GREAT INTERSECTING FAMILIES OF EDGES IN HEREDITARY HYPERGRAPHS

D. MIKLÓS

Mathematical Institute of the Hungarian Academy of Sciences, 1479 Budapest, Pf. 127, Hungary

Received 17 February 1983

Chvátal stated in 1972 the following conjecture: If \mathcal{H} is a hereditary hypergraph on S and $\mathcal{M} \subseteq \mathcal{H}$ is a family of maximum cardinality of pairwise intersecting members of \mathcal{H}, then there exists an $x \in S$ such that $d_\mathcal{H}(x) = \{|H \in \mathcal{H} : x \in H| = |\mathcal{M}|$. Berge and Schönheim proved that $|\mathcal{M}| \leq \frac{1}{2}|\mathcal{H}|$ for every \mathcal{H} and \mathcal{M}. Now we prove that if there exists an $\mathcal{M} \subseteq \mathcal{H}$, $|\mathcal{M}| = \frac{1}{2}|\mathcal{H}|$ then Chvátal's conjecture is true for this \mathcal{H}.

1. Introduction

Let S be a set of n elements and $\mathcal{H} \subseteq P(S)$ be a hypergraph on S, that is, \mathcal{H} is a family of subsets of S. \mathcal{H} is called a hereditary hypergraph if $A \in \mathcal{H}$ and $B \subseteq A$ imply that $B \in \mathcal{H}$. If \mathcal{H} is a hypergraph on S, then let $d_\mathcal{H}(x) = \{|A \in \mathcal{H} : x \in A|\}$ for every $x \in S$ and let $d(\mathcal{H}) = \max\{d_\mathcal{H}(x) : x \in S\}$. A hypergraph \mathcal{M} is called intersecting if $A \cap B \neq \emptyset$ holds for any pair $A, B \in \mathcal{M}$.

Chvátal conjectured [2] that if \mathcal{H} is a hereditary hypergraph and $\omega(\mathcal{H}) = \max\{|\mathcal{M}| : \mathcal{M} \subseteq \mathcal{H}$ and \mathcal{M} is intersecting$, then $\omega(\mathcal{H}) = d(\mathcal{H})$. It is clear that $\omega(\mathcal{H}) \geq d(\mathcal{H})$ because $\omega(\mathcal{H}) \geq d_\mathcal{H}(x)$ for every $x \in S$.

Theorem 1 (Berge [1]). Every hereditary hypergraph $\mathcal{H} \subseteq P(S)$ is the disjoint union of pairs of disjoint subsets of S, together with the set $\{\emptyset\}$ if $|\mathcal{H}|$ is odd.

It immediately follows from this, that $\omega(\mathcal{H}) \leq \frac{1}{2}|\mathcal{H}|$ for every hereditary hypergraph \mathcal{H}. Now we prove that if $\omega(\mathcal{H}) = \frac{1}{2}|\mathcal{H}|$, then Chvátal's conjecture is true, moreover we can describe from a certain point of view all the intersecting families $\mathcal{M} \subseteq \mathcal{H}$ of maximum cardinality.

Theorem 2. If $\mathcal{H} \subseteq P(S)$ is a hereditary hypergraph and $\omega(\mathcal{H}) = \frac{1}{2}|\mathcal{H}|$, then $\omega(\mathcal{H}) = d(\mathcal{H})$.

0012-365X/84/3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)
It is easy to see that the following conjecture is equivalent to Chvátal's conjecture: If \(\mathcal{H} \subset P(S) \) is a hereditary hypergraph and all intersecting families \(\mathcal{M} \subset \mathcal{H} \) of maximum cardinality contain all maximal sets of \(\mathcal{H} \), then the intersection of all maximal sets of \(\mathcal{H} \) is non-empty (\(N \in \mathcal{H} \) is a maximal set of \(\mathcal{H} \), if there is not \(H \in \mathcal{H} \) such that \(H \supseteq N \)). So in the sense of Theorem 2 and Lemma 2 (see later) if we would like to prove Chvátal's conjecture it is enough to prove the following statement: if \(\mathcal{H} \) is a hereditary hypergraph and every intersecting family \(\mathcal{M} \subset \mathcal{H} \) of maximum cardinality contains all maximal sets of \(\mathcal{H} \), then \(\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \).

