Diego Miralles

Diego Miralles
Ghent University | UGhent · Department of Environment

Research Professor
thinking

About

195
Publications
118,371
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,458
Citations
Citations since 2016
155 Research Items
13511 Citations
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000
Introduction
Climate change and population growth are great threats that join together in their impacts on hydrology and ecosystems. I research that interplay between the hydrosphere, biosphere and atmosphere. The work of my team strives towards unravelling the feedbacks of soil moisture and vegetation on climate, retrieving water and heat fluxes from satellite, disentangling the effect of climate oscillations on the hydrological and carbon cycle, and exploring the impact of climatic extremes on vegetation.
Additional affiliations
January 2017 - present
Ghent University
Position
  • Professor (Associate)
October 2014 - January 2017
Vrije Universiteit Amsterdam
Position
  • Fellow
June 2014 - January 2017
Ghent University
Position
  • Guest Professor

Publications

Publications (195)
Article
Full-text available
Global warming increases the number and severity of deadly heatwaves. Recent heatwaves often coincided with soil droughts that intensify air temperature but lower air humidity. Since lowering air humidity may reduce human heat stress, the net impact of soil desiccation on the morbidity and mortality of heatwaves remains unclear. Combining weather b...
Article
Full-text available
Despite the existing myriad of tools and models to assess atmospheric source–receptor relationships, their uncertainties remain largely unexplored and arguably stem from the scarcity of observations available for validation. Yet, Lagrangian models are increasingly used to determine the origin of precipitation and atmospheric heat by scrutinizing th...
Article
Full-text available
Reduced evaporation due to dry soils can affect the land surface energy balance, with implications for local and downwind precipitation. When evaporation is constrained by soil moisture, the atmospheric supply of water is depleted, and this deficit may propagate in time and space. This mechanism could theoretically result in the self-propagation of...
Article
Full-text available
Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we t...
Article
Full-text available
The 2013/2014 summer in Southeast Brazil was marked by historical unprecedented compound dry and hot (CDH) conditions with profound socio-economic impacts. The synoptic drivers for this event have already been analyzed, and its occurrence within the context of the increasing trend of CDH conditions in the area evaluated. However, so far, the causes...
Article
Full-text available
The redistribution of biological (transpiration) and non-biological (interception loss, soil evaporation) fluxes of terrestrial evaporation via atmospheric circulation and precipitation is an important Earth system process. In vegetated ecosystems, transpiration dominates terrestrial evaporation and is thought to be crucial for regional moisture re...
Preprint
Full-text available
Land Surface Temperature (LST) and Surface Net Radiation (SNR) are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions. Although high-resolution LST and SNR retrievals are available, they have large gaps due to cloud-cover that hinder their use as...
Article
Full-text available
Plain Language Summary Forests comprise the largest share of Earth's vegetated surface area and play an integral role in its hydrological cycle. Forests transfer moisture from below the surface to the atmosphere via transpiration, affecting surface moisture budgets and weather patterns at local‐to‐regional scales. Our ability to accurately predict...
Article
Full-text available
Local studies and modeling experiments suggest that shallow groundwater and lateral redistribution of soil moisture, together with soil properties, can be highly important secondary water sources for vegetation in water-limited ecosystems. However, there is a lack of observation-based studies of these terrain-associated secondary water effects on v...
Article
Full-text available
Satellite-based Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental science. Their increasing spatial and temporal resolutions, as well as the seamless availability over ungauged regions, make them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satell...
Chapter
During the past decades, consistent efforts have been undertaken to model the Earth's hydrological cycle. Multiple mathematical models have been designed to understand, predict, and manage water resources, particularly under the context of climate change. A variable that has traditionally received limited attention by the hydrological community—but...
Preprint
Full-text available
While the eddy covariance (EC) technique is a well-established method for measuring water fluxes (i.e., evaporation or 'evapotranspiration’, ET), the method is susceptible to many uncertainties. One such issue is the potential underestimation of ET when relative humidity (RH) is high (>70%), due to low-pass filtering with some EC systems. The influ...
Article
Full-text available
As CO2 concentration in the atmosphere rises, there is a need for improved physical understanding of its impact on global plant transpiration. This knowledge gap poses a major hurdle in robustly projecting changes in the global hydrologic cycle. For this reason, here we review the different processes by which atmospheric CO2 concentration affects p...
Preprint
Full-text available
Rainfall interception loss remains one of the most uncertain fluxes in the global water balance, hindering water management in forested regions and precluding an accurate formulation in climate models. Here, a synthesis of interception loss data from past field experiments conducted worldwide is performed, resulting in a meta-analysis comprising 16...
Article
Full-text available
Biogenic volatile organic compounds (BVOCs), primarily emitted by terrestrial vegetation, are highly reactive and have large effects on the oxidizing potential of the troposphere, air quality and climate. In terms of global emissions, isoprene is the most important BVOC. Droughts bring about changes in the surface emission of biogenic hydrocarbons...
Article
Full-text available
Ecosystems are projected to face extreme high temperatures more frequently in the near future. Various biotic coping strategies exist to prevent heat stress. Controlled experiments have recently provided evidence for continued transpiration in woody plants during high air temperatures, even when photosynthesis is inhibited. Such a decoupling of pho...
Article
Full-text available
Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi‐arid landscapes. This along with data scarcity poses challenges for large‐scale modeling of vegetation‐water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological...
Preprint
Full-text available
Satellite Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental science. Their increasing spatial and temporal resolution, as well as the seamless availability over ungauged regions, make them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satellite-bas...
