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Abstract: Inflammation and oxidative stress are essential components in a myriad of pathogenic
entities that lead to metabolic and chronic diseases. Moreover, inflammation in its different phases is
necessary for the initiation and maintenance of a healthy pregnancy. Therefore, an equilibrium be-
tween a necessary/pathologic level of inflammation and oxidative stress during pregnancy is needed
to avoid disease development. High-density lipoproteins (HDL) are important for a healthy preg-
nancy and a good neonatal outcome. Their role in fetal development during challenging situations is
vital for maintaining the equilibrium. However, in certain conditions, such as obesity, diabetes, and
other cardiovascular diseases, it has been observed that HDL loses its protective properties, becoming
dysfunctional. Bioactive compounds have been widely studied as mediators of inflammation and
oxidative stress in different diseases, but their mechanisms of action are still unknown. Nonetheless,
these agents, which are obtained from functional foods, increase the concentration of HDL, TRC, and
antioxidant activity. Therefore, this review first summarizes several mechanisms of HDL participation
in the equilibrium between inflammation and oxidative stress. Second, it gives an insight into how
HDL may act as a vector for bioactive compounds. Third, it describes the relationships between
the inflammation process in pregnancy and HDL activity. Consequently, different databases were
used, including MEDLINE, PubMed, and Scopus, where scientific articles published in the English
language up to 2023 were identified.

Keywords: inflammation; oxidative stress; pregnancy; high-density lipoproteins; bioactive compounds

1. Introduction

Pregnancy is a physiological process that extends the development phase of the fetus
in the uterus. In this period, women experience a series of adjustments to satisfy the
metabolic, biochemical, endocrine, and cellular changes that fetuses demand [1]. Never-
theless, depending on the woman’s wellness, these adaptations may be tolerated or be a
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burden in the development of certain diseases [2], such as obesity, hypertension, hyper-
lipidemia, metabolic syndrome, diabetes mellitus, preeclampsia, and preterm birth, which
in turn, increases the risk of cardiovascular diseases and may even produce death [3,4].
Also, these metabolic disorders are characterized by the presence of endothelial dysfunc-
tion, inflammatory, pro-oxidant, and lipid profile dysregulation processes that increase the
levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (c-LDL), and
dysfunctional high-density lipoproteins (HDL) [5,6]. Obesity, diabetes, and preeclampsia
induce oxidative stress conditions on their own through a number of mechanisms or path-
ways, including superoxide anion generation, protein kinase-C activation, hyperglycemia,
elevated cholesterol and triglyceride levels, mitochondrial dysfunction, low antioxidant
system, chronic inflammation, and reactive oxygen species (ROS) generation, especially
during the postprandial period [7–10]. In pregnancy, these mechanisms exacerbate oxida-
tive stress (OS) and inflammation processes with deleterious effects on the fetus and child’s
development, along with the damage to the mother.

Foods, fruits, herbs, and seeds are widely used in diverse cultures for the acute
treatment of symptoms related to pain or inflammation, and in a long-term fashion to
control the negative effects of some chronic diseases. Their method of consumption passes
from one generation to the next, and it is part of several cultures and customs of diverse
societies [11–13]. In some cultures, the consumption of plants during pregnancy is common.
For example, plants are used to treat nausea, vomiting, or dizziness; nonetheless, their
effectiveness in chronic degenerative diseases experienced by pregnant women has not
been fully elucidated [14,15]. Therefore, the purpose of this review is to provide the most
recent and relevant information concerning the role high-density lipoproteins play as
vectors of bioactive compounds with a protective role in the processes of inflammation and
OS involved in metabolic diseases that are frequently present during pregnancy, such as
gestational diabetes, obesity, and preeclampsia.

2. Methods

This narrative review was carried out by considering scientific articles of interest for
the topic, apprising those related to pregnancy and inflammation, and pregnancy and
oxidative stress. These processes were considered factors for predisposition to chronic
diseases for the mother and the fetus during the gestational stages such as childhood
and adulthood. As selection criteria, the following descriptors were used: inflammation,
oxidative stress, pregnancy, high-density lipoproteins, metabolic diseases, and bioactive
compounds. To search for primary and secondary information sources, electronic databases
such as MEDLINE, PubMed, and Scopus were used, finding original papers published
from 1982 to August 2023. Selected articles for bibliographic research were categorized by
clinical relevance, short-term (prematurity, preeclampsia, gestational diabetes) and long-
term (diabetes mellitus, obesity, dyslipidemia) outcome term, type of population (animal
models, humans) that was used, outcomes of the behavior of the inflammatory markers
that were stated, and the effect of bioactive compounds on lipoproteins during pregnancy.
Ultimately, a total of 207 references were selected, which were available in full text and in
the English language.

3. Bioactive Compounds Contained in Foods Used during Pregnancy

Over the course of human history, some herbs, plants, and fruits have been used exten-
sively in different cultures and societies to treat injuries, diseases, viruses, and bacterial in-
fections, and even to enhance women’s health during pregnancy to facilitate childbirth [16].
In pregnancy, the particular use of plants and herbs is focused mostly on alleviating condi-
tions, such as diarrhea, chills, nausea, constipation, vomiting, or to increase milk production
and accelerate labor. Several studies have reported that the mentioned capabilities are
attributed to the bioactive compounds contained in herbs, fruits, spices, and other foods
possessing anti-inflammatory [17], antimicrobial [18], antioxidant [19], cardioprotective [20],
hepatoprotective [21], hypoglycemic [22], neuroprotective [23], immunomodulatory [24], or
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hypolipidemic [25] properties. Some of these bioactive compounds include phytochemicals,
phenolic compounds, polysaccharides, and unsaturated fatty acids. During pregnancy,
the consumption and functionality of these compounds have been established [26], espe-
cially in the prevention of diseases and health promotion for both mother and fetus in the
different phases of the gestational period [27–29].

The consumption of certain polyphenolic compounds in pregnancy improved levels
of blood glucose in women with gestational diabetes [30], as well as insulin secretion in
the fetus and in the mother [31]. Furthermore, it has been reported that some polyphenolic
compounds regulate cell apoptosis, the secretion of adipokines, placentation, and arterial
pressure. Such regulation occurs mainly through the activity of the matrix metallopro-
teinases (MMPs) [32,33] and some glucose transporter (GLUT) family members (GLUT1,
GLUT4, and GLUT 9) [34].

A wide variety of secondary metabolites including flavonoids, quinones, flavones, tan-
nins, and aromatic compounds are consumed in high frequency and quantity. Nonetheless,
they could present a toxic effect mainly on the fetus because some of those metabolites
are widely consumed during the first trimester. In fact, some of them are well known to
be potentially dangerous because of the vulnerability of the fetus, for example, Japanese
mint (Mentha arvensis), linden herb (Justicia pectoralis), verbena (Verbena officinalis), aloe
(Aloe vera), chamomile (Matricaria recutita), oregano (Plecthranthus amboinicus), basil (Oci-
cum basilicum), caña santa (Cymbopoggon citratus), and wormwood (Artemisia abssinthium).
Furthermore, some of these compounds could increase estrogenic activity by stimulating
uterine contractility, increasing blood pressure, and having a hepatotoxic, mutagenic, or
fetal malformation effect. Most of these agents may also have an effect on OS and inflam-
matory processes present in gestational diabetes mellitus (GDM), preeclampsia, or obesity
during pregnancy because they contain phenolic compounds, flavonoids, tannins, omega-3,
quercetin, kaempferol, tocopherols, and vitamin C [35–40].

4. Pregnancy–Oxidative Stress–Inflammation Association

A significant increase in inflammatory processes and OS markers during pregnancy
happens because of biological actions that are carried out to maintain body homeostasis.
The first reports showed an elevation in OS and inflammatory markers in plasma and urine
during the physiological course of pregnancy [41,42]. The significant increase in inflam-
matory and pro-oxidant molecules can trigger negative conditions such as preeclampsia,
endothelial dysfunction, pre-diabetes, poor fetal development, or premature birth [43,44].