2. Maximum intersecting families in \(\mathcal{H} \), when \(\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \)

Theorem 2 follows from the stronger theorem below by Lemma 1.

Theorem 3. Let \(\mathcal{H} \subset P(S) \) be a hereditary hypergraph, satisfying \(\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \) and let \(N_1, N_2, \ldots, N_p \) be all the maximal sets of \(\mathcal{H} \). If \(|\mathcal{H}| \) is even, then \(\cap_{i=1}^{p} N_i = M \neq \emptyset \) and every intersecting family \(\mathcal{M} \subset \mathcal{H} \) of maximum cardinality arises in the following way: Take a maximum intersecting family \(\mathcal{M} \) in \(P(M) \) and let \(M = \{A \in \mathcal{H} : \exists B \in \mathcal{M}, B \subset A \} \). If \(|\mathcal{H}| \) is odd and \(\mathcal{M} \subset \mathcal{H} \) is an intersecting family of maximum cardinality, then there exists either a maximal set \(N_i \) of \(\mathcal{M} \) such that \(\mathcal{M} \subset \mathcal{H} \setminus \{N_i\} \) or an \(N_{p+1} \subset S \), \(N_{p+1} \notin \mathcal{H} \) such that \(\mathcal{M} \cup \{N_{p+1}\} \) is an intersecting family and \(\mathcal{H} \cup \{N_{p+1}\} \) is a hereditary hypergraph (i.e. either \(|\mathcal{M}| = \frac{1}{2} |\mathcal{H} \setminus \{N_i\}| \) or \(|\mathcal{M} \cup \{N_{p+1}\}| = \frac{1}{2} |\mathcal{H} \cup \{N_{p+1}\}| \).

Lemma 1 (Schönheim [9]). If \(N_1, \ldots, N_p \) are all the maximal sets in a hereditary hypergraph \(\mathcal{H} \subset P(S) \) and \(\cap_{i=1}^{p} N_i = M \neq \emptyset \), then \(\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \) holds.

Proof. It follows from Theorem 1 that \(d(\mathcal{H}) \leq \omega(\mathcal{H}) \leq \frac{1}{2} |\mathcal{H}| \). Take now an element \(x \) of \(M \) and form disjoint pairs from all sets of \(\mathcal{H} \): \(\{A, A \setminus \{x\}\} \). We have to prove that \(\{A, A \setminus \{x\}\} = \{A \setminus \{x\}, (A \setminus \{x\}) \setminus \{x\}\} \) and \(A \in \mathcal{H} \) implies \(A \setminus \{x\} \in \mathcal{H} \). However \((A \setminus \{x\}) \setminus \{x\} = A \) and \(A \in \mathcal{H} \) implies that there exists an \(N_i \) such that \(A \subset N_i \in \mathcal{H} \), consequently \(A \cup \{x\} \in \mathcal{H} \) holds. Hence follows that there is exactly one member of each pair containing \(x \) i.e. \(d(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \) and \(d(\mathcal{H}) = \omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \) hold.

Lemma 2. If \(\mathcal{H} \subset P(S) \) is a hereditary hypergraph and there exists an \(x \in S \) such that \(d(x) = \frac{1}{2} |\mathcal{H}| \), then \(x \in \cap_{i=1}^{p} N_i \) when \(N_1, N_2, \ldots, N_p \) are all the maximal sets in \(\mathcal{H} \). Moreover if there exists an \(x \in S \) such that \(d(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2} \), then there exists exactly one \(N_i \) not containing \(x \).

