
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,
hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

AN XML-BASED COURSE REGISTRATION SYSTEM

 A thesis submitted to the

 Division of Research and Advanced Studies
 of the University of Cincinnati

 in partial fulfillment of the
 requirements for the degree of

 MASTER OF SCIENCE

 in the Department of Electrical and Computer Engineering and
 Computer Science
 of the College of Engineering

 2004

 by

 Juan Li

 B.E., Huazhong University of Science & Technology, 1995

Committee Chair: Dr. Chia-Yung Han

 Abstract

Online course registration system is provided by almost all the colleges, universities

and training centers. The users require a convenient and efficient system, students

want the system to offer accurate information about course offerings, when come to

the registration process, they value complete and comprehensive decision-making

information. School Administration wants to have control on the curriculum of the

degree programs and the course design. In this thesis, an XML-based course

registration system has been designed and implemented. It Uses XML to represent the

description of a program, this description can be used by the system to specify and

check the selection and the completion of the course requirements. It uses XML to

describe student record and course information, also it uses XML-based set of tools to

manipulate system information to enable the selection of courses checked by the

program rules and other criteria. The system has the features of: allowing a degree

program to define its curriculum; allowing administration to define the course

offering and allowing the students in the program to plan and register for the

necessary courses. Apache Tomcat 4.0 is used as the backend web server, Java and

Java Servlet is used as the main programming language.

 Keywords: Course Registration, Program Rules, Java Servlet, XML and XSL.

Acknowledgement

I would like to express my sincerest gratitude to my advisor Dr. Chia-Yung Han for his

guidance, encouragement, and his patience and kindness. His insightful comments and

inspiration have been invaluable throughout the preparation of this thesis.

I would also like to thank Professor Dharma Agrawal and Professor Ken Berman for their

constructive suggestions and comments on the thesis as well as serving on the committee.

I would like to thank my friends Qi Zhang, Huazhou Liu and Huiqin Yan for their kindly

help and encouragement during my stay in University of Cincinnati.

Especially I wish to thank my husband, Zhiyong Xu and my parents, their love and

support make my life meaningful and delightful.

 i

Contents

LIST OF FIGURES.. III

1 INTRODUCTION ...1

1.1 MULTIPLE FACETS OF REGISTRATION..2

1.2 TECHNOLOGIES TO IMPROVE SYSTEM PERFORMANCE...4

2 BACKGROUND REVIEW ..6

2.1 APACHE TOMCAT WEB SERVER AND JAVA SERVLET ...6

2.1.1 The Servlet Run-time Environment ...7

2.1.2 Servlet Interface and Life Cycle..8

2.1.3 Request and Response Objects ...9

2.1.4 Persistent and Shared Data ..10

2.2 XML AND EXTENSIBLE STYLE SHEET LANGUAGE (XSL)...14

2.2.1 DOM & SAX..17

2.2.2 XPath, XSLT and XSL ...20

2.2.3 JAXP and Xalan-Java ...25

3 PROBLEM STATEMENT...26

4 SYSTEM ARCHITECTURE AND FUNCTIONALITY DESIGN...28

4.1 SYSTEM ARCHITECTURE...28

4.1.1 The web server ..29

4.1.2 The servlets..29

4.1.3 The JAXP and Xalan-Java package ...29

4.1.4 The XML and XSL Files..30

4.2 SYSTEM FUNCTIONALITY AND PROCESSING WORKFLOW..31

4.2.1 Modify program rules ...32

4.2.2 Modify a course...33

4.2.3 Student Login...34

4.2.4 Search courses ..35

 ii

4.2.5 Add/Drop class..36

5 SYSTEM IMPLEMENTATION AND RESULTS..39

5.1 REPRESENTING INFORMATION IN XML..39

5.2 MODIFY PROGRAM RULES & COURSE INFORMATION..43

5.3 STUDENT LOGIN ...47

5.4 SEARCHING COURSE ACCORDING TO DIFFERENT CRITERIA..49

5.5 STATISTICS FUNCTION ON STUDENT’S RECORD AGAINST PROGRAM RULES53

5.6 ADD/DROP CLASSES...54

5.7 SESSION TRACKING AMONG DIFFERENT SERVLETS AND WEB PAGES...................................58

6 CONCLUSION AND FUTURE WORK ..61

BIBLIOGRAPHY..63

 iii

List of Figures

Figure 1 The Curriculum Requirements for Computer Science Major of One University1

Figure 2 Multiple Faucets of Course Registration System...3

Figure 3 DOM Parser Build an Explicit Object Tree ...19

Figure 4 SAX Parser Builds an Implicit Object Tree ...19

Figure 5 System Architecture and main functionality..28

Figure 6 System Major Functionality and Workflow..31

Figure 7 Modify Major Rules Function ..33

Figure 8 Modify Course Function...34

Figure 9 Login and Show Student Information ..35

Figure 10 Search course according to the search criteria ...36

Figure 11 Add/Drop Class Function ...37

Figure 12 A student information presented in XML file..40

Figure 13 A Course information presented in XML ..41

Figure 14 A major rules presented in XML..43

Figure 15 Administration Submit the Rules of Major XX to the System..44

Figure 16 The Rules of Major XX ..45

Figure 17 Administration Submit the Information of Course X1 into the System..................................46

Figure 18 The Detailed information of Course X1...47

Figure 19 System Showing the information of Student A after Login ..48

Figure 20 The XSL to extract course information from XML file according to requirements and show

in HTML page. ..51

Figure 21 The course search results if search criteria is major=”CS” and core_course=”yes”...............52

Figure 22 Rules of major XX and the statistic results of a student A’s course record54

Figure 23 The XSL file taking in the Add/Drop course list and modifying student record in the XML

file ..56

Figure 24 The error message of Add/Drop course failure because of not fulfilling prerequisite............57

Figure 25 The result of successfully adding course 012 and 014, the statistic results is updated

accordingly...58

 iv

Figure 26 Java codes of setting session attributes ..59

Figure 27 Java codes of retrieving session attributes ..60

 1

1 Introduction

Course registration is a common step in any educational/degree program. It is a part of a

planning process, which normally requires basic functionalities for decision support and

decision-making. Registering for courses is seemingly a simple process. Registering for

well-structured degree programs with clearly defined courses is simple. What is not

simple is when the program provides many selections and choices. The selection of a set

of courses would have to satisfy the basic requirements established by the program.

These requirements are often embedded in course sequences and pre-requisites. For

instance, Figure 1 shows the requirements of Computer Science major of one university:

Figure 1 The Curriculum Requirements for Computer Science Major of One University

As a planning process, one has to be able to access all the available resources, i.e., the list

of course offerings and the time schedule as well as the description of the courses. This

 2

information normally comes in the form of course catalog. Visualizing the availability of

the courses is important.

The basic requirements for the program should be explicitly presented. These will form

the basis for making selection of the courses to take[1]. In addition to the program

requirement, selection is also hinged on both the past record and the current status of the

student. In structured situations, required courses are selected based on the time schedule.

For elective courses, students can make selection based on interest, schedule, and

requirements. Many factors have to be considered carefully.

Nowadays, everything is done on-line. There is a need to have a system that makes this

process simple and efficient. A registration process online would consist of the following

major steps. First, the student has to log on to the system with his personal identification

information. Different sets of information should be available for browsing and making

selections. Changes should be easily made or undone. Alternatives can be planned and

time schedules as well as time conflicts should be made clear in supporting the course

selection.

1.1 Multiple Facets of Registration

Course Registration is an activity that actually involves different stakeholders, students,

faculty, and administration. Each of these constituents has a different demand. For

instance, students need to be able to make accurate selections that would fulfill their

 3

program study plan. Faculty and administration need to have control on the course design

and offering. Any degree program should fulfill a well-defined set of rules with respect to

both the amount and the content of the subject matters[2].

S t u d e n t抯 R e c o r d
P a s t c o u r s e
i n f o r m a t i o n

C u r r e n t S c h e d u l e

A v a i l a b l e
c o u r s e

i n f o r m a t i o n

D e g r e e
p r o g r a m

r e q u i r e m e n t s

D e c i s i o n m a k i n g : p l a n n i n g a
s c h e d u l e , w h i c h c o u r s e t o s e l e c t ?