One of the reasons for the increase in OS is the development of the placenta, which
contains high quantities of mitochondria, leading to an increase in the concentration of ROS,
such as superoxide dismutase (SOD), xanthine oxidase (XO), or NADPH oxidase (NOX).
The high activity of these prooxidant enzymes is associated with the onset of preeclampsia,
which is one of the most common negative conditions during pregnancy, as well as an
increase in cholesterol, triglycerides, and c-LDL levels [45,46]. Nevertheless, a number
of external factors are related to OS augmentation during pregnancy, such as smoking,
consumption of foods rich in saturated fatty acids, carbohydrates, alcohol consumption,
ultraviolet radiation, obesity, and consumption of non-steroidal anti-inflammatory drugs
like paracetamol, ibuprofen, or diclofenac [47,48].

ROS play a crucial role throughout the entire process of pregnancy. It starts with the
generation of steroid hormones in the ovary, oocyte maturation, ovulation, luteolysis, im-
plantation, follicular growth, and maintenance of pregnancy until childbirth [49]. Elevated
ROS production leads to a decreased ovarian blood flow and tissue damage, polycystic
ovarian syndrome, or endometriosis. In addition, inflammatory processes are important
and play an important role in both the positive and negative aspects, alongside important
functions of the adaptive immune system; during the first and third trimester, there is a
presence of pro-inflammatory processes, triggered by implantation and placentation, as
well as labor and delivery, whereas, in the second trimester, anti-inflammatory processes
proliferate [50,51], ensuring proper fetal growth at this stage.
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During gestation, women’s bodies possess diverse hormones, cytokines, nutrients,
and enzymes that help maintain the balance of antioxidant and inflammatory processes
(Figure 1) [52]. Advanced oxidation protein products (AOPPs) and C-reactive protein
(CRP) levels in the maternal serum of pregnant women were significantly higher in the
first and second trimesters compared to non-pregnant women. However, higher levels of
AOPP were found in control men than in control non-pregnant women and were similar
to pregnant women. Moreover, the CRP concentrations increased gradually from the first
to the second trimester [38]. In contrast, an increase in OS was observed in the second
trimester. The activity of the antioxidant enzyme glutathione peroxidase (GPx) was lower in
pregnant women than non-pregnant women and postpartum women. Also, the oxidative
damage marker to DNA, 8-hydroxy-2′-deoxyguanosine (8-OHdG), was higher in pregnant
women compared to non-pregnant women [53].

′

α
α

Figure 1. Inflammation and OS processes during and after pregnancy.

During the third gestational stage, healthy pregnant women showed higher lipid
peroxidation markers, such as malondialdehyde (MDA) in plasma and erythrocytes, than
non-pregnant women, as well as lower levels of erythrocyte glutathione (GSH) levels
than non-pregnant women [41]. Furthermore, a longitudinal study consisting of pregnant
women at 30 weeks of gestational age showed that, after delivery, their products decreased
levels of Ne-carboxymethyl lysine. Also, a soluble receptor for advanced glycation end
products (sRAGE) was observed without changes in tumor necrosis factor alpha (TNF-α),
CRP, and MDA in blood samples. Their newborns were healthy, but the newborns’ levels
of sRAGE, TNF-α, and MDA were higher than their mothers at delivery [54]. Additionally,
factors such as age and race influence OS and inflammation. Older pregnant women
(age > 40 years) with uncomplicated pregnancies had lower anti-inflammatory markers,
such as interleukin-10 (IL-10) and interleukin-1 receptor antagonist (IL-RA), and an increase
in total antioxidant capacity (TAC) than younger pregnant women [55]. In Nigerian
pregnant women, levels of vitamin E, an endogenous antioxidant, were observed to be
lower than in pregnant women from the USA. However, levels of vitamin E depend
on the isoform. Thus, in the US population, higher maternal α-tocopherol levels were
associated with birth length (>10th percentile), while higher cord levels of α-tocopherol
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were associated with birth length (<10th percentile); these results were not observed in the
Nigerian population, although the levels of delta-tocopherol were higher than maternal
samples from the USA [56].

Undoubtedly, OS and inflammation are major factors in the development of diseases
that are considered the first cause of death and morbidity in women during pregnancy since
they can exacerbate negative conditions for the development of cardiovascular diseases
and diabetes [3,57,58].

The inflammatory response during pregnancy is caused by toll-like receptor (TLR)
activation, while inducing the activation of the inflammasome complex, to perpetuate the
production of cytokines and chemokines in placenta and endometrium, such as monocyte
chemotactic protein 1 (MCP-1), IL-8, IL1-β, and IL-6. This TLR activation triggers immune
cell recruitment and the production of prostaglandins and MMPs, which leads to cervical
cell activation and uterine contractions [59]. According to the stage of pregnancy, in
vaginal epithelium, exocervix, endocervix, endometrium, and fallopian tubes, TLRs 1–5
induce the release of cytokines, chemokines, and antimicrobial peptides that modulate both
proinflammatory and anti-inflammatory responses. Hence, it can promote or attenuate the
onset of chronic diseases or adverse clinical conditions (Table 1) [60].

The mechanisms of inflammation suggested at this stage of life involve the role of
type 1 and 2 T Helper (Th) cells, where Th1 cells are responsible for increased levels of
interferon gamma (IFN-γ), interleukin 2 (IL-2), and tumor necrosis factor beta (TNF-β),
which are responsible for phagocyte-dependent inflammation, as well as protection against
intracellular pathogens. On the other hand, Th2 cells produce IL-4, IL-5, IL-6, IL-9, IL-10,
and IL-13 and induce an antibody response by downregulating B cells and activating
eosinophils, thus inhibiting phagocytic cell activity [51].

Table 1. Pregnancy phases and inflammation.

Trimester Cytokines Clinical Outcome in the Mother
Clinical Outcome in the

Fetus/Infant
Ref.

First Trimester
(Proinflammatory)

IL-6
Infection and chorioamnionitis

increased prevalence

Fetal inflammatory response
disturbances

Reactive airway disease
Ectopic lipid accumulation in liver

[61–63]

IL-8 Preeclampsia development
Insulin resistance

Bronchopulmonary dysplasia
[51,61,63,64]

TNF-α Increases obesity and GDM risk Adipose tissue alterations [61,65]

MCP-1
Increased risk of miscarriage and

GDM risk
Undetermined [61]

RANTES
G-SCF

Increased risk of miscarriage Undetermined [61]

Second Trimester

IL-4

Decreases the risk of preterm birth,
preeclampsia

Increased risk of systemic lupus
erythematosus (SLE)

Undetermined [61]

IL-10
Decreases the risk of preterm birth

and preeclampsia
Increases obesity and GDM risk

Decreased expression of the
inflammatory cytokine gene in the

uterus and placenta
[61,66]

IL-13
Development of fetal

inflammatory response syndrome
Undetermined [61]
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Table 1. Cont.

Trimester Cytokines Clinical Outcome in the Mother
Clinical Outcome in the

Fetus/Infant
Ref.

Third Trimester
(Proinflammatory)

IL-6

Increased risk of miscarriage,
obesity, GDM, and preeclampsia risk

Development of reactive airway
disease (RAD)

Development of reactive airway
disease (RAD)

[51,61–63,65–67]

IL-8

Increased prevalence of infection,
preeclampsia, and chorioamnionitis
Development of fetal inflammatory

response syndrome

Undetermined [61,66]

MCP-1
Increased risk of miscarriage,

autoimmune diseases, and GDM
Undetermined [61]

RANTES-
G-SCF

Increased risk of miscarriage Undetermined [61]

TNF-α Preeclampsia
Wheezing and lower respiratory

tract infections.
Intrauterine growth restriction

[61,63,67]

5. OS and Inflammation during Pregnancy, Metabolic Changes in Chronic Diseases

Currently, gestational obesity and diabetes are associated with fetal disorders affecting
the proteomic profile. An increase in markers of inflammation and OS is observed, as well
as a decrease in the antioxidant system or impairment of vasorelaxation [68]. All of these
characteristics could be linked to the appearance of neonatal hypoglycemia, respiratory
distress syndrome, fetal macrosomia, platelet hyperaggregability, or the development of
cardiovascular disease early in life [69,70]. Also, obesity is associated with a 1.3- to 3.8-fold
increase in the incidence of preeclampsia or GDM [59], short-term hemorrhage, low APGAR
score, congenital birth defects, and admission to neonatal intensive care [51]. Meanwhile,
in the long term, an increased risk of cardiovascular disease and diabetes mellitus type 2
(DM2) in children [51,63,71,72].