Proof. If \(d(x) = \frac{1}{2} |\mathcal{H}| \) and \(x \notin N_i \) hold for some \(1 \leq i \leq p \), then \(d(\mathcal{H} \setminus \{N_i\}) > \frac{1}{2} |\mathcal{H} \setminus \{N_i\}| \), a contradiction.
If \(d(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2} \) and \(x \in \bigcap_{i=1}^p N_i \), then \(d(x) = \frac{1}{2} |\mathcal{H}| \) by Lemma 1, a contradiction. On the other hand, if \(x \notin N_i, N_j \) holds for some \(1 \leq i, j \leq p \) then \(d(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2} > \frac{1}{2} |\mathcal{H}| - \{|N_i, N_j|\} \), a contradiction again.

3. Proof of Theorem 3

First we prove that the families \(\mathcal{M} \subset \mathcal{H} \) described in the theorem are intersecting families of maximum cardinality. It is easy to see that \(\mathcal{M} \) is an intersecting family. We prove that \(|\mathcal{M}| = \frac{1}{2} |\mathcal{H}| \). By the argument used in Lemma 1, we can form disjoint pairs from the sets of \(\mathcal{H} \): \{A, A \Delta M\}. Obviously, there exists a \(B \in \mathcal{M} \) such that either \(B \subset A \) or \(B \subset A \Delta M \), so either \(A \in \mathcal{M} \) or \(A \Delta M \in \mathcal{M} \). Then \(|\mathcal{M}| \geq \frac{1}{2} |\mathcal{H}| \) holds and this implies \(|\mathcal{M}| = \frac{1}{2} |\mathcal{H}| \) by Theorem 1.

We will prove the other part of the theorem by induction on \(|\mathcal{H}| \). The following induction step was used by Daykin, Hilton and myself [4] for a simple proof of Theorem 1. Let \(T \) be a subset of \(S \) of minimum cardinality for which there exists an \(H \in \mathcal{H} \) such that \(S \setminus (H \cup T) \in \mathcal{H} \). It is easy to see that there exists such a (possibly empty) \(T \). Let \(\mathcal{A} = \{A \in \mathcal{H} : S \setminus (A \cup T) \in \mathcal{H} \} \). Then one can prove that \(\mathcal{H} \setminus \mathcal{A} \) is also a hereditary hypergraph and \(\mathcal{A} \) is the disjoint union of disjoint pairs \(\{A, B\} \) with \(B = S \setminus (A \cup T) \). It is easy to see that \(A = S \setminus (B \cup T) \) and \(A \in \mathcal{A} \) implies \(B \in \mathcal{A} \). So the union of our pairs is \(S \setminus T \).

First we carry on proving the case \(\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| \). If \(\mathcal{M} \subset \mathcal{H} \) is an intersecting family of maximum cardinality, that is \(|\mathcal{M}| = \frac{1}{2} |\mathcal{H}| \), then \(|\mathcal{M} \cap \mathcal{A}| = \frac{1}{2} |\mathcal{A}| \). Here \(|\mathcal{M} \cap \mathcal{A}| \leq \frac{1}{2} |\mathcal{A}| \) is trivial and if \(|\mathcal{M} \cap \mathcal{A}| < \frac{1}{2} |\mathcal{A}| \), then \(\mathcal{M} \setminus \mathcal{A} \) is an intersecting family in the hereditary hypergraph \(\mathcal{H} \setminus \mathcal{A} \) such that \(|\mathcal{M} \setminus \mathcal{A}| = |\mathcal{M}| - |\mathcal{M} \cap \mathcal{A}| > \frac{1}{2} |\mathcal{H}| - \frac{1}{2} |\mathcal{A}| = \frac{1}{2} |\mathcal{H} \setminus \mathcal{A}| \), which contradicts Theorem 1.