Figure 2 Multiple Faucets of Course Registration System

Student expectations for the course registration system mainly include the following[3]:

 Accurate information about course offerings

Students request more complete information about the professor, the time, the level, the

course requirements, and syllabus, less drilling down for course details, and links to

catalog course descriptions.

 Improved registration processes.

When it comes to the registration process, students value convenience, responsiveness,

and justice. Students value complete and comprehensive decision-making information

when planning a schedule. They expect our systems to do their duty and to be smarter

than they appear to be. For example, students expect the scheduling of their courses so

that irresolvable schedule conflicts don’t exist with required courses, a good registration

system knows a student’s current schedule and won’t allow them to add a class which has

 4

time conflict with his schedule. It knows what major a student is pursuing, and the

requirements of the major, it can provide related assistance with course selection.

 To retrieve selected data or features in a portal based on function, role, or personal

preference

University administration officers and faculties expectations for the course registration

system mainly include the following issues:

 Integration of systems in use throughout the enterprise

 Enrollment demand projection system for courses and majors

 Relational student databases needed for robust on-line programs such as prerequisite

check.

In order to design a convenient and efficient online course registration system, all the

above issues should be taken into consideration.

1.2 Technologies to Improve System Performance

XML stands for the eXtensible Markup Language. It is designed to meet the challenges

of large-scale electronic publishing. It is a technology for supporting richly structured

documents over the World Wide Web. It allows designers to create their own customized

tags, enabling the definition, transmission, validation, and interpretation of data between

applications and between organizations. The reason we choose XML language here is its

ability to support for a variety of user-defined data types. With the support for data types:

 It is easier to describe permissible document content;

 It is easier to validate the correctness of data;

 5

 It is easier to define data facets (restrictions on data);

 It is easier to define data patterns (data formats);

 It is easier to convert data between different data types.

With XML, we can easily define complex data like student information, course

information and major rules. For any attribute of the data that is not easily defined as a

conventional data type like integer, array, string, etc, we can simply use our own tag to

define this attribute. We will use a sample to show this ability in Chapter 2. XML

language comes with XSL, which stands for eXtensible Style Sheet Language. XSL

supports XPath and other data transforming ability which makes the processing and

transforming of data in XML format very flexible and convenient. We will give detailed

introduction in the next chapter.

The rest of this thesis is organized as follows: Chapter 2 gives a technique review

including Java Servlet, Apache Web Server and XML. Chapter 3 states out the problem

our system is going to solve and the proposed solution. Chapter 4 describes the

architecture and functionality of this course registration system. Chapter 5 describes the

system implementation and demonstration; and finally, Chapter 6 gives the conclusion

and future work.

 6

2 Background Review

In this chapter, we will review the system implementation environment and tools to

define the data structure: Apache Tomcat web server, Java Servlet and XML standards

suite.

2.1 Apache Tomcat web server and Java Servlet

Apache Tomcat is the most popular platform for deploying Java-based Web applications.

Apache Tomcat is the servlet container that is used in the official Reference

Implementation for the Java Servlet and Java Server Pages technologies. The version that

we use as the server for our web based course registration system is Tomcat 4.0. Tomcat

4.0 implements a new servlet container (called Catalina) that is based on completely new

architecture. The 4.0 releases implement the Servlet 2.3 and JSP 1.2 specifications.

Tomcat 4.0 contains significant features, including[4]:

 JMX based administration features

 JSP and Struts based administration web application

 Performance and memory efficiency improvements

 Enhanced manager application support for integration with development tools

 Custom Ant tasks to interact with the manager application directly from build.xml

scripts

The 4.0 servlet container (Catalina) has been developed from the ground up for flexibility

and performance. Version 4.0 implements the final released versions of the Servlet 2.3

and JSP 1.2 specifications[5]. Servlets are the Java platform technology of choice for

 7

extending and enhancing Web servers. Servlets provide a component-based, platform-

independent method for building Web-based applications, without the performance

limitations of CGI programs. And unlike proprietary server extension mechanisms (such

as the Netscape Server API or Apache modules), servlets are server and platform-

independent. This leaves you free to select a "best of breed" strategy for your servers,

platforms, and tools.

Servlets have access to the entire family of Java APIs, including the JDBC API to access

enterprise databases. Servlets can also access a library of HTTP-specific calls and receive

all the benefits of the mature Java language, including portability, performance,

reusability and crash protection. Today servlets are a popular choice for building

interactive Web applications. Third-party servlet containers are available for Apache

Web Server, Microsoft IIS, and others.

Servlet containers are usually a component of Web and application servers, such as BEA

WebLogic Application Server, IBM WebSphere, Sun Java System Web Server, Sun Java

System Application Server, etc.

2.1.1 The Servlet Run-time Environment

A servlet is a Java class and therefore needs to be executed in a Java VM by a service we

call a servlet engine. The servlet engine loads the servlet class the first time the servlet is

requested, or optionally already when the servlet engine is started. The servlet then stays

loaded to handle multiple requests until it is explicitly unloaded or the servlet engine is

 8

shut down. Some Web servers are implemented in Java and have a built-in servlet engine.

Other Web servers, such as the Apache Group's Apache, require a servlet engine add-on

module. The add-on intercepts all requests for servlets, executes them and returns the

response through the Web server to the client. All Servlet API classes and a simple

servlet-enabled Web server are combined into the Java Servlet Development Kit (JSDK).

2.1.2 Servlet Interface and Life Cycle

A servlet is a Java class that implements the Servlet interface. This interface has three

methods that define the servlet's life cycle:

 Public void init(ServletConfig config). This method is called once when the servlet is

loaded into the servlet engine, before the servlet is asked to process its first request.

 Public void service(ServletRequest request, ServletResponse response). This method

is called to process a request. It can be called zero, one or many times until the

servlet is unloaded. Multiple threads (one per request) can execute this method in

parallel so it must be thread safe.

 Public void destroy() This method is called once just before the servlet is unloaded

and taken out of service.

The Servlet API is structured to make servlets that use a different protocol than HTTP

possible. The javax.servlet package contains interfaces and classes intended to be

protocol independent and the javax.servlet.http package contains HTTP specific

interfaces and classes. We give out an example, named ReqInfoServlet here, it extends a

class named HttpServlet. HttpServlet is part of the JSDK and implements the Servlet

interface plus a number of convenience methods. We define our class like this:

 9

import javax.servlet.*;

import javax.servlet.http.*;

public class ReqInfoServlet extends HttpServlet {

 ...

}

An important set of methods in HttpServlet is the ones that specialize the service method

in the Servlet interface. The implementation of service in HttpServlet looks at the type of

request it's asked to handle (GET, POST, HEAD, etc.) and calls a specific method for

each type. This way the servlet developer is relieved from handling the details about

obscure requests like HEAD, TRACE and OPTIONS and can focus on taking care of the

more common request types, i.e. GET and POST.

2.1.3 Request and Response Objects

The doGet method has two interesting parameters: HttpServletRequest and

HttpServletResponse. These two objects give us full access to all information about the

request and let us control the output sent to the client as the response to the request. With

CGI we can read environment variables and stdin to get information about the request,

but the names of the environment variables may vary between implementations and some

are not provided by all Web servers. The HttpServletRequest object provides the same

information as the CGI environment variables, plus more, in a standardized way. It also

provides methods for extracting HTTP parameters from the query string or the request

body depending on the type of request (GET or POST). We can access parameters the

same way for both types of requests. Other methods give us access to all request headers

 10

and help us parse date and cookie headers. We get an OutputStream or a PrintWriter from

the HttpServletResponse. The OuputStream is intended for binary data, such as a GIF or

JPEG image, and the PrintWriter for text output. We can also set all response headers and

the status code, without having to rely on special Web server CGI configurations such as

Non Parsed Headers (NPH).

2.1.4 Persistent and Shared Data

One of the more interesting features of the Servlet API is the support for persistent data.

Since a servlet stays loaded between requests, and all servlets are loaded in the same

process, it's easy to remember information from one request to another and to let different

servlets share data. The Servlet API contains a number of mechanisms to support this

directly. We'll look at some of them in detail below. Another powerful mechanism is to

use a singleton object to handle shared resources.