5.1. Preeclampsia

Among the prominent hypertensive disorders in pregnancy is preeclampsia. It is a
multifactorial disorder, one of the most common conditions during pregnancy on which hy-
pertension (≥140/90 mmHg) and proteinuria (≥300 mg of protein in 24 h) are predominant,
leading to dysfunction in several organs, poor placental development, and even maternal
or fetal death [73,74]. Preeclampsia regularly develops from the placenta, and its early
stages are known as placental syndrome. This syndrome is characterized by endothelial
damage and dysfunction in different tissues accompanied by excessive free radical forma-
tion [75–77]. Hence, some potential OS markers such as ischemia-modified albumin (IMA),
uric acid (UA), MDA, and metals like zinc (Zn), copper (Cu), and selenium (Se) have been
used as diagnostic biomarkers for preeclampsia [10]. Inflammatory processes exacerbate
the effects of preeclampsia, being IL-1α and IL-1β mainly secreted and expressed in the
placenta. However, the involvement of other members of the interleukin family such as
IL-18, IL-33, IL-37, and IL-38 has also been described [78]. Leakage of trophoblasts into the
uterine wall accentuates inflammation and OS, leading to the presence of hypoxia and an
increased placental ROS concentration [79]

Obesity, preeclampsia, and GDM pregnancy have an altered lipid metabolism, specif-
ically related to low concentrations of lipoproteins and their lipid composition (free and
esterified cholesterol, phospholipids, and triglycerides). Therefore, women with these
conditions become susceptible to OS, and this results in an inhibition in the production of
nitric oxide (NO). NO is an important vasodilator at the endothelial level, and it can lead to
hypertensive disorders, ischemia, or stroke [80].
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Increased inflammatory processes are observed from the first trimester in pregnant
women at high risk of hypertension (Table 2), although, in the third trimester, a significant
increase in proinflammatory cytokines and oxidative markers are observed in women
who develop preeclampsia [81–84]. In late pregnancy, the inflammatory processes are
characterized by elevated cytokines such as IL-1Ra, IL2, IL4, IL6, IL8, IL10, IL12p40,
IL12p70, IL18, TNF-α [85–88], increased CRP [87,89–91], and increased adhesion molecules,
such as the vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule
(ICAM) [86–88], and proteins associated with endothelial dysfunction like the soluble
L-selectin (sL-selectin) in the umbilical cord [87], and in obesity-associated inflammatory
processes characterized by increased leptin [92,93].

OS during early pregnancy is characterized by increased thiobarbituric acid reactive
substances (TBARS) and 8 isoprostane [82,83]. The increase in the lipid peroxidation marker,
MDA, was observed from the second trimester, accompanied by a decrease in antioxidant
defense measured by GSH levels as well as SOD and CAT activity [94]. However, during the
third trimester and delivery, there is increased MDA [85,88,91,95], TBARS [87,96], xanthine
oxidase activity, 8-isoprostane [89,92,97,98], and maintenance of CAT by SOD and GPx
activities [95,99,100]. Enhanced antioxidant system activity reflects impaired redox state
maintenance in the third trimester, and it is observed by increased lipid peroxidation and
GSH/GSSG ratio.

Table 2. Markers of OS and inflammation in pregnant women with preeclampsia.

Study Groups Oxidative and Inflammatory Changes Effects in Mothers/Neonates Ref.

Follow-up from 1st to 3rd trimester

1st–2nd trim = 22
3rd trim = 11
>35 GW = 9

↑ HIF1A mRNA since 1st trimester in PW
who later developed PE

↑ MIF, ENG, FLT1, and BACE2 mRNA at
week 24–30, and only ENG remains high at

31–34 weeks in PW who developed PE

ND [81]

Group I
(risk of HAT without PE) = 82

Group II
(risk of HAT developing PE) = 43

1st trimester in Group II vs. Group I:
↑ IL-6, TNF-α, IFNγ, TBARS, TAC

2nd trimester in Group II vs. Group I:
↑ hsCRP, TNF-α, IFNγ, TBARS, TAC

3rd trimester in Group II vs. Group I and 3rd
vs. 2nd trimester:

↑ IL-6, hsCRP, TNF-α, IFNγ, TBARS, TAC

All parameters correlated with
baroreflex sensitivity except BMI and

TAC. TBARS had a significant
independent contribution to BRS.

[82]

Follow up from 1st trimester to
3rd trimester n = 441

↑ CRP, TNF-α, and 8-isoprostane early in
pregnancy (median 10 weeks)

CRP of PE is similar to non-PE at the end
of pregnancy

↑ TNF-α in PE across pregnancy and ↑

8-isoprostane in PE in early gestation.
No changes in IL-1, IL-6, IL-10 and 8-OHdG

50 PW developed PE
The strongest associations were

observed at approximately 18 weeks
of pregnancy. TNF-α and

8-isoprostane were consistently
elevated at all four time points in

pregnancy. 8-OHdG was found as a
protective factor against PE.

[83]

Follow up of 96 PW with high risk
of PE at 16th week and next at

36th week

↑ MDA, hsCRP, and IL-6 at 36th week
compared to 16th week of pregnancy

↓ Baroreflex sensitivity and NO

Decreased BRS and increased
interleukin-6 are associated with

reduction in NO
[84]

Second trimester

PE = 49
Ctrl = 50

↑ MDA, Cardiac-specific troponin-I, and
↓ CAT, SOD, and GSH in PE vs. Ctrl

Association between SOD and MDA,
and CAT with MDA. CAT correlated

with hsCRP
[94]
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Table 2. Cont.

Study Groups Oxidative and Inflammatory Changes Effects in Mothers/Neonates Ref.

Third and delivery

PE = 20
Ctrl = 18

↑ 8-isoprostane in plasma only in
post-partum

↓ urinary excretion of 8-iso-prostane in PE

The variation of urinary
8-iso-prostane depends on creatinine
clearance and plasmatic endothelin-1

[97]

PE = 10
Ctrl = 11

↑ AOPP in PE vs. non-pregnant women but
not with Ctrl

↑ CRP of PE vs. Ctrl
ND [42]

PE = 19
Ctrl = 18

Non PW = 20

↑ Plasmatic and urinary 8-iso-prostane in PE
and Ctrl vs. non-PW but not in PE vs. Ctrl
↓ α-tocopherol in PE and Ctrl vs. Non PW

γ-tocopherol decreased in PE vs. Ctrl and vs.
non-PW

ND [98]

Mild PE = 47
Severe PE = 36

Ctrl = 50

↑ sFlt-1/PlGF, hs-CRP, 8-isoprostane and
leptin and lower adiponectin in PE vs. Ctrl.

Significant positive correlations in
sFlt-1/PlGF and hs-CRP or leptin.

A weak inverse correlation emerged
between sFlt-1/PlGF

and adiponectin.

[92]

Non-pregnant controls = 10
PE = 28

Ctrl = 59
↑ Superoxide and ferritin in PE vs. control

During HP, superoxide
concentrations correlate significantly

with arterial stiffness, while in PE,
superoxide is significantly correlated
to microvascular endothelial function.

