Devendra P Saroj

Devendra P Saroj
University of Surrey · Department of Civil and Environmental Engineering

PhD, CEnv, MSOE, FHEA

About

77
Publications
31,027
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,695
Citations
Citations since 2016
36 Research Items
1379 Citations
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
Additional affiliations
January 2021 - present
University of Surrey
Position
  • Head of Department
Description
  • Water/wastewater treatment, water-energy-food-environment Nexus, urban water management, agriculture and environment
January 2018 - December 2020
University of Surrey
Position
  • Head of Department
December 2010 - December 2017
University of Surrey
Position
  • Lecturer
Description
  • Water and Wastewater treatment; Environmental Engineering; Water Supply and Sanitation
Education
October 2004 - December 2007
Università degli Studi di Trento
Field of study
  • Sanitary Engineering
August 2002 - September 2004
Indian Institute of Technology Kanpur
Field of study
  • Environmental Engineering & Management
July 1998 - July 2002
Indian Institute of Technology Roorkee
Field of study
  • Civil Engineering

Publications

Publications (77)
Article
Full-text available
Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatme...
Article
After the advent of critical flux concept, studies on constant subcritical flux operation of membrane bioreactors (MBRs) gained interest, presumably, because of preferred least fouling operational strategy; however, such a chosen operational condition has demonstrated the continuous slow and irreversible fouling followed by a sudden rise in transme...
Article
Full-text available
The paper discusses the experimental optimisation of both chemical and mechanical cleaning procedures for a flat-sheet submerged membrane bioreactor fed with municipal wastewater. Fouling was evaluated by means of the critical flux concept, which was experimentally measured by short-term flux-stepping tests. By keeping constant most important param...
Article
Full-text available
Integration of high water-volume and nutrient-rich industrial wastewater into the existing water management plan for agriculture could be a viable option to protect freshwater resources, mitigate water scarcity problems and support the agriculture sector. Hydroponics were set-up to study the effects of treated mixed industrial and domestic wastewat...
Article
Full-text available
The aim of the present study is to assess the wastewater treatment efficiency of a low-cost pilot-scale trickling filter (TF) system under a prevailing temperature range of 12 °C–38 °C. Operational data (both influent and effluent) for 330 days were collected from the pilot-scale TF for various physicochemical and biological parameters. Average per...
Article
The main goal of this work is to evaluate the usage of ozone (O3) as a pre-treatment or simultaneously combined with UVC/H2O2 process for the polishing stage treatment of real bio-treated slaughterhouse wastewater. Two different treatment strategies were tested: i) pre-ozonation of the wastewater followed by an UVC/H2O2 process (two-step treatment)...
Article
Current experiences in pilot sanitation projects indicate that the spontaneous precipitation in urine diversion (UD) systems has been one of the main challenges for the implementation of urine source separation on large-scale. As a result of microbial ureolysis, an increased pH leads to the formation of inorganic precipitates, which increases the r...
Article
Full-text available
This study aims to assess the physicochemical characteristics of the particulate matter ≤10 µm (PM 10 ) at both congested and non-congested areas of Lahore, the second-largest city of Pakistan. PM 10 samples from 10 urban sites in Lahore were analysed for source apportionment. The techniques of scanning electron microscopy/energy dispersive spectro...
Article
Full-text available
There is a growing demand for an integrated assessment to identify and select asset management options based on sustainability in the wastewater industry. However, water companies are often not equipped with a rigorous methodology and sufficient resources to perform sustainability assessments. Although many frameworks and tools for sustainability a...
Article
Pollution and increasing water demand, especially for agriculture, put severe stress on freshwater sources, and as a result, there is progressive deficit in the global water supply and severe water scarcity is projected in the coming decades. Discharges from domestic, industrial and agricultural activities are potential sources of water pollution,...
Article
Full-text available
Abstract The current work explores the treatment of dye wastewater using the combination of photocatalysis and ceramic nanofiltration process. Commercial ceramic membrane and titanium dioxide (TiO2) photocatalyst were used in this study to investigate the removal of Brilliant Green (BG) dye from the synthetic dye wastewater solution. The effect of...
Article
Full-text available
The present research is focused on the application of glass beads (GBs) in fixed biofilm reactor (FBR) for the treatment of simulated methylene blue (MB) wastewater for 9 weeks under aerobic conditions. The COD of MB wastewater showed a reduction of 86.48% from 2000 to 270.4 mg/L, and BOD was declined up to 97.7% from 1095.5 to 25.03 mg/L. A drasti...
Article
Full-text available
Suspended growth biological process (SGBP) with post-ozonation (O3) was investigated for treatment of simulated complex mixed industrial and domestic wastewater at specific conditions. The SGBP was operated under complete aeration, 30/30-min and 60/30-min on/off aeration cycles and effluent was exposed to ozone at 250 mgO3/h fixed dose and contact...
Article
Full-text available
The utilization of dyes in textile industries has enormously increased in recent years and has created several environmental problems. Currently, several methods are in practice to treat wastewaters. Effective and efficient treatment techniques before the discharge of used water in the environment are the need of the hour. This short review covers...
Article
Full-text available
The adverse environmental impact caused by eutrophication has recently prompted the Philippine government to issue stringent regulatory standards for wastewater effluent quality. The involved stakeholders and industries are assessing the integration of biological nutrient removal (BNR) technologies in the current sewage treatment plant (STP) scenar...
Article
Full-text available
Insufficiency of phosphorus due to the limited availability of phosphate rocks is predicted within the next decades. Phosphorus recovery from wastewater sludge was found to be one of the possible alternative sources of phosphorus. Moreover, stringent effluent standards, including that of phosphorus levels, have been newly implemented in the Philipp...
Article
The present investigation is focused on development of aerobic biofilm on tire derived rubber (TDR) media and then evaluation of such system for bioremediation of Methylene blue (MB) dye for 9 weeks. After 9 weeks of operation, the COD, BOD, ammonia and color values have been declined by 89.2, 98.3, 99.61 and 99.81% respectively, While SEM-EDX resu...
Article
Full-text available
In this work, the removal of Methylene Blue dye from the synthetic textile effluent has been investigated using a hybrid system (photocatalysis and nanofiltration). The Commercial ZnO powder was used as a catalyst in the photocatalytic operation. Response surface methodology (RSM) was employed to optimize the various operating parameters such as pH...
Article
Full-text available
Wastewater and sludge are potential resource of phosphorus (P) for fertilizer production. One method of recovering phosphorus is via chemical precipitation. In the study, phosphorus was recovered from wastewater and sludge. First, hydrolysis was carried out to release the phosphorus in the sludge by the addition of 1.0M acid (sulfuric acid) or base...
Article
Full-text available
Graphene oxide (GO), as an emerging material, exhibits extraordinary performance in terms of water treatment. Adsorption is a process that is influenced by multiple factors and is difficult to simulate by traditional statistical models. Artificial neural networks (ANNs) can establish highly accurate nonlinear functional relationships between multip...
Article
In this study, a pilot-scale trickling biofilter (TBF) using pebbles and gravels media was evaluated for the treatment of domestic wastewater. The TBF system was installed in an open environment at residential area of Quaid-i-Azam University, Islamabad, Pakistan, and was operated at three different recirculation flow rates (Q), i.e. 0.04, 0.072 and...
Article
Full-text available
The unrestricted discharge of domestic and industrial wastewaters along with agricultural runoff water into the environment as mixed-wastewater pose serious threat to freshwater resources in many countries. Mixed-wastewater pollution is a common phenomenon in the developing countries as the technologies to treat the individual waste streams at sour...
Article
Full-text available
Novel bio-magnetic membrane capsules (BMMCs) were prepared by a simple two-step titration-gel cross-linking method using a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix to control the disintegration of phytogenic magnetic nanoparticles (PMNPs) in an aqueous environment, and their performance was investigated for adsorbing cationic malachi...
Article
Full-text available
Wastewater Treatment (WWT) for water reuse applications has been accepted as a strategic solution in improving water supplies across the globe; however, there are still various challenges that should be overcome. Selection of practical solutions is then required whilst considering technical, environmental, socio-cultural, and financial factors. In...
Article
Current industrial livestock production has one of the highest consumptions of water, producing up to ten times more polluted (biological oxygen demand, BOD) wastewaters compared to domestic sewage. Additionally, livestock production grows yearly leading to an increase in the generation of wastewater that varies considerably in terms of organic con...
Article
Full-text available
The increase in water pollution from nutrients like phosphorus and nitrogen has prompted the Philippine government to issue stringent regulatory standards for wastewater effluent quality. Hence, two alternatives are being proposed to be integrated in the current wastewater treatment plant in the Philippines: biological nutrient removal and nutrient...
Article
BACKGROUND This research is focused on the effect of temperature on the growth of active biofilms on polypropylene (PP) filter media in aerobic fixed biofilm reactors (FBR) for wastewater treatment. RESULTS High‐throughput sequencing was used to explore the composition and diversity of the microbial community of 14‐days old (starting phase) biofil...
Article
Brick-manufacturing is an intensive water-consuming industry that requires a sustainable and integrated water management strategy to reduce reliance on freshwater consumption. This study aims to develop a rigorous analytical tool based on water footprint principles and water pinch analysis techniques that can be used to manage and optimise water co...
Article
This research compares and contrasts the physical and chemical characteristics of incinerator sewage sludge ash (ISSA) and pyrolysis sewage sludge char (PSSC) for the purposes of recovering phosphorus as a P-rich fertiliser. Interest in P recovery from PSSC is likely to increase as pyrolysis is becoming viewed as a more economical method of sewage...
Article
This study investigates the microbial community composition, in the biofilms grown on two different support media in fixed biofilm reactors for aerobic wastewater treatment, using next generation sequencing (NGS) technology.The chemical composition of the new type of support medium (TDR) was found to be quite different from the conventionally used...
Article
Full-text available
