1γ =  0 0 0 0 1.5 1.5 2 -1.5 

2γ =  -1.2 0 3.75 7 3.75 3.75 7 3.75 

U: uniform; N: normal; F: Fleishman: Chi: non central Chi-square distribution with 
. . 1d f =  and non-centrality parameter 2.426λ =  

                                                                                                                         
4 Listing and Rasch (1996) erroneously wrote 2 / 2s  instead of 22 /s n  
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In order to estimate ( )P CS , Listing and Rasch (1996) simulated the least favourable 

configuration 
 

1 1 aµ µ µ= = =L . 

 
For estimating the expected number ( )f d  of selected false populations, the configura-

tions 
 

1 2 1a a dµ µ µ µ σ−= = = = − ⋅L  

 
with different values of d  were simulated. 

The number of simulation runs was at least 9000 /sN a= . Listing and Rasch (1996) 
simulated some further selection rules, but in the present paper only the best ones were de-
scribed.  

 
 

4. Summary of Results and Recommendations 
 
We present here the results of the simulation experiments described in paragraph 3. By 

Result x we denote the result of simulation experiment x. 
 
 

Result 1 - One-sample tests and confidence intervals for the mean 
 
If we use in definition 1 an ε  of 20% of the significance level α = 0.05 , a test is robust 

as long the actual αact lies between 0.04 and 0.06. In Table 8 the sample sizes are given for 
which a 20% robustness was found. 

 
Table 8:  

Sample sizes, which give a 20% robustness 
 

Test No. of distribution in Table 1 and its 

1 2, valuesγ γ− −  
Case a) Case b) Case c) 

Test 1 (u) 1 [0; 0],2 [0; 1.5],3[0; 3.75] 5 5 5 
Test 1 (u) 4 [0 ; 7],5 [1 ; 1.5],6 [1.5: 3.75] 5 10 10 
Test 1 (u) 7 [2; 7] 5 50 50 
Test 2 (t) 1 [0; 0],2 [0; 1.5] 5 5 5 
Test 2 (t) 3 [0; 3.75] 10 5 5 
Test 2 (t) 4 [0 ; 7],6 [1.5: 3.75] 10 50 50 
Test 2 (t) 5 [1 ; 1.5] 30 50 50 
Test 2 (t) 7 [2; 7] 50 50 50 
Test 3 (tJ) 1 [0; 0],2 [0; 1.5] 10 5 5 
Test 3 (tJ) 3 [0; 3.75] 50 50 30 
Test 3 (tJ) 4 [0 ; 7] 30 50 30 
Test 3 (tJ) 5 [1 ; 1.5],6 [1.5: 3.75] 50 30 50 
Test 3 (tJ) 7 [2; 7] 50 50 50 
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It is not surprising that test 3 is quite good if the kurtosis is small. Then it behaves better 
than the t-test (test 2). But for sample sizes larger or equal to 50 all the tests are 20%-robust. 

 
 

Result 2 –  one-sample sequential tests for the mean 
 
The average sample sizes for the 10000 replications did not differ too much for the three 

tests if d =1, otherwise they were larger for test 3 than for the other tests. It is known that 
sequential tests guarantee the risks only approximately even in the normal case. This can be 
seen from Table 9, but the test is conservative. 

 
 

Table 9:  
Percentage of false rejections of H0 for 8 distributions from Table 4 (columns 3 –10) for  

α = 0.05, β = 0.2 and d = 0.6 
 

d Test t
i
 1  

[0; 0] 
2 
[1.006;0.6] 

3  
[0.35; -0.35] 

4  
[1.5; 3.75] 

5  
[0; 3.75] 

6  
[0; 7] 

7  
[1; 1.5] 

8  
[1.5; 3.75] 

0.6 1 4.34 7.44 4.93 10.41 3.23 2.95 6.17 7.57 
0.6 2 4.64 1.69 3.59 11.11 3.33 2.63 1.78 1.36 
0.6 3 4.9 9.18 5.41 12.54 3.33 3.53 7.15 7.02 

 
 