[101]

PE = 15
Ctrl = 28

↑ AGEs in PE vs. Ctrl

+ Correlation between circulating
levels of AGEs and gamma-glutamyl

transpeptidase, uric acid, glucose,
insulin, and HOMA-IR in PE

[102]

Non-PW = 20
PW = 20
Ctrl = 20

↑ Serum resistin, vaspin, MDA, and IL-8 in
PE vs. non-PE and Ctrl

Only resistin and vaspin were
reduced in PE after four weeks

of postpartum
[85]

Mild PE = 45
Severe PE = 40

Ctrl = 48

↓ TAC and ↑ TBARS, IL-6, TNF-α and IFN-γ
in mild and severe PE groups compared

to Ctrl

+ Correlation of circulating
beta-human chorionic gonadotropin
and OS and inflammatory markers

[86]

PE = 27
Ctrl = 43

MPO levels in placenta higher than the levels
in normal control subjects

ND [103]

PE = 5
Ctrl = 5

In preeclamptic women, intense xanthine
oxidase immunoreactivity was present

within the epidermis.
ND [104]

PE = 67
Ctrl = 70

↑ CRP, fetal DNA, MDA and Hsp70 level

In PE serum, Hsp70 levels showed
significant correlations with serum

CRP, aspartate aminotransferase, and
LDH activities MDA

[86]

PE = 53
Ctrl = 20

Mild PE = 32
Severe PE = 21

↑ hsCRP, IL-6, TNF-α and 8-isoprostane in
PE vs. Ctrl and in severe PE vs. mild PE

No changes in MDA

Plasma levels of 8-isoprostane were
significantly correlated with the

plasma levels of hs-CRP, IL-6, and
TNF-α in patients with PE

[89]

PE = 71
Ctrl = 71

In amniotic fluid: ↑ sFLT1, sEndoglin,
endothelin 1, and leptin in PE.

sFLT1, sEndoglin, leptin, and adiponectin ↑

in PE IUGR than those without IUGR.

Leptin has the largest area under the
curve (0.753). Amniotic proteins are

involved in the inflammatory process
of the human placenta.

[93]

PE = 44
Ctrl = 44

↑ serum CRP, plasma MDAin PE vs. Ctrl

Plasma OPN concentrations are
increased in

preeclamptic patients with extensive
endothelial injury.

[95]
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Table 2. Cont.

Study Groups Oxidative and Inflammatory Changes Effects in Mothers/Neonates Ref.

PE = 60
Ctrl = 60

↑ Hsp70, IL-1Ra, IL2, IL4, IL6, IL8, IL, IL10,
IL12p40, IL12p70, IL18, INF&, IP10, MCP-1,
ICAM-1, VCAM-1, sFlt-1, P1GF in PE vs. Ctrl

Elevated serum Hsp70 level and
sFlt-1/PlGF ratio had a synergistic

(joint) effect in the risk
of preeclampsia

[86]

PE = 46
Ctrl = 42

↑ TBARS, TBARS/TAS, IL-6, TNF-a,
a1-antitrypsin, CRP in plasma of PE vs. Ctrl
↑ CRP and a1-Antitrypsin in umbilical cord

of PE vs. Ctrl
↑ sVCAM, sL-selectin in leucocytes of PE

vs. Ctrl

+ Correlation between maternal and
UCB TAS, IL-6, CRP in Ctrl and PE

[87]

PE = 33
Ctrl = 33

↑ IL6, MDA, CP, in plasma and placenta of
PE vs. Ctrl

↑ TLR-4 and NF-kB in the placenta
ND [88]

PE = 50 (17 mild and 33 severe)
Ctrl = 33

↑ MDA in PE mild vs. PE severe
↑ IL-6, IL-10, TNF-a in PE vs. Ctrl
↑ IL-6/IL-10 ratio in PE vs. Ctrl

ND [91]

PE = 18
Ctr = 18

↑ CAT, Il-6, TNF-α in PE vs. Ctrl
Plasma Mg was positively correlated with

CAT and GPx activities with concentrations
of IL-6 and TNF-α

Plasma magnesium and urinary
8-isoprostane were associated

with PE
[99]

PE = 100
Ctr = 50

↑ SOD, GSH/GSSG ratio, IL-6, and ↓ GSSG
in placenta of PE vs. Ctrl

+ Associations between placental
GSH levels with weight, head, and
chest circumference and gestational

age at birth

[100]

Abbreviations: 8-OHdG, 8-hydroxy-2′-deoxyguanosine; AOPP, advanced oxidation protein products; AGE,
advanced glycation end products; BACE2, β-site APP-cleaving enzyme-2; BRS, baroreflex sensitivity; CAT, cata-
lase; Ctrl, control group (pregnant women without preeclampsia); ENG, endoglin; FLT1, fms-related tyrosine
kinase-1; GPx, glutathione peroxidase; GSH, glutathione; GSSG, oxidized GSH; GW, gestational week; HIF1a,
Hypoxia-inducible factor 1-alpha; hsCRP, high sensitivity C Reactive Protein; Hsp70, heat shock proteins; ICAM-1,
intracellular adhesion molecule; IFNγ, interferon gamma; IL, interleukin; IUGR, fetal intrauterine growth restric-
tion; MCP1, monocyte chemotactic protein 1; MDA, malondialdehyde; MIF, macrophage migration inhibitory
factor; MPO, myeloperoxidase; NF-kB, nuclear factor kappa B; NO, nitric oxide; OPN, osteoponin; PE, preeclamp-
sia; PlGF, placental growth factor; PW, pregnant women; sFlt-1, soluble fms-like tyrosine kinase receptor-1; SOD,
superoxide dismutase; TAC, total antioxidant capacity; TBARS, thiobarbituric acid reactive substances; TLR-4,
toll-like receptor; TNF-α, tumor necrosis factor alpha; trim, trimester; VCAM-1, vascular cell adhesion molecule;
VEGF, vascular endothelial growth factor.

5.2. Obesity

A common condition observed is the accumulation of lipids during the first trimester
that decreases towards the end of the third trimester. Conversely, lipolysis decreases in the
first trimester and increases by the third trimester. Similarly, glucose tolerance and insulin
resistance behave in the same way, respectively [105]. Moreover, there is a high variability
in lipid, protein, and carbohydrate metabolism, which are regulated by immunometabolic
and immunoinflammatory processes, including proinflammatory cytokines and ROS pro-
duction [106,107]. Nevertheless, when antioxidant–ROS balance is disturbed, extreme
OS occurs, leading to abnormal placentation with increased vascular resistance inside
the placenta, thereby allowing OS to overwhelm antioxidants, to shorten telomeres, and,
ultimately, to lead to cellular senescence [108]. Also, when pregnant women develop
preeclampsia, the processes of apoptosis, autophagy, and cellular senescence, which play
a critical role in placental and fetal homeostasis and growth, appear disrupted, increas-
ing susceptibility to negative conditions in the fetus and the mother [109]. Among the
conditions that present an alteration in metabolic and inflammatory processes is obesity,
which is a chronic disease considered a risk factor for the development of preeclampsia,
GDM, anemia, complications or death in childbirth in women, increased cardiovascular
risk, insulin resistance, hyperinsulinemia, and prevalence of inflammatory processes in the



Antioxidants 2023, 12, 1894 10 of 27

neonate [110–112]. Usually, pregnant women with obesity at pre-pregnancy or becoming
obese have a lipotoxic placental environment leading to increased OS and elevated concen-
trations of TNF-α, IL-1, IL-1β, IL-3, IL-4 and IL-6, and IFN-γ. These cytokines also regulate
the activity and expression of placental fatty acid transporters, and, during the second or
third trimester, they downregulate some metabolic pathways then increase the levels of
total cholesterol, triglycerides, and very low-density lipoproteins (VLDL) [112–114].