2.1.4.1 Session Tracking

An HttpSession class was introduced in the 2.0 version of the Servlet API. Instances of

this class can hold information for one user session between requests. We can start a new

session by requesting an HttpSession object from the HttpServletRequest in doGet or

doPost method:

HttpSession session = request.getSession(true);

This method takes a boolean argument. True means a new session shall be started if none

exist, while false only returns an existing session. The HttpSession object is unique for

one user session. The Servlet API supports two ways to associate multiple requests with a

session: cookies and URL rewriting.

 11

If cookies are used a cookie with a unique session ID is sent to the client when the

session is established. The client then includes the cookie in all subsequent requests so

the servlet engine can figure out which session the request is associated with. URL

rewriting is intended for clients that don't support cookies or when the user has disabled

cookies. With URL rewriting the session ID is encoded in the URLs servlet sends to the

client. When the user clicks on an encoded URL, the session ID is sent to the server

where it can be extracted and the request associated with the correct session as above. To

use URL rewriting we must make sure all URLs that sent to the client are encoded with

the encodeURL or encodeRedirectURL methods in HttpServletResponse.

An HttpSession can store any type of object. A typical example is a database connection

allowing multiple requests to be part of the same database transaction, or information

about purchased products in a shopping cart application so the user can add items to the

cart while browsing through the site. To save an object in an HttpSession we use the

putValue method:

 ...

 Connection con = driver.getConnection(databaseURL, user, password);

 session.putValue("myappl.connection", con);

 ...

In another servlet, or the same servlet processing another request, we can get the object

with the getValue method:

 ...

 HttpSession session = request.getSession(true);

 Connection con = (Connection) session.getValue("myappl.connection");

 12

 if (con != null) {

 // Continue the database transaction

 ...

We can explicitly terminate (invalidate) a session with the invalidate method or let it be

timed-out by the servlet engine. The session times out if no request associated with the

session is received within a specified interval. Most servlet engines allow user to specify

the length of the interval through a configuration option.

2.1.4.2 Request Attributes and Resources

The servlet API has two more mechanisms for sharing data between servlets: request

attributes and resources. The getAttribute, getAttributeNames and setAttribute methods

are added to the HttpServletRequest class (or to be picky, to the ServletRequest

superclass). They are primarily intended to be used in concert with the RequestDispatcher,

an object that can be used to forward a request from one servlet to another and to include

the output from one servlet in the output from the main servlet. The getResource and

getResourceAsStream in the ServletContext class gives access to external resources, such

as an application configuration file. The ServletContext methods, however, can provide

access to resources that are not necessarily files. A resource can be stored in a database,

available through an LDAP server, anything the servlet engine vendor decides to support.

The servlet engine provides a context configuration option where we specify the root for

the resource base, be it a directory path, an HTTP URL, a JDBC URL, etc.

2.1.4.3 Multithreading

Concurrent requests for a servlet are handled by separate threads executing the

corresponding request processing method (e.g. doGet or doPost). It's therefore important

 13

that these methods are thread safe. The easiest way to guarantee that the code is thread

safe is to avoid instance variables altogether and instead pass all information needed by a

method as arguments. For instance:

private String someParam;

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 someParam = request.getParameter("someParam");

 processParam();

}

private void processParam() {

 // Do something with someParam

}

is not safe. If the doGet method is executed by two threads it's likely that the value of the

someParam instance variable is replaced by the second thread while the first thread is still

using it.

A thread safe alternative is:

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 someParam = request.getParameter("someParam");

 processParam(someParam);

}

private void processParam(String someParam) {

 // Do something with someParam

 14

}

Here the processParam gets all data it needs as arguments instead of relying on instance

variables.

2.2 XML and Extensible Style Sheet Language (XSL)

Extensive Markup Language (XML) is a markup language for structured documentation.

Markup language is a mechanism to identify structures in a document. Structured

documents are documents that contain both content (words, pictures, etc.) and some

indication of what role that content plays (for example, content in a section heading has a

different meaning from content in a footnote, which means something different than

content in a figure caption, etc.). Almost all documents have some structure.

XML is a text-based markup language that is fast becoming the standard for data

interchange on the Web. It is a cross-platform, software and hardware independent tool

for transmitting information[6]. XML is a markup language much like HTML. As with

HTML, data are identified by tags (identifiers enclosed in angle brackets, like this: <...>).

Collectively, the tags are known as "markup". But unlike HTML, XML tags says what

the data means, rather than how to display it. Where an HTML tag says something like

"display this data in bold font" (...), an XML tag acts like a field name. It puts a

label on a piece of data that identifies it (for example: <message>...</message>). Tags

can also contain attributes -- additional information included as part of the tag itself,

within the tag's angle brackets. The following example is a university’s course

information, stored as XML:

 15

Example 1. An XML File

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XML Spy v4.2 (http://www.xmlspy.com) by Juan Li (University of
Cincinnati) -->

<courseinfo xmlns="http://collegestudents.com/namespace"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://collegestudents.com/namespace

C:\Li\Thesis\courseinfo.xsd">

 <courses>

 <name>Datastructure</name>

 <college>Engineering</college>

 <major>CS</major>

 <call_number>002</call_number>

 <level>200</level>

 <credits>3</credits>

 <area>DataStructure</area>

 <required_level>required</required_level>

 <instructor>Berman</instructor>

 <description>A course to learn build data model to solve

 problems</description>

 <prerequired_course>

 <course_number>003</course_number>

 <course_number>007</course_number>

 </prerequired_course>

 <quarter>Spring</quarter>

 <time>

 <schedule>

 <Day>Mon</Day>

 <btime>9:30</btime>

 <etime>10:30</etime>

 </schedule>

 <schedule>

 16

 <Day>Wed</Day>

 <btime>9:30</btime>

 <etime>10:45</etime>

 </schedule>

 </time>

 <place>swift608</place>

 <core_course>y</core_course>

 </courses>

</courseinfo>

 The 1st line in the document - the XML declaration - defines the XML version and the

character encoding used in the document. In this case the document conforms to the 1.0

specification of XML and uses the ISO-8859-1 (Latin-1/West European) character set.

The 2nd line is a comment line, which is similar to the comment line in HTML. The 3rd

line is a processing instruction line, which says the schema used to display the XML file

in web browser. The 4th line describes the root element of the document. The lines

between tag <courses> and </courses> describe 16 child elements of the root (name, call

number, etc.). And the tag </courses> defines the end of the root element.

In HTML, the tags used to mark up documents are predefined. The author of HTML

documents can only use tags that are defined in the HTML standard (like <p>, <h1>, etc.).

XML allows the author to define his own tags and his own document structure[7]. The

tags in the example above (like <name> and <time>) are not defined in any XML

standard. These tags are "invented" by the author of the XML document.

 17

2.2.1 DOM & SAX

An application involving with XML will have two parts: the parser deals with the XML

file and the application consumes the content of the file through the parser. A parser is a

software component that sits between the application and the XML files. Its goal is to

shield developer from the intricacies of the XML syntax. The parser and the application

must share a common model for XML data. In practice, the common model is always

some variation on a tree in memory that matches the tree in the XML document. The

parser reads the XML document and populates the tree in memory. This tree built by the

parser is an exact match of the tree in the XML document. The application manipulates it

as if it were the XML document. In fact, for the application, it is the XML document.

There are two basic ways to interface a parser with an application: using object-based

interfaces and using event–based interfaces[8]. The standard for object-based interface is

DOM, Document Object Model, published by W3C. The standard for event-based

interface is SAX, Simple API for XML, developed collaboratively by the members of the

XML-DEV mailing list and edited by David Megginson.

The Document Object Model is a platform- and language-neutral interface that will allow

programs and scripts to dynamically access and update the content, structure and style of

documents. The document can be further processed and the results of that processing can

be incorporated back into the presented page. DOM has defined classes of objects to

represent every element in an XML file. There’re objects for elements, attributes, entities,

text, and so on. Using DOM, the parser explicitly builds a tree of objects that contains all

 18

the elements in the XML document. This is probably the most natural interface for the

application because it is handed a tree in memory that exactly matches the file on disk.