Article
Full-text available
We present Multi-Source Weather (MSWX), a seamless global gridded near-surface meteorological product featuring a high 3-hourly 0.1° resolution, near real-time updates (~3-hour latency), and bias-corrected medium-range (up to 10 days) and long-range (up to 7 months) forecast ensembles. The product includes ten meteorological variables: precipitatio...
Article
Full-text available
Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a...
Preprint
Full-text available
Terrestrial evaporation (E) is a key climatic variable that depends on a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet often assumed to interact linearly in global models due to our limited knowledge based on local experimental studies. Here, w...
Article
Full-text available
Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span fr...
Article
Water yield (WY) in the Upper Brahmaputra River (UBR) basin is important for sustaining the ecological environment in the headstream region and supplying valuable freshwater resources downstream. While recent studies indicated the presence of warming and greening trends in the region, the effects of these changes on WY are not yet understood. Here,...
Article
Full-text available
Challenges exist for assessing the impacts of climate and climate change on the hydrological cycle on local and regional scales, and in turn on water resources, food, energy, and natural hazards. Potential evapotranspiration (PET) represents atmospheric demand for water, which is required at high spatial and temporal resolutions to compute actual e...
Article
Full-text available
In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium‐Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) w...
Preprint
Full-text available
Despite the existing myriad of tools and models to assess atmospheric source–receptor relationships, their uncertainties remain largely unexplored and arguably stem from the scarcity of observations available for validation. Yet, Lagrangian models are increasingly used to determine the origin of precipitation and atmospheric heat, scrutinizing the...
Article
Full-text available
Sentinel-1 backscatter observations were assimilated into the Global Land Evaporation Amsterdam Model (GLEAM) using an ensemble Kalman filter. As a forward operator, which is required to simulate backscatter from soil moisture and leaf area index (LAI), we evaluated both the traditional water cloud model (WCM) and the support vector regression (SVR...
Article
Full-text available
Earth observations offer potential pathways for accurately closing the water and energy balance of watersheds, a fundamental challenge in hydrology. However, previous attempts based on purely satellite‐based estimates have focused on closing the water and energy balances separately. They are hindered by the lack of estimates of key components, such...
Preprint
Many satellite-based actual evapotranspiration (ET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple remote sensing ET m...
Article
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS)...
Article
Full-text available
Understanding the dependencies of the terrestrial carbon and water cycle with meteorological conditions is a prerequisite to anticipate their behaviour under climate change conditions. However, terrestrial ecosystems and the atmosphere interact via a multitude of variables across temporal and spatial scales. Additionally these interactions might di...
Article
The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants—that is, increased photosynthetic uptake of CO2 by leaves and enhanced water‐use efficiency. Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture savings at large scale is poorly understood. Drylands provide a natural experimental...
Preprint
Full-text available
Framed within the Copernicus Climate Change Service of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the 5th generation of European ReAnalysis (ERA5), hereafter named as ERA5-Land. Once completed, the period covered will span from 1950 to pre...
Article
Full-text available
The land surface influences the atmospheric boundary layer (ABL) through its impacts on the partitioning of available energy into evaporation and warming. Previous research on understanding this complex link focused mainly on site-scale flux observations, gridded satellite observations, climate modeling, and machine-learning experiments. Observatio...
Article
Full-text available
An increase in the frequency of extremely hot and dry events has been experienced over the past few decades in South America, and particularly in Brazil. Regional climate change projections indicate a future aggravation of this trend. However, a comprehensive characterization of drought and heatwave compound events, as well as of the main land–atmo...
Article
Full-text available
Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite ret...
Article
Full-text available
Understanding the dependencies of the terrestrial carbon and water cycle is a prerequisite to anticipate their be- haviour under climate change conditions. However, terrestrial ecosystems and the atmosphere interact via a multitude of vari- ables, time- and space scales. Additionally the interactions might differ among vegetation types or climatic...
Article
Full-text available
Evaporation is the phenomenon by which a substance is converted from its liquid into its vapor phase, independently of where it lies in nature. However, language is alive, and just like regular speech, scientific terminology changes. Frequently, those changes are grounded on a solid rationale, but sometimes these semantic transitions have a fragile...
Preprint
Full-text available
Understanding the dependencies of the terrestrial carbon and water cycle is a prerequisite to anticipate their behaviour under climate change conditions. However, terrestrial ecosystems and the atmosphere interact via a multitude of variables, time- and space scales. Additionally the interactions might differ among vegetation types or climatic regi...
Article
Full-text available
Climate reanalyses provide a plethora of global atmospheric and surface parameters in a consistent manner over multi-decadal timescales. Hence, they are widely used in many fields, and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational c...
Article
Predictions of hydrological states and fluxes, especially transpiration, are poorly constrained in hydrological models due to large uncertainties in parameterization and process description. Novel technologies like remote sensing of sun-induced chlorophyll fluorescence (SIF)—which provides information from the photosynthetic apparatus—may help in c...
Article
Transpiration (T) returns about half of continental precipitation back into the atmosphere. However, the global spatial and temporal dynamics of transpiration are highly uncertain, and current estimates rely on either indirect remote sensing or empirical model formulations. Here, we show that T can be estimated reliably at the global scale using ob...