Clinical studies show increased lipid peroxidation (MDA, LOOH) [115–119] and sig-
nificant changes in antioxidant status (total antioxidant capacity and antioxidant enzyme
activity) in pregnant women with obesity [119–123] during the third trimester of pregnancy
(Table 3). Another study has shown an increase in lipid peroxidation and protein carbony-
lation (PC) in pregnant women with obesity versus controls, only in the third trimester, but
not in the first and second trimesters of pregnancy. However, an increase in TNF-α was
observed at 12–13 weeks of gestation, also in women with obesity who developed GDM.
The ratio of reduced oxidized glutathione (GSH/GSSG) is an indirect marker of redox
status [115]. In addition, increased antioxidant activity of SOD and CAT was observed
in the placenta [122] and umbilical cord [119] of obese women compared to non-obese
women, and compared to plasma activities during the third trimester of pregnancy. These
results reveal necessary changes to maintain the homeostatic redox state in the placenta
and the umbilical cord at the expense of maternal plasma redox. Inflammatory conditions
have also been associated with reduced adiponectin levels in the third trimester [117–124].
Maternal BMI has been shown to have a significant positive correlation with increased
levels of CRP, PC, GSSG/GSH, IL-6 ratio, and salivary CT [117,120,121]. These associations
could be affected by hyperglycemia [113,116,119] and maternal age [115]. The association of
mother and newborn in inflammatory and oxidative statuses revealed a positive correlation
in the cord SOD activity of newborns with an increased SOD activity of normoglycemic
ones. MDA levels in newborns were lower in term neonates and those with mothers who
consumed vitamin supplements [119].

Table 3. Markers of OS and inflammation in pregnant women with obesity.

Study Groups
Oxidative and

Inflammatory Markers
OS Changes Inflammation Changes

Effects in Mothers and
Newborns

Ref.

PW Ctrl = 28
PWOw = 26
PWOb = 26

MDA, LPH in plasma
CP in RBCs

Plasmatic IL-6
and TNF-α

↑ MDA, LOOH and CP in
PWOb and PWOw vs.

Ctrl in the 3rd trimester
vs. the 2nd trimester

↑ TNF-α in PWOb vs. PW
at 12–13 months

of gestation
↑ TNF-α and IL-6 in

women who
developed GDM

+ Correlation of LOOH,
MDA and CP with

gestational age in all
groups and higher levels
of these markers in PW

who developed GDM vs.
PWOb in 2nd and

3rd trimesters

[115]

Ctrl = 15
PWOb = 15

Serum iron and
transferrin saturation
(Tsat), CRP, IL-6, GSH,

and GSSG

Ratio of serum
GSSG/GSH was higher
in the PWOb compared

to Ctrl

↑ TNF-α in PWOb
vs. Ctrl.

No changes in IL-6
and iron

+ Correlation between
maternal BMI and CRP.
- Correlation between
BMI and iron status in

cord blood.
Serum iron and Tsat were
found to be significantly
lower in cord blood from
PWOb compared to Ctrl

[120]

Ctrl = 40
PWOb = 40

Serum MDA and
hsCRP at 28 weeks

of gestation

↑ MDA and glucose after
3 h OGTT were higher

in PWOb
No changes at baseline.

Higher levels of hsCRP at
baseline and after 3 h of
OGTT in PWOb vs. Ctrls

After the OGTT at
28 weeks of gestation,

16 patients in the obese
group and 1 in the control

group had GDM.

[116]
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Table 3. Cont.

Study Groups
Oxidative and

Inflammatory Markers
OS Changes Inflammation Changes

Effects in Mothers and
Newborns

Ref.

Weight gain
Insufficient, IWG = 28

Normal, NWG = 20
Excessive, EWG = 26

Serum LOOH, MDA,
CP, 8-oxodG,

adiponectin, leptin,
and resistin

No significant differences
in LOOH, MDA, and CP
concentrations between

groups. A trend to lower
8-oxodG in PWOb

↓ Adiponectin in EWG
+ Correlation between

Adiponectin and
8-oxodG concentration in

NWG. In EWG, leptin
was associated with

LOOH, MDA, and CP.

ND [124]

Ctrl = 25
PWOw = 21
PWOb = 22

Adiponectin, leptin,
and resistin in serum.

MDA, CP, and 8-oxodG
in plasma

↑ MDA and CP in PWOb
vs. Ctrl

↓ Adiponectin and
resistin in PWOb

BMI estimating
adiponectin and CP

concentrations (37%).
Gestational age predicts
resistin and MDA (34%).

[117]

Ctrl = 15
PWOb = 15

CRP, GSSH, GSH,
TNF-α and IL-6 levels

in serum and cord

↓ GSSG/GSH ratio in
PWOb vs. Ctrl

↑ CRP and IL-6 in PWOb
vs. Ctrl.

↑ CRP in cord of PWOb
vs. Ctrl

Maternal BMI correlated
with CRP, GSSG/GSH

ratio, and IL-6.
Infants born from PWOb

mothers did not have
higher measures of OS.

[120]

Ctrl = 50
PWOb = 40

Nitric oxide (NO), CAT,
SOD, GSH, CP and

MDA in plasma
and placenta

↓ SOD and CAT and
GSSG levels in PWOb

and their newborns
vs. Ctrl

↑ MDA, CP, Nitrite and
Red-NTB in plasma

PWOb and their
newborns vs. Ctrl

↑ CAT, SOD, GSH, MDA
and CP in placenta of

PWOb vs. Ctrl

+ Correlation between
maternal and fetal levels

of TG and plasma and
placental MDA.

Maternal nitrite and
reduced NBT levels were
significantly correlated
with those of newborns

of PWOb

[118]

Ctrl = 27
PWOb = 18

PW with obesity and
GDM (ObGDM) = 17

TAC and CRP in saliva
CRP in plasma

↑ TAC in saliva in
ObGDM vs. PW.

+ Correlation between
TAC and CRP in saliva

or plasma

↑ CRP in saliva and
plasma in ObGDM

vs. PW.
↑ CRP in plasma in

PWOb vs. PW

TAC and CRP correlates
positively with BMI

and glycemia.
A significant interaction
between maternal BMI
and periodontitis for

s-TAC levels.

[121]

Additional abbreviations. CP, carbonylated proteins; EWG, excessive weight gain; LOOH, lipohydroperoxides; PWOb,
pregnant women with obesity; PWOw, pregnant women with overweight; red NBT, reduced nitroblue tetrazolium.

5.3. Gestational Diabetes Mellitus

The most frequent endocrinological complication in pregnancy, worldwide, is obesity,
and it plays an important role in the development of GDM. Also, it is related to negative
neonatal and obstetric conditions in the mother and infant at both cardiovascular and
neurological levels [125,126]. Commonly, GDM is defined as an abnormal glucose tolerance
that results in the development of hyperglycemia during pregnancy, and it can be triggered
by obesity, a variation in adipokine production, and other external conditions, including
maternal age, a diet rich in saturated fatty acids, family history of diabetes, and hypertensive
processes during pregnancy [127]. The molecular pathophysiology of GDM has been
extensively investigated. Proteomic studies in plasma from women with GDM have
revealed changes in inflammation and OS markers, insulin resistance, blood coagulation,
and lipid homeostasis during the second trimester of pregnancy, as well as elevated CRP in
the first trimester of women who developed GDM [128] (Table 4).

Inflammatory processes are a key factor in the development of GDM, as increased
activity or expression of inflammatory markers negatively alters insulin receptors, resulting
in insulin resistance [129]. In addition to TNF-α, IL-6, adiponectin, resistin, or leptin that
are involved in obesity, other biomarkers are included, such as the retinol-binding protein-4
(RBP-4), visfatin, adipocyte fatty acid-binding protein (AFAABP), and some novel proteins
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like visceral adipose tissue-derived serpin A12 (vaspin) [130], apelin [131], and omentin,
which may be involved in the development of GDM and in the progression of obesity [132].

During the second trimester of pregnancy, OS and inflammation are established in
GDM by an increase in F2 isoprostanes [133,134], ROS in lymphocytes [135], total OS,
and OS index in serum [134], as well as an increase in the acute phase reactants, which
are independent determinants of GDM after adjustment for BMI [135,136] (Table 4). At
the end of pregnancy, there is an increase in antioxidant enzymes, like CAT and GSR in
placenta [137]. In contrast, other studies did not show an increase in protein carbonyla-
tion [138] or TBARS [139]. However, in studies with a bigger sample size, an increase in
MDA, hsCRP, and IL-6 in the plasma of pregnant women with GDM was observed to be
associated with stress and postnatal depression [140].