The SAX is the event-driven, serial-access mechanism that does element-by-element

processing. The parser does not explicitly build a tree of objects using SAX. Instead, it

reads the file and generates events as it finds elements, attributes, or text in the file. With

a SAX parser, events are not related to user actions, but to elements in the XML

document being read. There are events for elements starts, element ends, attributes, text

contents, entities and so on. A major disadvantage of this approach is that SAX does not

support random-access manipulation of the document – people see the tokens once, in

document order, and that's it. If anything in the middle needs to be referenced, that

information needs to be stored by some code for later retrieval. But SAX uses less

memory and is more efficient.

Example 2 is a list of students, with their names and IDs, presented in an XML document.

The DOM parser reads this document and gradually builds a tree of objects that matches

the document. Figure 2 illustrates how the tree is built by DOM parser. Figure 3

illustrates how the SAX parser generates events as it progresses along the documents and

builds the tree implicitly.

Example 2. An XML File Fragment

<?xml version=”1.0”?>

<studentsinfo>

<student>

 19

<name>Alica</name>

<ID>001</ID>

</student>

<student>

<name>Jason</name>

<ID>002</ID>

</student>

</studentsinfo>

Studentsinfo

Student Student

Name ID Name ID

#text #text #text #text

Figure 3 DOM Parser Build an Explicit Object Tree

<studentsinfo><student><name></name><ID></ID></student><student><name></name><ID></ID></student> </studentsinfo>

studentsinfo

student

name ID

student

name ID

Figure 4 SAX Parser Builds an Implicit Object Tree

As Figure 4 illustrates, taken together, the events describe the document tree to the

application. An opening tag event means “going one level down in the tree”, whereas a

 20

closing tag means “going one level up in the tree.” SAX is the most natural interface for a

parser. Indeed, the parser simply has to report what it sees. In practice, both forms of

interfaces are helpful but they serve different goals. DOM may be used in case other code

or applications need to explore and possibly alter the document's contents. When the task

processes the document on a straight-line flow-through basis, for example, if a XML

document needs to be parsed directly into a database for storage -- SAX may provide a

more direct interface to the parser.

2.2.2 XPath, XSLT and XSL

XSL stands for Extensible Style Sheet Language. It is an important standard that achieves

several goals.

 Specify an addressing mechanism, namely the path of a hierarchical structure

(XPath), so you can identify the parts of an XML file that a transformation applies to.

 Specify tag conversions or transformations (XSLT), so you convert XML data into a

different format.

 Specify display characteristics, such as page sizes, margins, and font heights and

widths, as well as the flow objects on each page (XML-FO). Information fills in one

area of a page and then automatically flows to the next object when that area fills up.

That allows you to wrap text around pictures, for example, or to continue a

newsletter article on a different page.

2.2.2.1 XPath

In general, an XPath expression specifies a pattern that selects a set of XML nodes[9].

The XPath specification is the foundation for a variety of specifications, including XSLT

 21

and linking/addressing specifications like XPointer. So an understanding of XPath is

fundamental to a lot of advanced XML usage. XSLT templates use the patterns specified

by XPath when applying transformations. XPointer, on the other hand, adds mechanisms

for defining a point or a range, so that XPath expressions can be used for addressing.

The nodes in an XPath expression refer to more than just elements. They also refer to text

and attributes, among other things. In fact, the XPath specification defines an abstract

document model that defines seven different kinds of nodes, root, element, attribute,

namespace, text, comment, and processing instruction.

2.2.2.2 Basic XPath Addressing

An XML document is a tree-structured (hierarchical) collection of nodes. Like a

hierarchical directory structure, it is useful to specify a path that points to a particular

node in the hierarchy. (Hence the name of the specification: XPath). In fact, much of the

notation of directory paths is carried over intact:

 The forward slash (/) is used as a path separator.

 An absolute path from the root of the document starts with a /.

 A relative path from a given location starts with anything else.

 A double period (..) indicates the parent of the current node.

 A single period (.) indicates the current node.

The full range of XPath expressions take advantage of the wildcards, operators, and

functions that XPath defines. By definition, an unqualified XPath expression selects a set

of XML nodes that matches that specified pattern. For example, /HEAD matches all top-

 22

level HEAD entries, while /HEAD[1] matches only the first. But XPath expressions can

also contain one of several wildcards to broaden the scope of the pattern matching:

So far, all of the patterns we've seen have specified an exact number of levels in the

hierarchy. For example, /HEAD specifies any HEAD element at the first level in the

hierarchy, while /*/* specifies any element at the second level in the hierarchy. To

specify an indeterminate level in the hierarchy, use a double forward slash (//). For

example, the XPath expression //PARA selects all PARA elements in a document,

wherever they may be found. The // pattern can also be used within a path. So the

expression /HEAD/LIST//PARA indicates all PARA elements in a sub tree that begins

from /HEAD/LIST. XPath expressions yield either a set of nodes: a string, a boolean

(true/false value), or a number. Expressions can also be created using one of several

operations on these values.

A node had a string-value, which is a sequence of unicode characters. For a text node,

this is the text as it appears in the source XML document, except that the XML parser

will have replaced end-of-line sequence by a single new line (#xA) character. For a

comment, it is the text of the comment, minus the delimiters. For a processing instruction,

it is the data part of the source processing instruction, not including the white space that

separates it from the PI Target. For an attribute, it is the attribute value. For a root or

element node, it is defined as the concatenation of the string value of the element and text

children of this node. Or to look at it another way: the concatenation of all the PCDATA

contained in the element (or for the root node, the document) after stripping out all

 23

markup. The definition of node string value in XPath is different from the DOM, where

the node Value property in these cases is null.

2.2.2.3 XSLT

In an XSL transformation, an XSLT processor reads both an XML document and an

XSLT style sheet. Based on the instructions the processor finds in the XSLT style sheet,

it outputs a new XML document or fragment thereof[10]. There's also special support for

outputting HTML. With some effort most XSLT processors can also be made to output

essentially arbitrary text, though XSLT is designed primarily for XML-to-XML and

XML-to-HTML transformations. XSLT’s ability to move data from one XML

representation to another makes it an important component of XML-based electronic

commerce, electronic data interchange, metadata exchange, and any application that

needs to convert between different XML representations of the same data.

2.2.2.4 XSLT Style Sheet Documents

A XSLT document contains template rules. A template rule has a pattern specifying the

nodes it matches and a template to be instantiated and output when the pattern is matched.

When a XSLT processor transforms an XML document using an XSL style sheet, it

walks the XML document tree, looking at each node in turn. As each node in the XML

document is read, the processor compares it with the pattern of each template rule in the

style sheet. When the processor finds a node that matches a template rule's pattern, it

outputs the rule's template. This template generally includes some markup, some new

data, and some data copied out of the source XML document. XSLT uses XML to

describe these rules, templates, and patterns. The root element of the XSLT document is

 24

either a style sheet or a transform element in the

http://www.w3.org/1999/XSL/Transform namespace. By convention this namespace is

mapped to the xsl prefix. Each template rule is an xsl:template element. The pattern of

the rule is placed in the match attribute of the xsl:template element. The output template

is the content of the xsl:template element. All instructions in the template for doing things

such as selecting parts of the input tree to include in the output tree are performed by one

or another XSLT elements. These are identified by the xsl: prefix on the element names.

Elements that do not have an xsl: prefix are part of the result tree.

The following example shows a very simple XSLT style sheet with one template rule. It

sets the output format as text. The template rule matches the root element and selects the

value of attribute level_requirements of each element <major>. The output is the results

of applying the template in this XSL document to the contents of the majorreqs.xml.

Example 3: A simple XSLT style sheet

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:my="http://collegestudents.com/namespace"

xmlns:xsi ="http://www.w3.org/2000/10/XMLSchema-instance">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:for-each select="my:major">

<xsl:value-of select="my:level_requirements"/>,<xsl:text></xsl:text>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 25

2.2.3 JAXP and Xalan-Java

The Java API for XML Processing (JAXP) enables applications to parse and transform

XML documents using an API that is independent of a particular XML processor

implementation[11].

Xalan-Java (named after a rare musical instrument) fully implements the Extensible

Stylesheet Language (XSL) and the XML Path Language (Xpath)[12]. Xalan-Java

performs the transformations specified in the XSL stylesheet and packages a sequence of

SAX events that may be serialized to an output stream or writer, used to build a DOM

tree, or forwarded as input to another transformation. Xalan-Java includes the following

features[13]:

 Implements the relevant W3C specifications: XSL and XPath

 Can process Stream, SAX or DOM input, and output to a Stream, SAX or DOM.