Hence we know that

\[
|\mathcal{M} \setminus \mathcal{A}| = \frac{1}{2} |\mathcal{H} \setminus \mathcal{A}|, \quad \omega(\mathcal{H} \setminus \mathcal{A}) = \frac{1}{2} |\mathcal{H} \setminus \mathcal{A}| \quad \text{and} \quad |\mathcal{H} \setminus \mathcal{A}| < |\mathcal{H}|.
\]

Therefore we may suppose that the statement of the theorem is true for \(\mathcal{H} \setminus \mathcal{A} \) (if \(\mathcal{H} \neq \mathcal{A} \)). Let \(M' \) be the non-empty intersection of the maximal sets of \(\mathcal{H} \setminus \mathcal{A} \). Then all intersecting families \(\mathcal{M}^* \subset \mathcal{H} \setminus \mathcal{A} \) of maximum cardinality contain \(M' \), consequently \(M' \in \mathcal{M} \setminus \mathcal{A} \). If \(M' \subset T \) holds, then \(A \cap M' = \emptyset \) holds for all \(A \in \mathcal{A} \). But \(|\mathcal{M} \cap \mathcal{A}| = \frac{1}{2} |\mathcal{A}| \geq 1 \) and this implies \(M' \subset (S \setminus T) \neq \emptyset \). Use the notation \(M = M' \setminus (S \setminus T) \). If \(x \in M \), then it is easy to see that \(d(x) = \frac{1}{2} |\mathcal{H}| \) and if \(x \notin M \), then \(d(x) < \frac{1}{2} |\mathcal{H}| \). Using Lemma 1 and Lemma 2 we obtain that \(\mathcal{M} \) is the intersection of all maximal sets of \(\mathcal{H} \).

Since \(\mathcal{M} \setminus \mathcal{A} \) is an intersecting family in \(\mathcal{H} \setminus \mathcal{A} \) of maximum cardinality, it follows that \(\mathcal{M} \setminus \mathcal{A} \) is like we described in the theorem and \(\mathcal{M} \setminus \mathcal{A} \) can be completed to an intersecting family of cardinality \(\frac{1}{2} |\mathcal{H}| \) from the pairs of \(\mathcal{A} \). If \(M' \subset S \setminus T \), i.e. \(M = M' \), then \(\mathcal{M} \) is like we described in the theorem. Suppose now \(M' \cap T \neq \emptyset \) and let \(M_1, M_2 \subset M \), \(M_1 \cup M_2 = M \), \(M_1 \cap M_2 = \emptyset \). If \(\mathcal{M} \setminus \mathcal{A} \) does not contain \(M_1 \) and \(M_2 \), then \(M_1 \cup (M' \cap T) \) and \(M_2 \cup (M' \cap T) \) are elements of \(\mathcal{M} \setminus \mathcal{A} \). This is true since
M \setminus \mathcal{A}$ contains exactly one set from the two complementary sets of M'. But it is easy to see, that there exists a pair of sets from the above described \mathcal{A} such that one member of this pair intersects M in M_1, so it does not intersect $M_2 \cup (M' \cap T)$ and at the same time the other member of the pair intersects M in M_2, consequently it does not intersect $M_1 \cup (M' \cap T)$. Then M does not contain the members of this pair and this contradicts $|M| = \frac{1}{2} |\mathcal{H}|$. So $M \setminus \mathcal{A}$ contains exactly one of M_1 and M_2, i.e. M contains a maximum intersecting family of edges of $P(M)$.

Let us denote it by M'. We know that $M \supseteq \{A \in \mathcal{H} : \exists B \in M', B \subset A\}$, but here the cardinality of the right hand side is $\frac{1}{2} |\mathcal{H}|$, consequently $M = \{A \in \mathcal{H} : \exists B \in M', B \subset A\}$.

Finally we have to settle the case $\mathcal{H} = \mathcal{A}$. But then it is easy to see that $\mathcal{H} = P(S)$ and the statement is trivial.