Both GDM and obesity complications constitute independent risk factors that increase
problems during delivery and that are associated with an increase in monocyte count in
cord blood and with the expression of several genes like the silent information regulator
sirtuin 1 (SIRT1) and uncoupling protein 1 (UCP1) in obese pregnant women [139], while
growth/differentiation factor 15 (GDF-15) is increased in GDM [141]. Also, an increase in
mitochondrial DNA levels, but dysfunctional syncytiotrophoblast mitochondria with mor-
phological abnormalities [142], has been observed in the placenta of obese pregnant women
who developed GDM. These physical abnormalities could lead to impaired pregnancy
outcomes and future hypertensive [143,144] and neurological disorders [145].

Table 4. Inflammation and OS markers in pregnant women with GDM.

Study Groups
Oxidative and

Inflammatory Markers
Oxidative Stress

Changes
Inflammation

Changes
Effects in Mothers and

Newborn
Ref.

GDM = 22
Ctrl = 22

Proteome profiling
in plasma

↓ PON/LAC3 in
GDM vs. Ctrl

↑ CRP and ↓

IGFBP2 in GDM
vs. Ctrl

Strong correlations among the
inflammation-related proteins

and proteins of blood
coagulation, lipid homeostasis

membrane, and
antioxidative enzymes

[128]

GDM = 11
Ctrl = 23

Six F2-isoprostanes
isomers

↑

8-iso-15(R)-PGF2α
levels in GDM

vs. Ctrl

ND

Delta-6-desaturase (D6D)
activity index, calculated

using fatty acid ratios, was 9%
lower in pre-existing diabetes

than in controls

[146]

GDM = 48
Ctrl = 46

Total oxidative stress
(TOS), total antioxidant

status (TAS), and
oxidative stress index

(OSI) in serum

↑ Serum OGTT,
OSI, TOS in GDM

vs. Ctrl
ND ND [134]

GDM = 60
Ctrl = 75

CRP, NLR and PLR, PCT,
and VAP-1

ND
↑ CRP, NLR, PLR,
PCT and VAP-1 in

GDM vs. Ctrl

+ Correlation of VAP-1 with
glucose, HbA1c, PLR,

and CRP
[136]

GDM = 114
Ctrl = 114

ROS (DCFH-DA) and
DNA damage (comet

assay) in
lymphocytesNLR and

MVP in blood

↑ ROS and DNA
damage in GDM

vs. Ctrl

↑ NLR and mean
platelet volume
(MPV) in GDM

vs. Ctrl

The elevated parameters are
independent determinants of

GDM after adjustment
for BMI

[135]

GDM = 30
CRP, ferritin, TNF-α,

methylglyoxal,
glycated albumin

ND

↑ PAF and TNF-α
after diet

↑ MGO in GDM vs.
non-pregnant

healthy people

+ Correlation of MGO levels
with HbA1c, pregnancy
weight and HOMA-IR at
GDM diagnosis and after

12 weeks

[147]
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Table 4. Cont.

Study Groups
Oxidative and

Inflammatory Markers
Oxidative Stress

Changes
Inflammation

Changes
Effects in Mothers and

Newborn
Ref.

GDM = 40
Ctrl = 40

GDF-15 in serum ND
↑ Serum GDF-15
levels in patients

with GDM vs. Ctrl

+ Correlation of GDF-15 and
BMI for both GDM and Ctrl
↓ Apgar scores at 1 min and
5 min in the GDM vs. Ctrl

[141]

GDM = 176
Ctrl = 164

MDA, hsCRP, IL-6, and
NO in plasma

↑ MDA and ↓ NO
in GDM vs. Ctrl

↑ hsCRP and IL-6
in GDM vs. Ctrl

Significant association of
HbA1C, MDA, and

interleukin-6 with maternal
stress and

postnatal depression

[140]

GDM = 17
Ctrl = 23

CAT, GPX, GSR, and
SOD gene expression in
placenta and omental

and subcutaneous
adipose tissue

↑ CAT and GSR in
placenta of GDM

vs. Ctrl
No changes in GPx
or SOD in placenta
and no changes in

adipose tissue

Treatment with
hypoxan-

thine/xanthine
oxidase-

stimulated
cytokine release

(IL1B, MIP1b, and
TNF-α) and TNF-α
mRNA expression

ND [137]

GDM = 8
T2D = 3

T1D = 12
Ctrl = 13

IL-8, MCP-1, and CP in
plasma and

umbilical cord

No changes in CP
in mothers with

DM vs. Ctrl

No changes in
MCP-1 and IL-8 in
mothers with DM

vs. Ctrl
↑ MCP-1 and CP in

umbilical cords
from mothers

with DM

MCP-1 correlated with ketone
bodies and acetoacetate

[138]

GDM = 69
PWOb = 44
PWOw = 48

Ctrl = 104

TBARS in placenta and
UCP2, SIRT1, PPARα,
TLR4, and GR-a gene

expression in
placenta tissue

↑ UCP2 expression
in PWOw and
PWOb vs. Ctrl

↑ SIRT1 expression
in PWOw and
PWOb vs. Ctrl

↑ GR-a expression
in GDM vs. Ctrl

↑ Monocyte count was higher
in the cord blood PWOb with

normal glucose tolerance
↑ Serum leptin PWOb
compared to Ctrl and

their offspring

[139]

Additional abbreviations: GDF, growth differentiation factor-15; GSR, glutathione reductase; IGFBP2, insulin-like
growth factor-binding protein 2; MGO, methylglyoxal; MVP, mean platelet volume; NLR, neutrophil to lympho-
cyte ratio; PAF, platelet-activating factor; PCT, procalcitonin; PLR, platelet to lymphocyte ratio; PON, paraoxonase;
PPARα, peroxisome proliferator-activated receptors; SIRT1, silent mating type information regulation 2 homolog;
UCP2, uncoupling protein 2; VAP-1, vascular adhesion protein-1.

5.4. Risk of Preterm Delivery

OS and inflammation induce impairment of placental permeability, producing a hy-
poxic placenta, which usually leads to activation of the maternal systemic inflammatory
response [148]. As a consequence, it affects both maternal and placental functions, thereby
causing intrauterine growth restriction (IUGR), preterm delivery, gestational diabetes,
preeclampsia, and aortic dissection during pregnancy [61,149]. Likewise, there is dysregu-
lation in lipid profiles such as sphingomyelin and phosphatidylcholine, which have been
associated with inflammatory biomarkers such as TNF-α, IL-6, and CRP [150].

5.5. Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFLD is regarded as a hepatic manifestation of metabolic syndrome (MS), which is
characterized by elevated levels of saturated fatty acids, polyunsaturated fatty acids, and
reduced levels of phospholipids in both the serum and HDL, specifically according to their
PUFA fraction.
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In both animals and humans, studies have established a relationship between adaption
to maternal malnutrition (over or undernutrition), environmental factors, maternal stress,
pathology genetics, and epigenetic modifications and early-life and later development of
components of MS in offspring, including obesity, insulin resistance, impaired glucose
tolerance, dyslipidemia, low HDL-C, increased VLDL-TG, and abnormal liver function such
as NAFLD [151,152]. Moreover, recent studies on young adults revealed that being born to
an obese mother induced perturbations in adipose tissue function and lipid homeostasis,
increasing the risk for developing NAFLD in adulthood three-fold [153].

Declining adipose tissue function is a key characteristic in the transition to metabol-
ically unhealthy, hypertrophic obesity. Dysfunctional adipose tissue is characterized by
chronic inflammation that may promote injury, increasing oxidative stress, insulin resis-
tance, dysregulated lipolysis, and eventually lipotoxicity combined with ectopic deposition
in peripheral organs such as the liver. Therefore, adiposopathy is a key trigger for the onset
of obesity-associated hepatic steatosis [154,155].

In this context, exposure to an abnormal intrauterine milieu may be an important risk
factor for the development of cardiometabolic diseases in childhood and adulthood. This
adaptation to the intrauterine environment has been explained with Barker’s theory, also
known as the intrauterine programming effect, where the intrauterine environment alters
the metabolism of the fetus, redistributes its blood flows to protect important organs such
as the brain, and even adapts to slower growth to decrease its substrate demands. On the
other hand, those changes can be permanent in the structure and function of the offspring.
According to this theory, the growth and development of the fetus are determined by three
factors: first, the mother’s nutritional status; second, placental function; and third, the
ability of the fetus to utilize nutrients [156].