 Transformations may be chained (the output of one transformation may be the input

for another).

 May be run from the command line for convenient file-to-file transformations.

The XML and XSL introduced above will be used in our system to implement data

models.

 26

3 Problem Statement

Any course registration system would serve three kinds of people: students, faculty and

school administration. It processes three main types of information: students’ information,

course details and major rules. Students’ information should include the student’s ID,

PIN, name, finished course information and current schedule etc. Course information

should include course name, call number, level, prerequisite, contents, schedule, etc.

Major requirements should include detailed program rules which students need to satisfy

to get the degree. The registration system would help students to make decision during

the registration process, as student would need to know about his finished course

information, his major requirements and detailed course information to make decision.

The actual listing of the courses would need to be updated frequently. The system should

allow faculty to update courses from time to time and school administrative personnel to

change program rules accordingly. Our problem is to design an XML-based course

registration system which:

• allows a degree program to define its curriculum;

• allows administration to define the course offering; and

• allows the students in the program to plan and register for the necessary courses.

We can see the information contained in the system could be very complex. The system

needs to handle all these information flexibly with a set of functionalities that include not

only the data storage, retrieving, modification and transforming, but also frequent data

exchanging among different data set. Thus, a key issue in our solution is how to organize

 27

the data. As discussed in Chapter 2, XML and it’s related processing tools can provide

the data structure and means to implement and process the information flexibly and

effectively. Our proposed solution uses XML as the major data structure to define the

student, course and program information in our system. More specifically,

• Use XML to represent the description of a program. This description can be used

by the system to specify and check the selection and the completion of the course

requirements.

• Use XML to describe student record and course information.

• Use XML-based set of tools to manipulate system information to enable the

selection of courses checked by the program rules and other criteria.

 28

4 System Architecture and Functionality Design

 This chapter presents the system architecture and functionality of our XML-based course

registration system. Section 4.1 briefly describes the system requirements, Section 4.2

describes system major functionalities and workflow.

4.1 System Architecture

The course registration system has a client /server architecture, as shown in Figure 5.

W eb Server

S tudentsin fo .xm l

C ourse in fo .xm l

M ajorreqs .xm l

Log in S erv le t

Add /D rop
C lass S erv le t

C ourse_S tat
S erv le t

Search_course
Serv le t

M odify_cours
e Serv le t

M odify_m ajor
S erv le t

Show C urrent
S chedule and S ta tis tic

R esu lts

S tuden t Log in Form
(P IN , ID)

Search C ourse
 & Add /D rop C lass

Form

M odify C ourse Form

M odify M a jo r R u les
Form

Server S ide : X M L , X S L files and Java Servlets C lient S ide : H T M L pages

Figure 5 System Architecture and main functionality

 We use Apache Tomcat 4.0 as the backend web server, Java as the programming

language, and Java Servlet as the main technology to implement our web applications.

 29

Also we add in some special Java package, JAXP and Xalan-Java, to handle the special

data file, XML and XSL. XML DOM is used as the data model to store data like course

information, student information and major rules, XSL files is used to transform the data

and exchange data between different data set. The following briefly describes the major

function of each system component:

4.1.1 The web server

 Hosts all the system information that can be accessed in the course registration

process, like student information, course information and major rules.

 Hosts all the XML files and XSL files which contain all the data definition and data

transform and exchange information according to different data requirements.

 Hosts the servlet class files which are running in the backend server to create

dynamic web pages according the students and administrative requirements.

4.1.2 The servlets

The servlets class files are running in the backend server, handling the requests from the

front-end web users, processing the XML and XSL files on the web server and generating

web pages showing the information requested by the user.

4.1.3 The JAXP and Xalan-Java package

 Xalan-Java performs the transformation specified in the XSL files and packages a

sequence of events that may be serialized to an output stream or writer, used to build

a DOM tree, or forwarded as input to another transformation.

 30

 The JAXP package supports the XML 1.0 recommendation and contains all parser

functionality used to transform the XML data.

4.1.4 The XML and XSL Files

 studentsinfo.xml contains the detailed information of each student, such as ID, PIN,

name, major, college, accomplished course information, current schedule, etc.

 courseinfo.xml contains detailed information of each course, such as course name,

call_number, level, credits, prerequisite course, instructor, contents, etc.

 majorreqs.xml contains the rules of each major, student needs to fulfill this rules in

order to get the degree.

 The XSL files contain all the data transform and exchange information.

 31

4.2 System Functionality and Processing Workflow

Program Description in Text Course Description in Text

Modify Program
Rules

Modify Course
Information

System Information:
1. Program Rules

 2. Course Information
 3. Student Records

Student Login
 (ID, PIN)

Statistic Function on
Student Record

Add/Drop Courses

Search Course

Figure 6 System Major Functionality and Workflow

The major functionalities include modify program rules, modify course information,

student login, search courses, add/drop courses, and show student record. The whole

system can be divided in two parts: the faculty/administrative part and the student part.

University Administration part includes the following functionalities:

 Check/Modify Program Rules the university administration officer can check and

modify the criteria and course requirements of a specific major, thus to control the

program rules effectively.

 32

 Check/Modify Course Information faculty can check and modify the course

information, such as the course level, content, whether it should be a required course,

etc.

Student part includes the following functionalities:

 Login students can login into the system after they entered the valid ID and PIN,

system will show detailed information about this student, such as his name, college,

department, major, the courses he finished, his current course schedule, etc.

 Statistic function according to the students’ department, major, the system can show

out the criteria and requirements of his major, his finished course, his current

schedule, thus to give them some view of what kind of courses they should choose to

meet the degree requirements.

 Search course function can search for courses according to the students preference,

such as major, topic and level preferences, etc, system can show detailed course

information once the student know the call number of a course.

 Add/Drop class students can add or drop courses, the system can do some check

such as to avoid time conflict in schedule, check prerequisite of the courses thus to

make sure the students are eligible to register the courses.

4.2.1 Modify program rules

The modify program function, its workflow is shown in Figure 7, allows school

administrative to modify the major rules. A user enters the name of the major he wants to

modify and password. System verifies his password and accesses the majorreqs.xml, if

there exists a major with the same name, this is to modify the rules of an existing major,

otherwise, it is to add the rules of a new major into the system. The modify interface

 33

gives out a HTML form allowing the user to modify major requirements, such as the total

credit hours, the credits hours for each specific level, topic, core course requirements, etc.

After submitting, system will access the majorreqs.xml again to update the information.

Major Name Password

Majorreqs.xml

System
verify

passwd

A HTML form to
modify major rules

Submit

Modify majorreqs.xmlSubmit_modify.xsl

Figure 7 Modify Major Rules Function

4.2.2 Modify a course

This function allows faculty users to modify the course information. As shown in Figure

8, user enters the call number of the course he wants to modify and password. System

verifies his password and accesses the courseinfo.xml. If there exists a course with the

same call number, this is to modify an existing course, otherwise, it is to add a new

course into the system. The modify interface gives out a HTML form allowing the user to

modify course information, such as course name, level, credit hours, etc. After inputting

 34

all the information and submit, system will access the courseinfo.xml again to update the

course information.

Course Call
Number Password

Courseinfo.xml

System
verify

passwd

A HTML form to
modify course details

Submit

Modify Courseinfo.xmlSubmit_modify.xsl

Figure 8 Modify Course Function

4.2.3 Student Login

A student tries to login into the system by entering his ID/PIN information. System will

first access the studentsinfo.xml file, if there’s a record has the same ID and PIN as

entered, the login is valid and system gets the according information of this student from

studentsinfo.xml file, this includes name, major, college, past course information and

current course information. Then system will use the student’s major information to

access the majorreqs.xml file, get out the major requirements, also the system will do a

statistic on the student’s past course information and current course information. Finally,

system will output all these information in a HTML page. Figure 9 shows the workflow

of this process.