Table 10:  
Percentage of false acceptions of H0 for 8 distributions from Table 4 (columns 3 –10 with 

[ 21;γγ ]) for α = 0.05, β = 0.2 and d = 0.6 

 
d Test t

i 1 
[0; 0] 

2  
[1.006;0.6] 

3 
[0.35; -0.35] 

4  
[1.5; 3.75] 

5  
[0; 3.75] 

6  
[0; 7] 

7  
[1; 1.5] 

8  
[1.5; 3.75] 

0.6 1 15.54 8.95 13.78 5.05 14.64 14.76 10.46 7.24 
0.6 2 15.46 27.8 19.45 31.3 13.15 11.53 24.01 27.01 
0.6 3 18.9 29.87 21.68 38.84 17.74 16.8 27.21 22.75 

 
 
The Wald test (test 1) has for the normal distribution (distribution 1) the best approxima-

tion for both risks and is always robust (more than that, conservative) for the risk of the 
second kind. With exception of the extremely non-normal distribution 2, 4, 7 and 8 it is also 
robust for the significance level. From the 3 tests examined test 2 must be preferred even if 
its power is lower than for test 3 (this is a consequence of the higher first kind risk, the 
power function of test 3 dominates that of test 2 and 1 with exception of distribution 8) in 
both positions and for all distributions. But for practical distributions in which either the 
skewness or the kurtosis is low, the test is robust and the average sample size moderate. 
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Result 3 –  Tests for comparing two means  
 
The results of the experiments described above let to a huge data set and it seems there-

fore better to repeat here a summary which was published in Guiard, V. und Rasch, D. (ed.) 
(1987) pages 37-73 unifying both the results of Posten (1978) and Tuchscherer and Pierer 
(1985). This summary is given in figure 2. 

 
 

 
 

Figure 2:  
Proposals for the comparison of two means 

 
 
The Wilcoxon test is in the case of equal variances and equal sample sizes also quite 

good but there is no real need to use it even with small samples. The tests proposed are in 
general more robust in cases where no prior knowledge is available and this is in most prac-
tical situations the case. Before an experiment is performed, it has to be planned amongst 
others its size has to be determined (see RASCH, 2003). We recommend to design the ex-
periment with equal sizes in both samples. This not only because the total size 

1 2N n n= + is for a given precision a minimum, if the two sample sizes are equal but also 

the robustness is larger in  this case and the t-test can always be applied. 
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Result 4 – Sequential tests for comparing two means 
 
For pairwise sampling at each step and if the non-normality of the two populations is of 

the same type both tests are conservative for both risks  and 20%-robust. The skewness than 
has nearly no influence on the risks. Pairwise sampling is recommended.  

If the non-normality in both population is different, the skewness influences the risks and 
the tests are not always robust. Than the kurtosis has no big influence. We think that in prac-
tical situations differences in the higher order moments in both populations can not be ex-
pected. 

For pair-wise sampling in both populations with different probabilities 

1 20.75; 0.25π π= =  the result are given in Table 11.  

 
 

Table 11:  

Estimated actual risks α̂  and β̂  for Hajnal’s (suffix H) test and the Welch modification 

(suffix W) for pairwise sampling and sampling with probabilities 1 20.75; 0.25π π= = ;  

d = dW =1.5 are given for α = 0.05 and β = 0.1 
 

Sample 1 Sample 2 pair-wise sampling 1 20.75; 0.25π π= =  

1γ  2γ  1γ  2γ  ˆHα  ˆ
Hβ  ˆWα  ˆ

Wβ  ˆHα  ˆ
Hβ  ˆWα  ˆ

Wβ  

0 0 0 0 0.034 0.061 0.031 0.055 0.039 0.067 0.060 0.062 
0 1.5 0 1.5 0.036 0.065 0.027 0.064 0.039 0.070 0.061 0.066 
0 3.75 0 3.75 0.030 0.067 0.023 0.067 0.037 0.069 0.050 0.065 
0 7 0 7 0.022 0.070 0.200 0.068 0.037 0.070 0.044 0.068 
0 -1 0 -1 0.038 0.054 0.035 0.055 0.041 0.065 0.091 0.050 