6. Lipids and Lipoproteins in Pregnancy

Lipid metabolism during pregnancy becomes relevant since lipid concentrations
change according to maternal requirements and fetal growth; subsequently, dysregula-
tion of lipid metabolism is associated with endothelial dysfunction or immunological
changes [150], while major alterations are found in the concentration of triglycerides and
cholesterol and in the number of LDL and HDL particles [157], hyperlipidemia being
a common condition even in normal pregnancy that allows glucose and calories to be
utilized by the fetus. Nevertheless, it has been reported that maternal lipid levels during
pregnancy are significantly correlated with the lipid profile of children during the first
years of life [158]. Additionally, it is well known that lipid dysregulation is an important
risk factor associated with the development of preeclampsia and cardiovascular disease
in pregnancy.

6.1. Lipoproteins

Lipoproteins are macromolecular complexes composed of hydrophobic lipids such
as triglycerides and cholesterol esters on the inside, whereas their surface is formed by
amphipathic lipids like phospholipids and free cholesterol. Moreover, there are proteins,
known as the apolipoproteins (Apo), providing stability to the surface and conferring part
of their own properties [5] (Figure 2). In recent decades, the role that certain lipoproteins
play in different chronic-degenerative diseases has sparked interest, especially high-density
lipoproteins (HDL).
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Figure 2. General structure for lipoproteins.

6.2. HDL

High-density lipoproteins (HDL) are complex and heterogeneous structures constitut-
ing a lipid transport mechanism. Different components (lipids and proteins) of HDL are
continuously being exchanged. As a result, they modify the composition, charge, and size
of these particles. Currently, it has been described that HDL particles can similarly transport
other compounds (about 250), such as sphingosine-1-phosphate, paraoxonase-1 (PON1),
acute phase proteins (SAA) [159], platelet-activating factor acetylhydrolase (PFA-AH) en-
zymes and proteins, such as cholesterol ester transporter protein (CETP) and phospholipid
transporter protein (PLTP), among many other components [160,161].

In this context, HDL has been attributed to exert some cardioprotective properties,
including reverse cholesterol transport and antioxidant, anti-inflammatory, and antiathero-
genic activities (Table 5) [162–165]. Many of these functions are important for a healthy
pregnancy and good neonatal outcomes [166,167].

Table 5. HDL main functions.

HDL Function
Proteins and Lipids Associated

with HDL Function
Ref.

Reverse cholesterol transport

HDL promotes cholesterol efflux from various cell types.
ABCAI, ABCG1, SR-BI, cubilin,

ApoE receptor [168,169]Removing excess cholesterol from lipid-laden
macrophages is a crucial process in HDL-mediated

vascular protection.

Oxidant HDL has antioxidant properties whereby it can remove
and inactivate lipid peroxides from LDL and cells.

PON 1, Apo AI, PAF-AH, LCAT,
Apo M, S1P, phospholipids [159]

Inflammation

Controlling the activation of monocytes, preventing
macrophage migration, and inhibiting the oxidation of

LDL by blocking the 12-lipoxygenase that produces lipid
hydroperoxides and leads to the oxidation of the LDL

VCAM, ICAM, TNF-α,
SAA, ceramides [169]

Vascular function
Modulation of endothelial nitric oxide synthase (eNOS)

expression, leading to increased nitric oxide (NO)
production and vasodilation

ABCA1, SR-BI, S1PR, S1P, Apo M [170–172]
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These positive effects are explained by the structure and chemical composition of
these particles. However, it has been shown that these lipoproteins can lose or reduce their
cardioprotective capacity, giving rise to prooxidant, proinflammatory, and proatherogenic
lipoproteins, contributing to the process of atherosclerosis; this phenomena has been termed
“dysfunctional HDL” [173,174].

Some study groups proposed the hypothesis that HDL delivers lipids to cells. For in-
stance, Pérez-Mendez et al. demonstrated that HDL delivers cholesterol and sphingomyelin
to endothelial cells in vitro [175]. Therefore, the possibility of the regulation of these lipopro-
teins on cell function after internalization and the delivery of their content is extremely high.
Hence, the lipid delivery of HDL to cells becomes of particular importance when cell mem-
branes should be intensively synthesized or re-structured, i.e., during fetal growth. HDL-C
plasma levels and composition may change drastically during inflammatory processes.

It has been described that HDL can inhibit the oxidation of other molecules, such as
LDL through free radical damage, which results in the generation of oxidized lipids with
pro-inflammatory activity [176]. Nonetheless, in certain conditions such as obesity, diabetes,
and other cardiovascular diseases, it has been observed that HDL loses its protective prop-
erties, becoming dysfunctional HDL [168–170], and leads to an increase in inflammatory
processes and OS in several conditions, including pregnancy (Figure 3) [166,167].

α

ff

Figure 3. Functional and dysfunctional HDL during pregnancy.

Given that this is of great relevance in chronic degenerative diseases, the use of
bioactive compounds from fruits, vegetables, foods of animal origin, and plants has become
an alternative for improving the functionality and chemical composition of HDL. Thus,
they are able to regulate the negative effects caused by OS and inflammatory processes.

6.3. HDL Role and Upregulation Contribution in Inflammatory Processes and OS

Pregnant women normally experience physiological changes, involving carbohydrate
and lipid metabolism, insulin resistance, inflammation, coagulation, and OS, all of them
causing endothelial damage [170]. Despite this unfavorable environment, pregnant women
have better vascular function. Likewise, during embryogenesis and fetal development,
the levels of apolipoproteins, lipoproteins, and lipids increase significantly. HDL-C lev-
els change during pregnancy: in the first trimester, changes are insignificant, but, in the
second trimester, these changes increase and then slightly decrease in the third trimester.
In chronic inflammatory processes, the functional activities of HDL are reduced, the for-
mation of new particles decreases, and catabolism increases. Also, structural changes
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occur at the protein level, such as the replacement of PON1 or Apo A1 molecules by proin-
flammatory proteins, including ceruloplasmin and SAA [177,178] that converts HDL to
HDL-proinflammatory and results in increased chemoattractant activity, oxidation of LDL,
and the release of additional proinflammatory molecules [179,180]. In this chronic inflam-
mation, HDL-proinflammatory may accelerate immune responses toward pathogens, due
to HDL remodeling. It is well known that immunological changes occurring in pregnancy
for improved fetal tolerance lead to an increased susceptibility to infections. In the acute
phase response, HDL levels decrease constantly, with an increase in SAA and ceruloplasmin
concentration and a respective decrease in PON1 and Apo A1. Consequently, this could be
one of the major risk factors during pregnancy (in trimesters of increased inflammatory
processes) for the development of diseases or negative conditions.

Furthermore, an important role of HDL in pregnancy has been reported in the reducing
of OS levels, both at placental level and in umbilical cord blood, which are mainly associated
with PON1 activity [181]. An important factor in pregnancy is the higher activity of
lipoprotein-associated phospholipase A2 (LpPla2) (mainly LDL and HDL), which is an
enzyme synthesized predominantly by macrophages and associated with inflammatory
processes and higher triglyceride levels, as well as in conditions of elevated OS such as
GDM concentration of LpPla2, which is highly elevated compared to healthy women.
However, this enzyme can be associated with HDL because it improves the antioxidant
and anti-inflammatory functions of HDL, thereby reducing OS levels in plasma [182].

Another important complication of pregnancy caused by the increase in OS is preeclamp-
sia, which affects both pregnant women and newborns and presents oxidative alterations
in both LDL and HDL, caused by lipoperoxidation and inactivation of PON1, potentially
leading to improper placentation [183].

It has been shown that a maternal diet rich in saturated and trans fatty acids causes
harmful changes in the bacteria that colonize the intestine of the offspring, and these in turn
produce metabolites that can subsequently affect different organs. Organic acids produced
by intestinal bacteria may be involved in inflammatory mechanisms and play a key role in
changes in the metabolism and develop neonatally or in adulthood. A high-fat diet during
perinatal life predisposes greater expression of the NF-κB gene, which is a transcription
factor of multiple biological processes, including immune and inflammatory responses and
cell growth and survival [184,185].