 35

Studentsinfo.xml

ID

PIN

Majorreqs.xml Current Course
ScheduleCourseinfo.xml

Name Major College Past course info Current course info

Credit
Requirement

Level
Requirement

Topic
Requirement

Core course
Requirement

Course_info.xsl

Course_stat.xsl

Statistic Results of Major
Requirements and courses

Html File

Figure 9 Login and Show Student Information

4.2.4 Search courses

A user searches the course information using this function. This interface (see Figure 10)

allows the user to set 6 criteria for the course searching: Major, Call number, Level,

Topic, Required level, whether it is a core course. The user can use either of these criteria

or use several of them at the same time as a combined search, the system will access the

courseinfo.xml to find out all the courses that fulfill the requirements, then it will present

the information of these courses in a HTML page. Students can use this function to

search courses according to their preference and choose a course according to the

searching results.

 36

Call_number? Level? Area? Required
Level?Major? Core Course?

Search Criteria

Search_course.xslCourseinfo.xml

Html page showing
search results

Figure 10 Search course according to the search criteria

4.2.5 Add/Drop class

The interface of this function is integrated with the Search_course function thus to allow

users conveniently check course information and add/drop classes. Figure 11 shows its

flow. This interface gives two lists, in one list students enter the call number of the

courses they want to register, in the other list students enter the call number of the

courses they want to drop from their current courses. The servlet will take this

information in and do some checking.

 37

Current Courses Past Courses

Drop Class List If the course in drop list
is in current courses

No

Yes

Add Class List

Check if
Taken
before

N
o

Check
Prerequisite

Y
es

Time
Conflict

N
o

Total Credits
Exceeds 19

N
o

Yes

No

Yes

Yes

Return

Return

Return

Return

Return

Modify Studentsinfo.xml

Courseinfo.xml Majorreqs.xml

Show new schedule
and updated statistic
results in html page

Submit_modify.xsl

Course_stat.xsl
&Course_info.xsl

Figure 11 Add/Drop Class Function

First, it will check the drop list, if any of them is not in the student’s current courses, the

system throws out an error message and fails the process; the system then checks the add

list and the student past course information, if the student has taken any of the courses

before, it throws out an error message and fails the process; system checks every course

in the add list against the courseinfo.xml to find out prerequisite course for each course, if

any of the prerequisite courses has not yet been accomplished by the student, it throws

out an error message and fails the process; system checks all the courses in the add list

and in his current courses, if there’s a time confliction, it throws out an error message and

 38

fails the process; system adds up all credit hours of the courses in the add list and his

current courses, minuses credit hours of all the courses in the drop list, if the total credits

exceeds 19, it throws out an error message and fails the process. If all these check passes,

the system will access the studentsinfo.xml, add all the courses in the add list to the

current courses and take off all the courses in the drop list from the current courses, also

the system will access the majorreqs.xml and courseinfo.xml files again to get an up-to-

date course statistic results and present the up-to-date schedule and statistic results in the

HTML page.

 39

5 System Implementation and Results

This chapter explains system implementation in detail. It also demonstrates the results

and screen shots showing the major functionality. Section 5.1 describes how to present

student, course information and major rules in XML. Major functionality such as

transforming students information into HTML file, searching course according to

different criteria, doing statistic function by accessing and exchanging among different

data set, getting add/drop class list from HTML form and updating the information in

XML file, modifying course information and major rules are described in sections 5.2 -

5.6. Section 5.7 discusses how to track the consistent information among different web

pages by Session tracking.

5.1 Representing information in XML

We will define several key elements to represent the information that is needed for the

course registration system: student element, course element, major element, etc.

In every XML file below, we just show the structure of one record, for instance, record of

one student, one course, rules for one major, the other information has the same structure

but different value, we simply omit them here for briefness.

A student element includes the following information:

Name, college, major, stud-ID, password, takencourses, and currentcourse. Takencourses

indicates a list of courses the student has taken and currentcourses indicates a list of

courses the student is currently taking.

 40

 <students>

 <name>Juan Li</name>

 <college>Engineerig</college>

 <major>CS</major>

 <stud-ID>111</stud-ID>

 <password>111</password>

 <takencourses>001</takencourses>

 <takencourses>002</takencourses>

 <takencourses>003</takencourses>

 <takencourses>004</takencourses>

 <takencourses>005</takencourses>

 <takencourses>006</takencourses>

 <takencourses>007</takencourses>

 <takencourses>008</takencourses>

 <currentcourses>016</currentcourses>

 </students>
Figure 12 A student information presented in XML file

A course element includes the following information:

Name, college (which college offers this course), major (which major offers this course),

call number (normally consisting a code that includes college_code-dept_code-

course_code), level, credits (credit hour of this course), area (which area this course

belongs to), required_Level (whether this course is required for this major), instructor,

contents (course description), prerequired_course (which courses should be finished

before taking this course), quarter (which quarter this course is offered), time (schedule

of this course), place, core_course (whether this course is a core course of this major or

not).

 41

 <courses>

 <name>Datastructure</name>

 <college>Engineering</college>

 <major>CS</major>

 <call_number>002</call_number>

 <level>200</level>

 <credits>3</credits>

 <area>DataStructure</area>

 <required_level>required</required_level>

 <instructor>Berman</instructor>

 <description>A course to learn build data model to solve
problems</description>

 <prerequired_course/>

 <quarter>Spring</quarter>

 <time>

 <schedule>

 <Day>Mon</Day>

 <btime>9:30</btime>

 <etime>10:30</etime>

 </schedule>

 <schedule>

 <Day>Wed</Day>

 <btime>9:30</btime>

 <etime>10:45</etime>

 </schedule>

 </time>

 <place>swift608</place>

 <core_course>y</core_course>

 </courses>
Figure 13 A Course information presented in XML

 42

A major element is used to describe the rules of a program, it includes the following

information:

name, college (to which college this major belonging to), topic_reqs (topic requirements),

level_reqs (level requirements), corecourse_reqs (core course requirements), credits_reqs

(credit hour requirements).

 <majors>

 <name>CE</name>

 <college>Engineering</college>

 <topic_reqs>

 <areas>

 <area_name>ComputerArchitecture</area_name>

 <levels>

 <level>400</level>

 <credits>9</credits>

 </levels>

 </areas>

 <areas>

 <area_name>ProgrammingLanguage</area_name>

 <levels>

 <level>200</level>

 <credits>3</credits>

 </levels>

 <levels>

 <level>400</level>

 <credits>3</credits>

 </levels>

 </areas>

 </topic_reqs>

 <corecourse_reqs>

 <credits>12</credits>

 </corecourse_reqs>

 43

 <level_reqs>

 <levels>

 <level>100</level>

 <credits>15</credits>

 </levels>

 . . .

 <levels>

 <level>400</level>

 <credits>24</credits>

 </levels>

 </level_reqs>

 <credits_reqs>160</credits_reqs>

 </majors>
Figure 14 A major rules presented in XML

5.2 Modify Program Rules & Course Information

The Modify_major servlet implements the function of modifying the rules of a program.

The user inputs the major name and password, any the system will pull out the HTML

form letting the user modify the corresponding rules of a major, if the major name the

user inputted is not existing, this will be considered as adding rules of a new major into

the system. For example, if there exists a new major, called XX, with the following rules:

Rule-1: Program name is XX

Rule-2: Student’s main college affiliation: YY

Rule-3: Total credit hours for the program: 180

Rule-4: Core course credit hours for the program: 24

…

 44

Rule-5: Course level requirement: Level 100: 36 (credit hours) Level 200: 45

 Level 300: 45 Level 400: 30

Rule-6: Curriculum requirement: two sets of requirements: SET1 and SET2.

For SET1: students need to finish at least 3 credit hours for the level 200 course and 3

credit hours for the level 400 course.

For SET2; students need to finish at least 3 credit hours for the level 200 course and 3

credit hours for the level 300 course, etc.

All these information of the major XX are on the paper, system gives out an interface of a

HTML form, the school administration just needs to input the above information and

submit:

Figure 15 Administration Submit the Rules of Major XX to the System

 After submit, the system will record the rules of this new major in an XML file, next,

when a user queries the rules about this major, system will extract the information from

the XML file and show the results:

 45

Figure 16 The Rules of Major XX

The rules of major XX will be applied to the student who is in this major when system

does statistic function on this student’s record.

The Modify_course servlet implements the function of modifying the course information.

User needs to input the password and call number of the course he wants to modify into

the system. System will pull out an HTML form letting the user input the information of

a course. If the call number does not exist in the system, this will be considered as adding

a new course to the system. For example, if there is a course with the following

information:

Course name: X1 College: YY Major: XX

Call number: 017 Level: 100 Credit hour: 3

Course Area: SET1 Required level: required Instructor: Faculty A

Content: BB Quarter: Spring Place: Room A

And it is a core course of this major, etc.