Appropriate sanitation facilities are still a challenge in many parts of the world, particularly in developing countries. With regard to almost 950 million people defecating in the open, the question arises whether the existing treatment facilities are sufficient to provide for a healthy sanitation in the world. This paper mainly emphasizes on deve...
Article
This study investigates the simultaneous removal of Escherichia coli and metals (Pb, Cd and Zn) in a continuous flow system and provides an insight into the mechanisms involved during bacterial cells kill when in contact with silver-modified zeolite. Results showed complete disinfection and metal removal at 570 min contact time, thereafter E. coli...
Article
This research investigates surface coated ultrafiltration (UF) polyvinylidene fluoride (PVDF) hollow fiber membrane for the removal of organic micropollutants (OMPs) in water. Coating of PVDF membranes with Poly (1-phenylethene-1,2-diyl) - Polystyrene solution through physical adsorption was carried out under two modes, ‘dipped’ and ‘sprayed’. The...
Article
Full-text available
The hydrolytic step is usually considered the rate limiting step in the biological conversion of ligno-cellulose material into biofuels. Current optimization approach attempts to understand the mechanism of hydrolysis in order to boost production. In this study, the development and testing of a surface-based and a water-based-diffusion kinetic mode...
Article
Full-text available
P recovery from wastewater treatment plants (WWTPs) as struvite fertiliser is a recognised method of improving P use efficiency and reducing P losses into the environment. The main driver for P recovery from the water industry viewpoint is the reduction in the nuisance of struvite clogging inside pumps and pipes. Struvite recovery leads to an avera...
Article
Full-text available
The health risk of organic micro pollutants in water is yet to be comprehensively established. However, the persistence of these pollutants in the environment as a result of continuous discharge even at trace concentrations is considered to pose major environmental concerns. Advance treatment methods such as membrane-assisted processes (MAPs) are p...
Article
This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption an...
Chapter
The occurrence of emerging or newly identified contaminants in water resources is becoming a great concern for public health. The worldwide freshwater scarcity is also increasing. These have resulted in rapid growth in the demand for nonconventional water resources and sophisticated approaches to wastewater treatment. Existing conventional water tr...
Chapter
Dwindling supplies of fossil fuel along with detrimental release of greenhouse gases have led to the quest for renewable sources of fuel such as bioethanol from cellulosic materials. Conversion of biomass to bioethanol involves a set of “biotransformation” and “recovery/concentration” processes. With the help of membrane technology, several process...
Article
Full-text available
The wastewater industry is under pressure to optimize performance of sewage treatment works (STW), while simultaneously reducing energy consumption. Using a process configuration selection matrix, this paper explores the practicability of placing a hypothetical cross flow structured plastic media (CFSP) trickling filter (TF) immediately ahead of an...
Article
Full-text available
Water scarcity, pertaining to many interrelated issues e.g. rapid urbanisation and increasing water pollution, has been acknowledged around the world. Water reuse has emerged as a viable water conservation measure to satisfy water demand in many communities. Among the diversity of wastewater treatment processes, membrane assisted treatment technolo...
Article
This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to 5th and 7th weeks time under anaerobic and...
Article
Full-text available
This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to 5th and 7th weeks time under anaerobic and...
Conference Paper
Full-text available
The problem of water scarcity has been admitted across the globe. Water reuse opens opportunities for natural water quality improvement, and an improved management of competing water demands. In recent years, membrane assisted technologies have been reasoned to be decidedly reliable in various water reuse scenarios (Shannon et al., 2008). Consideri...
Article
Full-text available
Attached growth processes for wastewater treatment have been significantly improved during recent years. Their application can be extended to sustainable municipal wastewater treatment in remote locations and in developing countries for the purpose of organic matter (BOD) removal and pathogenic decontamination. The aim of this study is to assess se...
Article
Most recognised global challenges of modern times are related to energy production and consumption. The trends of energy demand for a growing world population and global urbanisation have raised serious concerns, and they are often termed as “global challenges” that include climate change, pollution and demands of clean water, food and energy. In t...
Article
The aim of this study was to investigate the removal of Escherichia coli and heavy metals (Pb2+, Cd2+ and Zn2+) from aqueous solutions using silver-modified clinoptilolite through the combined disinfection of E. coli by the silver ions and sorption of heavy metals on clinoptilolite. The silver-modified zeolites exhibited excellent disinfection perf...
Article
Full-text available
This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely elimin...
Data
Full-text available
BACKGROUND:Thepresentstudyevaluatedtheeffectivenessanddurabilityof tirederivedrubber (TDR)for biofilm development and related long term use in fixed biofilm reactors for wastewater treatment. RESULTS: TDR incubated (30}2.C) with activated sludge showed comparatively higher biofilm development (0.51 g) under aerobic than under anaerobic (0. 42 g) c...
Data
BACKGROUND: The present study evaluated the effectiveness and durability of tire derived rubber (TDR) for biofilm development and related long term use in fixed biofilm reactors for wastewater treatment.