Let us turn to the case $\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2}$. Suppose that \mathcal{H} is an intersecting family in \mathcal{H} of maximum cardinality and let $T \subset S$ and $\mathcal{A} \subset \mathcal{H}$ be the same as in the case $\omega(\mathcal{H}) = \frac{1}{2} |\mathcal{H}|$. Now we can see that $|\mathcal{H} \cap \mathcal{A}| = \frac{1}{2} |\mathcal{A}|$ and $\omega(\mathcal{H} \setminus \mathcal{A}) = |M \setminus \mathcal{A}| = \frac{1}{2} |\mathcal{H} \setminus \mathcal{A}| - \frac{1}{2}$ by the argument used in the previous case. We may suppose that the statement of the theorem is true for $\mathcal{H} \setminus \mathcal{A}$ and $M \setminus \mathcal{A}$ because $\mathcal{H} \setminus \mathcal{A}$ contains at least one element (and if $\mathcal{H} \setminus \mathcal{A} = \emptyset$, then the statement is trivial). First we show that Chvátal's conjecture is true for this \mathcal{H}, i.e. there exists an $x \in S$ such that $d_{\mathcal{H}}(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2}$ holds. We know that there exists either a maximal set of $\mathcal{H} \setminus \mathcal{A}$ (let us denote it by N^*) such that $\mathcal{M} \setminus \mathcal{A}$ is an intersecting family in $(\mathcal{H} \setminus \mathcal{A}) \setminus \{N^*\}$ or an $N^{**} \subset S$, $N^{**} \notin \mathcal{H} \setminus \mathcal{A}$ such that $(\mathcal{M} \setminus \mathcal{A}) \cup \{N^{**}\}$ is an intersecting family in the hereditary hypergraph $(\mathcal{H} \setminus \mathcal{A}) \cup \{N^{**}\}$. In both cases we can find an $x \in S \setminus T$ such that $d_{\mathcal{H} \setminus \mathcal{A}}(x) = \frac{1}{2} |\mathcal{H} \setminus \mathcal{A}| - \frac{1}{2}$. On the other hand $x \in S \setminus T$ implies $d_{\mathcal{A}}(x) = \frac{1}{2} |\mathcal{A}|$ and hence $d_{\mathcal{H}}(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2}$ follows. Now if M does not contain all maximal sets of \mathcal{H}, then let $N_i \notin \mathcal{M}$ and hence $M \subset \mathcal{H} \setminus \{N_i\}$ trivially holds. If M contains all maximal sets of \mathcal{H}, then let $x \in S \setminus T$ satisfying $d_{\mathcal{H}}(x) = \frac{1}{2} |\mathcal{H}| - \frac{1}{2}$. By Lemma 2 there exists a maximal set N_i of \mathcal{H} such that $x \notin N_i$. It is trivial that $\mathcal{M} \cup \{N_i \cup \{x\}\}$ is an intersecting family and we will prove that $\mathcal{H} \cup \{N_i \cup \{x\}\}$ is a hereditary hypergraph. Suppose that it is not the case. Then \mathcal{H} does not contain the subsets H_1, H_2, ..., H_t of $N_i \cup \{x\}$ ($t \geq 1$). But \mathcal{H} contains all subsets of N_i thus $x \in H_i$ ($1 \leq i \leq t$). It is easy to see that $\mathcal{H} = (\mathcal{H} \cup \{N_i \cup \{x\}\}) \cup \{H_1, \ldots, H_t\}$ is a hereditary hypergraph and $d_{\mathcal{H}}(x) = d_{\mathcal{H}}(x) + t + 1 = \frac{1}{2} (|\mathcal{H}| + 2t + 1) > \frac{1}{2} (|\mathcal{H}| + t + 1) = \frac{1}{2} |\mathcal{H}|$ which contradicts Theorem 1. $\mathcal{H} \cup \{N_i \cup \{x\}\}$ is a hereditary hypergraph and we have proved the statement of the theorem.

Acknowledgement

I would like to thank Gy. Katona for his continuous help.
References