0.5 0 0.5 0 0.035 0.058 0.032 0.059 0.041 0.062 0.075 0.043 
1 1.5 1 1.5 0.036 0.063 0.026 0.066 0.040 0.058 0.070 0.036 

1.5 3.75 1.5 3.75 0.032 0.062 0.024 0.071 0.041 0.059 0.080 0.035 
2 7 2 7 0.025 0.070 0.019 0.070 0.039 0.060 0.077 0.034 
2 7 0 0 0.046 0.031 0.039 0.093 0.068 0.091 0.071 0.077 
0 0 2 7 0.043 0.031 0.038 0.091 0.033 0.025 0.096 0.016 
2 7 -2 7 0.095 0.115 0.085 0.119 0.086 0.109 0.122 0.110 

 
 
Summarizing the results of Table 11 and of further simulation results by Frick (1985) for 

unequal variances we propose pair-wise sampling and the Welch modification (test 2) which 
is also robust in the case of equal non-normality but unequal variances in both populations. 
Recently it was shown by Häusler (2003) that the triangular sequential test (Schneider, 1992) 
behaves much better than the tests above. More information will be found in Rasch, Kubin-
ger, Schmidtke and Häusler, 2004. 
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Result 5 – Comparing more than two means 
 
For the multiple t-test the robustness is at least as good as for the two-sample t-test, be-

cause robustness increases with the d.f. of the t-test. If the size of each sample is n, the two-
sample t-test has 2(n-1) d.f. but in the k-sample case we have k(n - 1) d.f.. Therefore no new 
simulation is needed. This is analogue in the case of comparing with a standard. 

That the F-test is very robust against non-normality (but be careful: the  F-test for com-
paring variances is extremely non-robust, see result 6) was already shown by ITO (1964) and 
no further simulation was needed. For the many existing multiple comparisons as for in-
stance listed under „post hoc tests” in the SPSS ANOVA branch no general recommendation 
can be given but we think that the Tukey and the Student-Newman Keuls  – test (based on 
range) is as robust as the t-test due to the two-sample results for the t- and the Lord (range) – 
test. This will be supported by the poor power results of the rank tests in Rudolph’s experi-
ment, where these test have been compared with the Dunnett-test. The result of Rudolph 
(1985b) shows that the Dunnett test must be preferred to the rank tests for n< 15, for larger n 
it is still good but the rank tests behave better than for small samples. For non-normal distri-
butions and variance heterogeneity no test is really robust. Here a multiple Welch test may 
be helpful as in the two-sample problem. 
 

 
Table 12:  

Estimated actual risks ˆ100α  for α = 0.05, k = 3, n = 6 and n = 21 and variance homogeneity 
(structur 6) and 100P1 and 100P2  for 1 2 3.46∆ = ∆ =  and n = 6 and n = 21 

 

1γ  2γ  Test n=6 n = 21 1 2 , 6
2

P P
n

+
=  

1 2 , 21
2

P P
n

+
=  

0 0 Dunnett 4.9 4.8 83.48 63.46 
  Steel 4.85 4.82 75.93 55.58 
  Kruskal - Wallis 4.72 4.64 71.48 56.52 

0 1.5 Dunnett 4.16 5.13 83.34 63.67 
  Steel 4.27 5.34 76.33 62.42 
  Kruskal - Wallis 4.31 5.32 73.05 63.29 

0 3.75 Dunnett 4.26 4.74 83.87 64.66 
  Steel 4.89 4.82 77.29 70.50 
  Kruskal - Wallis 4.61 4.64 74.98 71.11 

0 7 Dunnett 3.98 4.82 84.05 66.22 
  Steel 4.74 5.34 77.06 77.33 
  Kruskal - Wallis 4.55 5.32 76.16 78.94 

1 1.5 Dunnett 4.75 4.90 83.53 64.04 
  Steel 5.01 4.95 76.19 64.28 
  Kruskal - Wallis 4.75 4.72 72.63 64.49 

1.5 3.75 Dunnett 4.23 4.97 83.51 64.59 
  Steel 4.71 5.09 76.01 72.98 
  Kruskal - Wallis 4.3 4.98 73.26 72.59 

2 7 Dunnett 4.17 4.3 83.62 65.49 
  Steel 5.08 5.1 76.79 80.81 

  Kruskal - Wallis 4.73 5.01 76.06 80.19 
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We now report some of Rudolph’s results in Table 12. Because P1 and P2 differed only 
by not more than 0.4 we report the arithmetic mean. 