 46

The information of this course X1 are all on paper in hard copy, the administration needs

to input these information in the following form and submit:

Figure 17 Administration Submit the Information of Course X1 into the System

System will store this course information in an XML file. When a user queries the

detailed information about this course next time, system will extract this information

from the XML file and show the results:

 47

Figure 18 The Detailed information of Course X1

The course X1 is added into the system and available for students to register.

5.3 Student Login

The Student_login servlet implements the function of showing students information after

the student enters ID and PIN information to login. Let’s look at an example of the

student A login into the system.

 48

Figure 19 System Showing the information of Student A after Login

We can see from the above figure, Student A’s record is showed after he login into the

system: the student name, college, his current course information (current schedule), the

statistic results of his past record against the rules of his major. Since this student’s major

is XX, we can see the rules of major XX apply in the statistic results here: Student A has

finished 6 credit hours courses, since the total credit hour requirements for major XX is

180, so he still needs to finish 174 credit hours; since he’s taking 6 credit hour courses in

the current quarter, so he has to finish another 168 credit hours after this quarter. He has

finished 3 credit hours on core course, since this requirement for major XX is 24, so he

has to finish 21 credit hours for core course, since he is taking 1 core course in the current

quarter, so after this quarter, he still needs to finish another 18 credit hours on core course.

Also the system gives out statistic results against the category requirements and course

level requirements of major XX.

 49

5.4 Searching Course According to Different Criteria

Search_class servlet implements the function of searching courses according to the

search criteria. Figure 20 shows the XSL file used to access the courseinfo.xml file and

get out course information fulfilling search requirements. We omit the definition of

variable s2 ~ s6 for briefness because they are similar to definition of variable s1.

. . .

1. <xsl:key name="major" match="my:courses" use="my:major"/>

2. <xsl:param name="Major"/>

3. <xsl:key name="area" match="my:courses" use="my:area"/>

4. <xsl:param name="Area"/>

5. <xsl:key name="level" match="my:courses" use="my:level"/>

6. <xsl:param name="Level"/>

7. <xsl:key name="req_lev" match="my:courses" use="my:required_level"/>

8. <xsl:param name="Req_lev"/>

9. <xsl:key name="call_id" match="my:courses" use="my:call_number"/>

10. <xsl:param name="Call_id"/>

11. <xsl:key name="core_course" match="my:courses" use="my:core_course"/>

12. <xsl:param name="Core_course"/>

13. <xsl:template match="/">

14. <html>

15. <body background="/examples/images/parchment.gif"/>

16. <head>

17. <title>Course Information</title>

18. </head>

19. <body>

20. <xsl:variable name="s1">

21. <xsl:choose>

22. <xsl:when test="$Major">

 50

23. <xsl:for-each select="key('major', $Major)">

24. <xsl:value-of select="my:call_number"/>

25. </xsl:for-each>

26. </xsl:when>

27. <xsl:otherwise>

28. <xsl:for-each select="//my:courses">

29. <xsl:value-of select="my:call_number"/>

30. </xsl:for-each>

31. </xsl:otherwise>

32. </xsl:choose>

33. </xsl:variable>

34. <xsl:variable name="s2"/>

35. <xsl:variable name="s3"/>

36. <xsl:variable name="s4"/>

37. <xsl:variable name="s5"/>

38. <xsl:variable name="s6"/>

39. <h6 align="left">The courses matching your

40. requirements</h6>

41. <table width="680">

42. <tr>

43. <td>Call_ID</td>

44. <td>Name</td>

45. <td>Major</td>

46. <td>Level</td>

47. <td>Req_lev</td>

48. <td>Credits</td>

49. <td>Core_course</td>

50. <td>Pre_requisite</td>

51. </tr>

52.
</br>

53. <xsl:for-each select="//my:courses">

 51

54. <xsl:if test="contains($s1, my:call_number) and contains($s2,my:call_number)
and

55. contains($s3,my:call_number) and contains($s4,my:call_number) and
contains($s5,my:call_number) and

56. contains($s6,my:call_number)">

57. <tr>

58. <td><xsl:value-of select="my:call_number"/></td>

59. <td><xsl:value-of select="my:name"/></td>

60. <td><xsl:value-of select="my:major"/></td>

61. <td><xsl:value-of select="my:level"/></td>

62. <td><xsl:value-of select="my:required_level"/></td>

63. <td align="center"><xsl:value-of select="my:credits"/></td>

64. <td align="center"><xsl:value-of select="my:core_course"/></td>

65. <td align="center"><xsl:value-of select="my:prerequired_course"/></td>

66. </tr>

67. </xsl:if>

68. </xsl:for-each>

69. </table>

70.

</br></br>

71. <form method="POST">

72. <a href="http://localhost:8080/examples/servlet/Firstservlet"
target="_blank"><u>Please enter the call

73. number if you want to check detailed course information: </u>

74. <INPUT type="text" maxLength="8" size="8" name="call_id"/>

75. </form>

76. </body>

77. </html>

78. </xsl:template>

79. </xsl:stylesheet>

Figure 20 The XSL to extract course information from XML file according to requirements and

show in HTML page.

 52

Lines 20 ∼ 33 define variable S1, that is, the set of courses whose major is satisfying the

search criteria: major. Lines 34 ∼ 38 define variables s2 ∼ s6, that is the set of courses

satisfying the search criteria, Level, Credits, Call number, Required level and core course,

respectively. We just omit the detailed definition here for briefness. Lines 53 ∼ 56 selects

the set of courses which are the intersection of s1 ∼ s6, that is, the courses satisfying all

the six search criteria.

Figure 21 shows the search results if the search criteria are CS major course and core

course.

Figure 21 The course search results if search criteria is major=”CS” and core_course=”yes”

 53

5.5 Statistics Function on Student’s Record against Program

Rules

Course_stat servlet implements the function of doing statistic on student’s record against

his program rules. System will first access the Majorreqs.xml file to extract the rules of a

specific major and save them in a text file. The Course_stat Servlet will process this

information and set them as parameters when accessing the studentsinfo.xml file and

comparing the student’s past and current course information against these requirements.

System shows the statistic results in a HTML page.

The Figure 22 shows the statistic results of Student A’s record against the rules of his

major XX. The upper frame of the page is showing the requirements of major XX, the

lower frame of the page shows student A’s course record against these rules.

 54

Figure 22 Rules of major XX and the statistic results of a student A’s course record

5.6 Add/Drop Classes

Course_info servlet implements the function of add/drop courses. When in the Add/Drop

process, the system not only needs to read in the add course list and drop course list from

the HTML form and modify the student record, it also needs to commit a series of check

to see if the user can validly add or drop these courses. In order to do this, the system

needs first to get the student’s course information including taken course and current

course information, also the system needs to access the courseinfo.xml and get some

information about the add-in courses, like prerequisite, schedule, etc. After all this

validation, the system can successfully add/drop courses according to the lists and write

back to the student record. The results of modifying student record (Add/Drop courses)

can be immediately taken by the course_stat servlet and thus gives out the updated course

 55

statistic results. We will attach the source Java code of Add/Drop course validation at the

end of the thesis, the following XSL file shows how to take in the add/drop list and

modify student record in the studentsinfo.xml.

