About
58
Publications
4,912
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
433
Citations
Current institution
Additional affiliations
Publications
Publications (58)
Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we sho...
We develop a methodology to segment cells from microscopy images and compute quantitative descriptors that characterize their morphology. Using unsupervised techniques for dimensionality reduction and density-based clustering, we perform label-free cell shape classification. Cells are identified with minimal user input using mathematical morphology...
Significance
Individually migrating cells cluster into multicellular tissues during tissue formation, inflammation, and cancer. The corresponding increase in cell density can result in arrested motion, analogous to the “jamming” of soft materials such as glasses and gels. Here, we show that cells with reduced motility and proliferation organize int...
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the e...
Interacting, self-propelled particles such as epithelial cells can dynamically self-organize into complex multicellular patterns, which are challenging to classify without a priori information. Classically, different phases and phase transitions have been described based on local ordering, which may not capture structural features at larger length...
Schizophrenia is a severe psychiatric disorder associated with a wide range of cognitive and neurophysiological dysfunctions and long-term social difficulties. Early detection is expected to reduce the burden of disease by initiating early treatment. In this paper, we test the hypothesis that integration of multiple simultaneous acquisitions of neu...
In this paper, we propose HiPoNet, an end-to-end differentiable neural network for regression, classification, and representation learning on high-dimensional point clouds. Single-cell data can have high dimensionality exceeding the capabilities of existing methods point cloud tailored for 3D data. Moreover, modern single-cell and spatial experimen...
The rapidly growing field of single-cell transcriptomic sequencing (scRNAseq) presents challenges for data analysis due to its massive datasets. A common method in manifold learning consists in hypothesizing that datasets lie on a lower dimensional manifold. This allows to study the geometry of point clouds by extracting meaningful descriptors like...
Volume electron microscopy (vEM) datasets such as those generated for connectome studies allow nanoscale quantifications and comparisons of the cell biological features underpinning circuit architectures. Quantifications of cell biological relationships in the connectome result in rich multidimensional datasets that benefit from data science approa...
Volume electron microscopy (vEM) datasets such as those generated for connectome studies allow nanoscale quantifications and comparisons of the cell biological features underpinning circuit architectures. Quantifications of cell biological relationships in the connectome result in rich multidimensional datasets that benefit from data science approa...
Drawing motivation from the manifold hypothesis, which posits that most high-dimensional data lies on or near low-dimensional manifolds, we apply manifold learning to the space of neural networks. We learn manifolds where datapoints are neural networks by introducing a distance between the hidden layer representations of the neural networks. These...
Schizophrenia is a severe psychiatric disorder associated with a wide range of cognitive and neurophysiological dysfunctions and long-term social difficulties. In this paper, we test the hypothesis that integration of multiple simultaneous acquisitions of neuroimaging, behavioral, and clinical information will be better for prediction of early psyc...
Understanding the dynamic nature of protein structures is essential for comprehending their biological functions. While significant progress has been made in predicting static folded structures, modeling protein motions on microsecond to millisecond scales remains challenging. To address these challenges, we introduce a novel deep learning architec...
Neuroscience employs diverse neuroimaging techniques, each offering distinct insights into brain activity, from electrophysiological recordings such as EEG, which have high temporal resolution, to hemodynamic modalities such as fMRI, which have increased spatial precision. However, integrating these heterogeneous data sources remains a challenge, w...
In this work, we explore the decoding of mental imagery from subjects using their fMRI measurements. In order to achieve this decoding, we first created a mapping between a subject's fMRI signals elicited by the videos the subjects watched. This mapping associates the high dimensional fMRI activation states with visual imagery. Next, we prompted th...
Volume electron microscopy (vEM) datasets such as those generated for connectome studies allow nanoscale quantifications and comparisons of the cell biological features underpinning circuit architectures. Quantifications of cell biological relationships in the connectome result in rich multidimensional datasets that benefit from data science approa...
Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive gl...