The results can not be interpreted as if the power does not increase with increasing n. 
From (16) we see that the same ∆ for larger n means a smaller difference in the means. The 
following conclusion can be drawn. For small samples the Dunnett test is uniformely more 
powerful than the non-parametric competitors. If the sample size becomes larger, the non-
parametric tests are slightly better than the Dunnett test for kurtosis of 3.75 and larger. In 
Figure 1 those values rather than the rule are  the exception and due to the fact that a sample 
size determination is more easy for the Dunnett test, we see no need to replace this test by a 
non-parametric one. Furthermore we recommend the selection rules in place of multiple 
comparisons, not only that they need less number of observations but they are also more 
robust as shown in Result 7. 

 
 

Result 6 – Tests for comparing variances 
 
Nürnberg (1985) gave the following recommendations: 
For small sample size n (n=6) only the Box-Scheffé-test (c=2 or 3) is 20%-robust for all 

investigated distributions. The F-test for comparing variances should never be used and be 
deleted from statistical program packages. 

For n=18 and 42 the following four tests are 20%-robust: modified Bartlett, Box-Scheffé, 
Box-Andersen, Levene-s. The other tests are not 20%-robust for some distributions. 

SPSS deleted the F-test and replaced it by Leven’s -z-test as part of the procedure in an 
independent two-samples t-test.   

 
 

Result 7 - Selection procedures 
 

Indifference-zone formulation 
 
Some of the estimations of P(dCS), calculated by means of 6000 simulation runs, are 

shown in Table 13. 
From these results we derive the following conclusions and recommendations: 
 
1. The easely handled Bechhofers selection rule RB with extensive tables for planning 

sample size n in Rasch et al. (1996) can be recommended. 
2. If the underlying distribution is symmetric with unknown kurtosis, we recommend 

adaptive selection rule RA. 
3. If the underlying distribution possibly has a negative kurtosis or is skew with low 

kurtosis and must be trimmed on account of outliers, α should be kept as small as 
possible and both 

( ( 1))n
y

α +
 and 

( (1 ))n
y

α−
 should be given larger weight, say by the 

use of RTr0.1. 
4. If the underlying distribution is distinctly skew, we recommend the application of 

the rank sum selection rule RRS. 
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Table 13:   

Estimates ˆ ( )P dCS  for different selection rules given 1 0.95β− =  

 
Selection 
rule 

n /d σ  1 0γ =  0 0 1 2 -2 

   2 1,2γ = −  0 6 1.5 6 6 

RB 21 0.75 0.9553 0.9496 0.9515 0.9454 0.9320 0.9627 
 47 0.5 0.9533 0.9495 0.9512 0.9392 0.9483 0.9627 
RTr0.1 21 0.75 0,8970 0.9425 0.9847 0.9449 0.9605 0.9787 
 47 0.5 0.8940 0.9405 0.9878 0.9456 0.9635 0.9763 
RTr0.2 21 0.75 0.8367 0.9313 0.9903 0.9359 0.9585 0.9810 
 47 0.5 0.8393 0.9256 0.9907 0.9346 0.9650 0.9790 
RTi01 21 0.75 0.9280 0.9423 0.9760 0.9427 0.9485 0.9742 
 47 0.5 0.9270 0.9442 0.9783 0.9483 0.9557 0.9730 
RTi0.2 21 0.75 0.8150 0.9253 0.9893 0.9290 0.9523  
 47 0.5 0.8168 0.9156 0.9888 0.9244 0.9557  
RA 21 0.75 0.9862 0.9483 0.9897 0.9434 0.9335 0.9677 
 47 0.5 0.9995 0.9495 0.9913 0.9485 0.9412 0.9637 
RRS 21 0.75 0.9244 0.9434 0.9867 0.9755 0.9982 0.9844 
 47 0.5 0.9369 0.9403 0.9884 0.9746 1. 0.9920 

 
 

The subset selection formulation: 
 
The estimated values of P(CS) for P*=0.95 are shown in Table 14. 

In case of ˆ ( ) *P CS P ε< − , this entry was set in boldface. As robustness condition we 

use / 5 0.01ε β= =  where 1 *Pβ = −  denotes the error probability. The estimations of the 

expected probabilities, ( )f d , of selecting non-best populations are shown in Table 15. In 

the cases where a subset selection procedure fails in robustness we have marked the corre-
sponding entry with a „*“ sign.  

For the case of equal variances, Listing and Rasch (1996) recommend to use the Gupta 
rule RG if it is known, that the distributions are approximately normal. If the distributions 
are completely unknown, the adaptive rule RA should be used.  

For the case of unequal variances it was not possible to give a clear recommendation. 
 
 

5. Final Conclusions 
 
We now summarize the recommendations above in some short conclusions. By infer-

ences we mean as well selection procedures, confidence estimations as also hypothesis test-
ing. We restrict ourselves on a significance level α = 0.05 or what means the same on a 
confidence coefficient of 1-α = 0.95 and on a probability of incorrect selection (which plays 
the role as the α in testing and confidence estimation) of β = 0.05 . Results for α(β ) = 0.01 
and α(β )  = 0.1 can be found in the corresponding references. 
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Table 14: 
ˆ ( )P CS  for * 0.95P = , 35n = , and 10k =  

 
Distribution type U N F F F Chi F F 
Rule 1γ =  0 0 0 0 1.5 1.5 2 -1.5 

 2γ =  -1.2 0 3.75 7 3.75 3.75 7 3.75 

RG  0.950 0.950 0.950 0.949 0.942 0.939 0.940 0.957 
RA  0.950 0.950 0.950 0.952 0.953 0.952 0.952 0.952 

 
 

Table 15: 
ˆ ( )P CS  for  0.5d = , * 0.95P = , 35n = , and 10k =  

 
Distribution type U N F F F Chi F F 
Rule 1γ =  0 0 0 0 1.5 1.5 2 -1.5 

 2γ =  -1.2 0 3.75 7 3.75 3.75 7 3.75 

RG  0.614 0.626 0.618 0.612 0.616 0.62* 0.61* 0.618 
RH  0.621 0.631 0.532 0.431 0.494 0.399 0.373 0.485 
RA  0.072 0.666 0.530 0.431 0.494 0.399 0.373 0.485 

 
 
In general we can formulate that non-parametric tests are not really needed for the infer-

ences discussed in this article. Only the Wilcoxon test may be applied in some cases but only 
in few cases (see result 4) it is really better than the t-test. But when we consider the prob-
lems arising in non-parametric procedures for determining optimal sample sizes as discussed 
in Rasch (2003) we recommend the use of parametric inferences in general. In special cases 
as well in Rasch et al. (1996, 1998) as also in the design software CADEMO a warning is 
given, if the sample size is too small to apply parametric inferences. In designing an experi-
ment, the sample size must be increased to reach robustness and in the analysis of un-
designed experiments (we hope that such an approach will disappear in psychological re-
search in the near future) the parametric procedure should be supported by the corresponding 
non-parametric one.  

Selection procedures, the classical and the sequential (test 2) t-test (as well as the F-test 
for the effects in ANOVA models) for means and for regression coefficients in linear or 
quasi-linear regression models are robust. For the t-test in the two- or k- sample problem this 
is true,  if the variances are equal in all populations. For unequal variances in the two-sample 
problem the Welch-test is recommended. 

For comparing variances the F-test is extremely non-robust or sensitive, it should never 
be used (don’t forget that the F-test for comparing means is pretty robust). To compare vari-
ances, the Box-Scheffé-test (c=2 or 3) is 20%-robust for 6≥n and therefore recommended. 

For 18n ≥  Levene-s test can also be applied. 
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