Several studies have suggested that HDL dysfunction is a common pathological factor
that connects the metabolic syndrome to NAFLD and cardiovascular disease develop-
ment. The composition and structure of HDL particles seem to be characterized by the
depletion of polyunsaturated fatty acid phospholipids and enrichment of saturated fatty
acid ceramides [151,186]. In this context, preclinical studies have provided mechanistic
insights as to how PUFA (especially essential fatty acids, EFA) deficiency promotes hepatic
steatosis. EFA can negatively modulate the hepatic de novo lipogenesis machinery toward
the negative modulation of the liver X receptor (LXR) of SREBP-1 and/or of the carbohy-
drate response element binding protein (ChREBP). Also, PUFA can activate the peroxisome
proliferator, activated receptor-alpha (PPARα), and may promote fatty acid oxidation [186].
This is strong evidence for the role of PUFAs in modulating hepatic lipid metabolism [151].

6.4. Bioactive Compounds and HDL Functionality

Bioactive compounds have been widely studied as mediators of inflammation and
OS in several conditions and diseases. Nevertheless, their mechanism of action remains
unclear. Some studies describe that they are an important part of the secretion of inflam-
matory molecules (cytokines, adipokines, etc.), of the mediation of metabolic pathways,
or of the regulation of gene expression at the muscle or adipose tissue level [187]. Cur-
rently, the most commonly studied bioactive compounds are folates [188], polyphenolic
compounds [189], polyunsaturated fatty acids [190], prebiotics [191], and probiotics [192],
along with their derivatives.
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Studies have described that part of the functionality of HDL is linked to its chemical
composition. This, in turn, depends on the appearance of some diseases causing HDL
dysfunction [193], especially chronic degenerative diseases, which may also change HDL
size as well as the number of circulating particles. In DM and coronary heart disease
patients, it has been reported that, in addition to Apo A concentration modifications, the
presence of OX increases glycoxidation and peroxidation of protein and lipid fractions of
HDL, respectively [194–197].

An alternative way to reverse the mentioned effects is via bioactive compounds from
functional foods. It is well documented that foods, for example, fruits and vegetables,
fish, legumes, cereals, red wine, and elements of the Mediterranean diet, increase the
concentration of HDL, TRC, and antioxidant activity at the same time, increasing the
activity and/or expression of paraoxonase-1 (PON1), an atheroprotective enzyme that is
bound to HDL [198–200]. Likewise, it has been reported that foods rich in polyphenols,
hydrolysable tannins, and polyunsaturated fatty acids (PUFAs) modify the protein [201]
c-HDL, Tg-HDL, and Phos-HDL content of HDL [197,198].

Alternative dietary modifications such as Mediterranean diet [202] seek to enhance
HDL functionality via regulation of RCT. On the other hand, olive oil consumption [203]
seems to have a similar effect but is attributable to its effect on the size and stability of
HDL. For instance, a study based on red yeast rice extract and additional compounds
shown to reduce cardiovascular risk in humans, a significant decrease in the lipid profile
associated with cardiovascular risk, mainly c-LDL, and an increase in Apo A1 were found in
102 participants. However, there was no significant difference in the levels of c-HDL [204].
In contrast, a pilot study of 167 patients with metabolic syndrome features, bioactive
compounds such as docosahexaenoic acid, β-glucans, and anthocyanins were proved as
components of fortified functional foods, and a significant decrease in triglycerides and an
increase in LDL-C were observed [205]. Moreover, in a study that evaluated the structure
and function of HDL in adults with overweight, obesity, and cardiovascular risk, it was
observed that there is a relationship between the decrease in inflammation markers such as
IL-6 with sphingosine 1 phosphate (SP1) of HDL under a diet based on a Mediterranean
diet [206].

Studies by our research group have demonstrated this: in an animal model as well as
in women with acute coronary ischemic syndrome (ACS), by using a microencapsulated
product enriched in antioxidants and PUFAs, mainly punicic acid, it was observed that this
treatment improved the lipid profile, PON1 activity, and endothelial function mediated by
HDL. In ACS women, the dysfunctionality of HDL was reverted by regulating the protein
and lipid composition of the smallest subclasses (HDL3) [201,207]. Two possible explana-
tions for these results suggest that bioactive compounds present in this microencapsulated
product could remodel alterations in HDL under conditions of dyslipidemia, OS, and
inflammation. Also, another possible explanation is that HDL acts as a vector for bioactive
compounds, enhancing its bioavailability and potentially increasing its health benefits.

7. Conclusions

Health in pregnant women is of great relevance in preventing cardiometabolic diseases
in offspring. In this context, the properties of HDL, like removing oxidized lipids, carrying
bioactive compounds, inhibiting expression and activity of pro-inflammatory molecules,
lipid transport or regulation of lipid metabolism, are important during pregnancy to
progress to childbirth without complications, in addition to promoting placentation and
healthy development of the fetus. Moreover, processes of lipoperoxidation, glycoxidation,
and the release of pro-inflammatory molecules, which may possibly be reverted by the
interaction and transport of bioactive compounds that are present in foods, characterize
diseases such as preeclampsia, diabetes, and gestational obesity during pregnancy. How-
ever, more studies are needed in order to find therapies that regulate metabolic processes
to prevent diseases and to ensure a healthy pregnancy.
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Diabetes Mellitus and Adverse Perinatal Outcomes? Taiwan J. Obstet. Gynecol. 2021, 60, 221–224. [CrossRef]
142. Mandò, C.; Anelli, G.M.; Novielli, C.; Panina-Bordignon, P.; Massari, M.; Mazzocco, M.I.; Cetin, I. Impact of Obesity and

Hyperglycemia on Placental Mitochondria. Oxid. Med. Cell. Longev. 2018, 2018, 2378189. [CrossRef]
143. Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Schmidt, L.; Damm, P. Overweight and the

Metabolic Syndrome in Adult Offspring of Women with Diet-Treated Gestational Diabetes Mellitus or Type 1 Diabetes. J. Clin.

Endocrinol. Metab. 2009, 94, 2464–2470. [CrossRef] [PubMed]
144. Lu, J.; Zhang, S.; Li, W.; Leng, J.; Wang, L.; Liu, H.; Li, W.; Zhang, C.; Qi, L.; Tuomilehto, J.; et al. Maternal Gestational Diabetes Is

Associated with Offspring’s Hypertension. Am. J. Hypertens. 2019, 32, 335–342. [CrossRef]
145. Bayman, M.G.; Inal, Z.O.; Hayiroglu, F.; Ozturk, E.N.Y.; Gezginc, K. Foetal Umbilical Cord Brain-Derived Neurotrophic Factor

(BDNF) Levels in Pregnancy with Gestational Diabetes Mellitus. J. Obstet. Gynaecol. 2022, 42, 1097–1102. [CrossRef] [PubMed]
146. Taschereau-Charron, A.; Bilodeau, J.F.; Larose, J.; Greffard, K.; Berthiaume, L.; Audibert, F.; Fraser, W.D.; Julien, P.; Rudkowska, I.

F 2-Isoprostanes and Fatty Acids Profile in Early Pregnancy Complicated by Pre-Existing Diabetes. Prostaglandins Leukot. Essent.

Fat. Acids 2018, 135, 115–120. [CrossRef]
147. Piuri, G.; Basello, K.; Rossi, G.; Soldavini, C.M.; Duiella, S.; Privitera, G.; Spadafranca, A.; Costanzi, A.; Tognon, E.;

Cappelletti, M.; et al. Methylglyoxal, Glycated Albumin, PAF, and TNF-α: Possible Inflammatory and Metabolic Biomarkers for
Management of Gestational Diabetes. Nutrients 2020, 12, 479. [CrossRef]

148. Phoswa, W.N.; Khaliq, O.P. The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational
Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). Oxid. Med. Cell. Longev. 2021, 2021, 5581570.
[CrossRef]
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