1. …

2. <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

3. <xsl:key name="mod" match="my:students" use="my:stud-ID"/>

4. <xsl:param name="modid"/>

5. <xsl:param name="c_course0"/>

6. <xsl:param name="c_course1"/>

7. <xsl:param name="c_course2"/>

8. <xsl:param name="c_course3"/>

9. <xsl:param name="c_course4"/>

10. <xsl:param name="c_course5"/>

11. <xsl:param name="c_course6"/>

12. <xsl:template match="/">

13. <xsl:variable name="tomod" select="key('mod' ,$modid)"/>

14. <studentsinformation>

15. <xsl:for-each select="//my:students">

16. <xsl:if test="my:stud-ID !=$modid">

17. <xsl:copy-of select="./"/>

18. </xsl:if>

19. </xsl:for-each>

20. <students xmlns="http://collegestudents.com/namespace"

21. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

22. <name><xsl:value-of select="$tomod/my:name"/></name>

23. <college><xsl:value-of select="$tomod/my:college"/></college>

24. <major><xsl:value-of select="$tomod/my:major"/></major>

25. <stud-ID><xsl:value-of select="$tomod/my:stud-ID"/></stud-ID>

26. <password><xsl:value-of select="$tomod/my:password"/></password>

 56

27. <xsl:for-each select="$tomod/my:takencourses">

28. <takencourses><xsl:value-of select="."/></takencourses>

29. </xsl:for-each>

30. <xsl:if test="$c_course0">

31. <currentcourses><xsl:value-of select="$c_course0"/></currentcourses>

32. </xsl:if>

33. <xsl:if test="$c_course1">

34. <currentcourses><xsl:value-of select="$c_course1"/></currentcourses>

35. </xsl:if>

36. <xsl:if test="$c_course2">

37. <currentcourses><xsl:value-of select="$c_course2"/></currentcourses>

38. </xsl:if>

39. <xsl:if test="$c_course3">

40. <currentcourses><xsl:value-of select="$c_course3"/></currentcourses>

41. </xsl:if>

42. <xsl:if test="$c_course4">

43. <currentcourses><xsl:value-of select="$c_course4"/></currentcourses>

44. </xsl:if>

45. <xsl:if test="$c_course5">

46. <currentcourses><xsl:value-of select="$c_course5"/></currentcourses>

47. </xsl:if>

48. <xsl:if test="$c_course6">

49. <currentcourses><xsl:value-of select="$c_course6"/></currentcourses>

50. </xsl:if>

51. </students>

52. </studentsinformation>

53. </xsl:template>

54. </xsl:stylesheet>
Figure 23 The XSL file taking in the Add/Drop course list and modifying student record in the XML

file

 57

In Figure 23, Lines 15 ∼ 19 copy every students record except the one who just modified

his registration courses (the student who just submit the registration form) to the target

XML file, Lines 22 ∼ 50 write the current record of that student (the student who just

submit the registration form and has updated current course list) to the target XML file.

The Figure 24 and Figure 25 show the results of Add/Drop classes. When we tried to add

in Course 016, the system gives out an error message saying this course not able to be

added because it has a prerequisite 014 that the student has not completed yet. Figure 25

shows the results of successfully adding courses 012 and 014, the statistical results has

also been updated accordingly.

Figure 24 The error message of Add/Drop course failure because of not fulfilling prerequisite

 58

Figure 25 The result of successfully adding course 012 and 014, the statistic results is updated

accordingly

5.7 Session Tracking among Different Servlets and Web Pages

During course registration, the user may go through several web pages to finish the

process, a student may check his major requirements, his detailed course statistic data to

make a decision. Even the same web page needs several servlets work together to get the

result. The system should be able to keep persistent data. That is, to remember

information from one request to another and to let different servlets share data. We use

session tracking to do this.

 59

Once the student login into the system, his personal information like name, major, past

course information and current course information should be saved by the system as

session attribute, then outside of this login servlet, these attributes can also be accessed.

The following Java codes show the process of setting and retrieving session attributes

among different servlets.

 …

 String Name=is.readLine().trim();

 String College=is.readLine().trim();

 String Major=is.readLine().trim();

 Vector t_courses = new Vector(); //taken courses

 Vector c_courses = new Vector(); //current courses

 StringTokenizer tt = new StringTokenizer(is.readLine().trim(), ",");

 while (tt.hasMoreTokens())

 {

 t_courses.add(tt.nextToken());

 }

 StringTokenizer tc = new StringTokenizer(is.readLine().trim(), ",");

 while (tc.hasMoreTokens())

 {

 c_courses.add(tc.nextToken());

 }

 session.setAttribute("studname", Name);

 session.setAttribute("college", College);

 session.setAttribute("major", Major);

 session.setAttribute("takencourses",t_courses);

 session.setAttribute("currentcourses",c_courses);

 …
Figure 26 Java codes of setting session attributes

 …

 60

 else if(req.getParameter("action").equals("Submit"))

 {

 HttpSession session= req.getSession(true);

 Vector C_course=(Vector)session.getAttribute("currentcourses");

 Vector P_course=(Vector)session.getAttribute("takencourses");

 …

 }

 …
Figure 27 Java codes of retrieving session attributes

If in any of the servlets, the value of session attribute is changed, we need to update the

session attribute by resetting the same attribute.

 61

6 Conclusion and Future Work

We have presented an XML-based solution to the course registration problem. The

course registration system assembles the course information, student information and

program rules together in the registration process. The system has the following features:

 It has statistic function which can do comprehensive statistics on the students past

and current course information against their major rules, thus to give the student

some idea what kind of courses they need to fulfill their major requirements.

 It has search function which helps the user to find course information according to

their preference.

 In the registration process, it has the check function to avoid invalid adding or

dropping courses.

 It has modify_course function which allows administration to modify the cause

offering or add new course into the system.

 It has modify_major function which allows the administration to modify the

requirements of a program or add rules of a new program into the system.

Compared with the other course registration system, this system gives users accurate

information about course offerings, improved registration process not only able to

validate student’s course registration but also gives them information to help in decision

making. The system also offers administration the interface to modify course and

program rules. The XML language used to implement the student and course information,

 62

the rules of a major, and the XSL language used to transform and exchange data give

system the ability of flexible data modeling and processing.

During the progress of this project, several interesting issues come up that need further

investigation. The most important and challenging one is to make the system more

intelligent. Currently, the system can only give out statistical results to help decision

making, if we can build an agent able to use this result and take in all the rules of a major

to give out advice in registration, the system will be more powerful and convenient.

Another problem is the storage of the data in XML format. Traditional relational database

system is not suitable for XML data. Some middleware have been developed to transfer

data between XML documents and relational databases[14]. Like XML-DBMS, it maps

the XML document to the database according to an object-relational mapping in which

element types are generally viewed as classes and attributes[15], user needs to use XML-

based mapping language to specify customize this mapping. That means XML data needs

to be transformed before they are written to the database and data extracted from the

database needs to be transformed back to XML, obviously it adds complexity to data

manipulation, which is the most advantageous attribute of XML data model. So we

expect a matured object oriented database system convenient to store XML data.

 63

Bibliography

[1] Summary Results of Registration Process Review, University of South California,

Nov. 2003. http://registrar.sc.edu/html/news/reg_proc_rec.pdf

[2] Online Enrollment and Administration System. K. Kit, C. Mo, L. Yeung & L. Hong,

Hongkong University of Science and Technology.

http://www.cs.ust.hk/faculty/fred/FYP/DB-development/Guidelines/sample-

reports/db-proposal.pdf.

[3] Administrative and Course Management System Vendors Take Up the Challenge.

http://www.syllabus.com/article.asp?id=6389

[4] Tomcat User’s Guide. http://jakarta.apache.org/tomcat

[5] Developing Applications with Tomcat. http://jakarta.apache.org/tomcat

[6] XML Tutorail. http://www.w3schools.com/xml/default.asp

[7] XML by Example. Benoit Marchal QUE Publishing House, December, 1999

[8] Document Object Model (DOM) & Simple API for XML (SAX).

http://www.perfectxml.com/domsax.asp

[9] XPath Tutorial. http://www.zvon.org/xxl/XPathTutorial/General/examples.html

[10] XSL Tutorial. http://www.vbxml.com/xsl/tutorials/intro/default.asp

[11] Java API for XML Parsing 1.1.1.

 http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html

[12] Xalan Java Version 2.6.0. http://xml.apache.org/xalan/index.html

 64

[13] Xalan-Java overview. http://xml.apache.org/xalan-j/overview.html

[14] XML Database Products: Middleware.

http://www.rpbourret.com/xml/ProdsMiddleware.htm

[15] XML-DBMS Middleware for Transferring Data between XML Documents and

 Relational Databases. http://www.rpbourret.com/xmldbms/

	DATE: October 6, 2004
	DEGREE: Master of Science
	DEPT: Computer Science
	NAME: Juan Li
	TITLE2:
	TITLE3:
	TITLE1: An XML-Based Course Registration System
	TITLE4:
	CHAIR: Chia-Yung Han
	COMM2: Dharma Agrawal
	COMM3: Ken Berman
	COMM4:
	COMM5:

