
Diego Salazar-D'Antonio- PhD Student in Computer Science
- PhD Student at Lehigh University
Diego Salazar-D'Antonio
- PhD Student in Computer Science
- PhD Student at Lehigh University
About
24
Publications
4,666
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
211
Citations
Introduction
Current institution
Publications
Publications (24)
This paper presents a resilient mechanism to allocate heterogeneous robots to tasks under difficult environmental conditions such as weather events or adversarial attacks. Our primary objective is to ensure that each task is assigned the requisite level of resources, measured as the aggregated capabilities of the robots allocated to the task. By ke...
Transporting objects using aerial robots has been widely studied in the literature. Still, those approaches always assume that the connection between the quadrotor and the load is made in a previous stage. However, that previous stage usually requires human intervention, and autonomous procedures to locate and attach the object are not considered....
Transporting objects using quadrotors with cables has been widely studied in the literature. However, most of those approaches assume that the cables are previously attached to the load by human intervention. In tasks where multiple objects need to be moved, the efficiency of the robotic system is constrained by the requirement of manual labor. Our...
From ancient times, humans have been using cables and ropes to tie, carry, and manipulate objects by folding knots. However, automating knot folding is challenging because it requires dexterity to move a cable over and under itself. In this paper, we propose a method to fold knots in midair using a team of aerial vehicles. We take advantage of the...
The use of cables for aerial manipulation has shown to be a lightweight and versatile way to interact with objects. However, fastening objects using cables is still a challenge and human is required. In this work, we propose a novel way to secure objects using hitches. The hitch can be formed and morphed in midair using a team of aerial robots with...
This paper presents the Spinning Blimp, a novel lighter-than-air (LTA) aerial vehicle designed for low-energy stable flight. Utilizing an oblate spheroid helium balloon for buoyancy, the vehicle achieves minimal energy consumption while maintaining prolonged airborne states. The unique and low-cost design employs a passively arranged wing coupled w...
Testing aerial robots in tasks such as pickup-and-delivery and surveillance significantly benefits from high energy efficiency and scalability of the deployed robotic system. This paper presents MochiSwarm, an open-source testbed of light-weight robotic blimps, ready for multi-robot operation without external localization. We introduce the system d...
Traditional aerial vehicles have specific characteristics to perform specific tasks but designing a versatile vehicle that can adapt depending on the task is still a challenge. Based on modularity, we propose an aerial robotic system that can increase its payload capacity and actuated degrees of freedom by reconfiguring heterogeneous modules to ada...
Rural communities in remote areas often encounter significant challenges when it comes to accessing emergency healthcare services and essential supplies due to a lack of adequate transportation infrastructure. The situation is further exacerbated by poorly maintained, damaged, or flooded roads, making it arduous for rural residents to obtain the ne...
We present an aerial vehicle composed of a custom quadrotor with tilted rotors and a helium balloon, called SBlimp. We propose a novel control strategy that takes advantage of the natural stable attitude of the blimp to control translational motion. Different from cascade controllers in the literature that controls attitude to achieve desired trans...
We present an aerial vehicle composed of a custom quadrotor with tilted rotors and a helium balloon, called SBlimp. We propose a novel control strategy that takes advantage of the natural stable attitude of the blimp to control translational motion. Different from cascade controllers in the literature that controls attitude to achieve desired trans...
The use of cables for aerial manipulation has shown to be a lightweight and versatile way to interact with objects. However, fastening objects using cables is still a challenge and human is required. In this work, we propose a novel way to secure objects using hitches. The hitch can be formed and morphed in midair using a team of aerial robots with...
The increasing demand for energy and the high penetration of distributed energy resources require the evolution of current electrical systems toward smarter and more reliable electric grids. In this regard, microgrids (MG) play a vital role in integrating distributed energy resources (DER), loads, and storage systems. However, microgrid architectur...
We introduce an open-source quadrotor platform called Customizable-ModQuad, an aerial vehicle design that is modular, low-cost, lightweight, easy to manufacture and maintain , and highly customizable. The main frame of this design is composed of carbon-fiber rods and 3D-printed connection parts, which embraces the involvement of fast-prototyping. W...
We introduce an open-source quadrotor platform called Customizable-ModQuad, an aerial vehicle design that is modular, low-cost, lightweight, easy to manufacture and maintain , and highly customizable. The main frame of this design is composed of carbon-fiber rods and 3D-printed connection parts, which embraces the involvement of fast-prototyping. W...
From ancient times, humans have been using cables and ropes to tie, carry, and manipulate objects by folding knots. However, automating knot folding is challenging because it requires dexterity to move a cable over and under itself. In this paper, we propose a method to fold knots in midair using a team of aerial vehicles. We take advantage of the...
This paper reports the development of a model for continuous simulation of the power flow into AC–DC hybrid microgrids operating for different generation–consumption scenarios. The proposed application was assembled using a multiple-input multiple-output model which was built using blocks containing simplified models of photovoltaic (PV) modules, w...
Transporting objects using quadrotors with cables has been widely studied in the literature. However, most of those approaches assume that the cables are previously attached to the load by human intervention. In tasks where multiple objects need to be moved, the efficiency of the robotic system is constrained by the requirement of manual labor. Our...
Traditional aerial vehicles are usually custom-designed for specific tasks. Although they offer an efficient solution, they are not always able to adapt to changes in the task specification, e.g., increasing the payload. This applies to quadrotors, having a maximum payload and only four controllable degrees of freedom, limiting their adaptability t...
This chapter illustrates the use of hysteresis control techniques applied to multilevel inverters. First, a general classification of different methods applied to control multilevel inverters is presented from three main points of view: that of the switching frequency (fundamental frequency and high frequency), the related application (grid-tie and...
This paper introduces a method to enforce balanced power distribution between the stages of a single-phase transformer-based cascaded multilevel inverter using the new asymmetric ratio 6:7:8:9 between stages. Since the inverter is fed by a single DC source, asymmetry is enforced by means of the transformer turns ratio providing multiple redundant s...