Understanding morphological variation is an important task in many areas of computational biology. Recent studies have focused on developing computational tools for the task of sub-image selection which aims at identifying structural features that best describe the variation between classes of shapes. A major part in assessing the utility of these...
We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorpo...
Glial scar formation represents a fundamental response to central nervous system (CNS) injury. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glia...
Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains c...
We consider the problem of embedding point cloud data sampled from an underlying manifold with an associated flow or velocity. Such data arises in many contexts where static snapshots of dynamic entities are measured, including in high-throughput biology such as single-cell transcriptomics. Existing embedding techniques either do not utilize veloci...
Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction gra...
Single cell genomics has revolutionized our ability to map immune heterogeneity and responses. With the influx of large-scale data sets from diverse modalities, the resolution achieved has supported the long-held notion that immune cells are naturally organized into hierarchical relationships, characterized at multiple levels. Such a multigranular...
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze pa...
Understanding how neurons communicate and coordinate their activity is essential for unraveling the brain’s complex functionality. To analyze the intricate spatiotemporal dynamics of neural signaling, we developed Geometric Scattering Trajectory Homology (neuro-GSTH) , a novel framework that captures time-evolving neural signals and encodes them in...
Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains c...
The development of powerful natural language models has improved the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution and next-generation sequencing have allowed for the accumulation of large amounts of labelled fitness data. Leveraging these two trends, we in...
We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorpo...
Cells migrating in spatial confinement exhibit higher intracellular calcium levels, which increases the oscillation frequency of a “molecular clock” that synchronizes guanine nucleotide exchange factor GEF-H1 and microtubule polymerization for more frequent bursts of speed.
Purpose of review:
Artificial Intelligence, a tool that integrates computer science and machine learning to mimic human decision-making processes, is transforming the world and changing the way we live. Recently, the healthcare industry has gradually adopted artificial intelligence in many applications and obtained some degree of success. In this...
We introduce a new intrinsic measure of local curvature on point-cloud data called diffusion curvature. Our measure uses the framework of diffusion maps, including the data diffusion operator, to structure point cloud data and define local curvature based on the laziness of a random walk starting at a point or region of the data. We show that this...
The development of powerful natural language models have increased the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labeled fitness data. Leveraging these two trends, we...
Regenerative processes in the mammalian skin require coordinated cell-cell communication. Ca ²⁺ signaling can coordinate tissue-level responses in developing and wounded epithelia in tissue explants and invertebrates. However, its role in the homeostatic, regenerative basal layer of the skin epithelium is unknown due to significant challenges in st...
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicoch...
Interacting, self-propelled particles such as motile epithelial cells can dynamically self-organize into large-scale patterns. In such living systems, cell number and density can vary dramatically over time due to proliferation, which is not commonly considered in other active matter systems. As a consequence, it remains challenging to determine in...
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [D'Orsogna et al., Phys. Rev. Lett. 96 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collec...
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [D'Orsogna et al., Phys. Rev. Lett. 96 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collec...
Invading cancer cells adapt their migration phenotype in response to mechanical and biochemical cues from the extracellular matrix. For instance, mesenchymal migration is associated with strong cell-matrix adhesions and an elongated morphology, while amoeboid migration is associated with minimal cell-matrix adhesions and a rounded morphology. Howev...
Hydrogel building blocks that are stimuli-responsive and self-adhesive could be utilized as a simple “do-it-yourself” construction set for soft machines and microfluidic devices. However, conventional covalently-crosslinked hydrogels are unsuitable as static materials with poor interfacial adhesion. In this article, we demonstrate ion-responsive in...
Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt r...
Additional results and details.
(PDF)
Model equations, derivation and scaling.
(PDF)
Receptor positive feedback.
(PDF)
Discrete cell model.
(PDF)
3D simulation of PLLP migration.
(MPG)
Formation of zones with graded initial Wnt receptor concentration.
(PDF)
Parameter estimation and values.
(PDF)