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ABSTRACT

Background: Stroke is a major cause of life-long disability in adults, associated with poor quality of life.
Virtual reality (VR)-based therapy systems are known to be helpful in improving motor functions
following stroke, but recent clinical findings have not been included in the previous publications of
meta-analysis studies.

Aims: This meta-analysis was based on the available literature to evaluate the therapeutic potential of
VR as compared to dose-matched conventional therapies (CT) in patients with stroke.

Methods: We retrieved relevant articles in EMBASE, MEDLINE, PubMed, and Web of Science published
between 2010 and February 2019. Peer-reviewed randomized controlled trials that compared VR with CT
were included.

Results: A total of 27 studies met the inclusion criteria. The analysis indicated that the VR group
showed statistically significant improvement in the recovery of UL function (Fugl-Meyer Upper
Extremity [FM-UE]: n = 20 studies, Mean Difference [MD] = 3.84, P = .01), activity (Box and Block
Test [BBT]: n = 13, MD = 3.82, P = .04), and participation (Motor Activity Log [MAL]: n = 6, MD = 0.8,
P =.0001) versus the control group.

Conclusion: VR appears to be a promising therapeutic technology for UL motor rehabilitation in patients
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with stroke.

Introduction
Stroke

Stroke is one of the leading causes of mortality and the most
prominent cause of life-long adult disability (1). In recent
years, there is a remarkable decline in stroke-related mortality
because of accessibility to various options of acute stroke
treatment, for example, recanalization therapy (2), decom-
pressive therapies (3), and stroke unit management (4).
However, neurologically impaired individuals living with con-
siderable disabilities have dramatically increased (5). Of those,
few may regain some functional use of the upper limbs (ULs)
(6), which seriously affects self-care and societal participation.
As most activities of daily living involve the ULs, it is crucial
to improve UL functional use post-stroke.

Current clinical practice for UL rehabilitation relies on pro-
moting  neuroplasticity  following brain injury  (7,8).
Neuroplasticity, after a brain injury, can be defined as the ability
of the brain reorganizing itself by forming new neural connections
in the adjacent normal tissue of the lesioned hemisphere or in the
non-lesioned hemisphere to take over the lost function (9). To
maximize the effect of brain plasticity, training should be

learning-based, repetitive, challenging, motivating, and intensive
(9,10). Conventional therapies including occupational and physi-
cal treatment help patients to improve the UL motor deficits
following brain injury (11-13). However, these approaches are
time consuming, tedious and outcomes often depend on the
ability of medical staff. Also, repetition, intensity, and dose in
conventional rehabilitation settings are reported to be insufficient
to achieve plasticity-based optimal motor recovery (14). The
limitation of conventional rehabilitation settings motivated the
introduction of new types of efficient therapeutic approaches.
Virtual reality therapy is deemed as one such therapy (7,15,16).

Virtual reality

Virtual reality (VR) is an advanced form of computer-
simulated environment that allows a user to “interact” with
objects and environments within the rendered virtual scenario
(14), which now becomes an emerging treatment option for
motor function rehabilitation post-stroke (16). In this com-
puter-generated world, the user may receive visual feedback
(virtual environments and objects) via a head-mounted
device, flat screen, or projection system. In addition, the
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user may also receive other types of auditory and haptic
feedback through hearing and touching, respectively.
Conventional input devices such as a keyboard, mouse, track-
ball, and joystick or more complex systems such as cameras
and sensors allow users to interact with the virtual
environments.

VR therapy systems

VR-based rehabilitation therapy systems may be classified as
(1) “off-the-shelf” commercial video gaming console (CVGC)
and (2) custom-built virtual environment (CBVE). The
CVGC systems such as Nintendo Wii or Xbox Kinect are
motion-controlled VR gaming consoles and were originally
designed for recreation (14). Because the CVGC systems are
easy to use, enjoyable, inexpensive, and readily available,
many clinicians and researchers have turned to use them as
an adjunct to standard rehabilitation for UL training
(8,17,18). Studies have confirmed that CVGC therapy systems
encourage high intensity and repetitions, which are a key
factor in neuroplasticity, and patients may thereby improve
their UL functional use (19). Despite the potential utility of
CVGC systems as a therapeutic tool for patients with stroke,
a number of drawbacks have been identified (20) such as: they
are typically designed for healthy persons, which is, in turn,
excessively challenging for patients with stroke; the levels of
task difficulty are not readily adjustable to the needs and
capabilities of patients; and it does not integrate multiple
environmental factors that may have positive impacts on UL
functional recovery. CBVE systems, on the other hand, are
usually designed in close collaboration with clinicians and
other researchers to enhance the patient’s sense of presence,
to provide patient-centered training, to provide an automatic
data recording system of patient movements, and to reduce
excessive use of unwanted compensatory movements (21-23).
In general, CBVE therapy systems provide several features
such as repetition, intensity, increasing difficulty, motivation,
and multiple exercise options that are helpful to speed up the
recovery of UL motor deficits following stroke (7,24).

Evidence of VR therapy in stroke rehabilitation

Many clinical trials have investigated the efficacy and mechan-
isms of VR therapy over Conventional therapy (CT) and
reported that the recovery of the ULs proceeded in parallel
with brain plasticity and functional reorganization (25,26). An
experimenter-blinded trial conducted by Jang and colleagues
(25) revealed that after 4 weeks of VR intervention, patients got
significant benefit in the recovery of UL motor deficits as
assessed by FM-UE and BBT. This study, for the first time,
explored the neural mechanisms of UL motor recovery follow-
ing VR intervention using functional MRI (fMRI). They
noticed that before the VR therapy, broader bilateral motor
networks were activated; however, following the VR therapy,
only the ipsilesional primary sensorimotor cortex was activated.
Wang and colleagues (26) conducted a randomized controlled
trial (RCT) to explore the effect of VR-based UL training as
compared with dose-matched CT. They reported that the VR
group showed statistically more significant improvement in UL

activity performance than the control group as assessed by the
Wolf Motor Function (WMEF) (27). This study also reported
a novel demonstration of training-induced cortical plasticity
changes related to motor recovery using fMRI. The findings
revealed that the VR group showed broader brain activation
changes in the contralesional motor network than did the
control group after 4 weeks of interventions.

Previous meta-analysis comparing VR and CT

Over the past few years, a considerable number of meta-
analyses have been conducted to provide evidence for VR
therapy as an adjunct to CT in the recovery of UL motor
deficits post-stroke. In 2011, Saposnik and colleagues (14)
conducted a meta-analysis of 5 randomized control trials
(RCTs) and 7 observational studies from 1966 to July 2011.
Meta-analyses of the 5 RCTs indicated that the VR group
improved UL motor impairments better than did the control
group as assessed by FM-UE. They did not find statistically
superior results in the VR group to the control group in the
recovery of UL activity limitation as measured by BBT.
A meta-analysis of VR therapy following stroke by Lohse
and colleagues (15) in 2014 on 26 RCTs aimed to conduct
separated analyses of the three domains of the International
Classifications of Functioning, Disability, and Health (ICF)
(28): (1) Body function and structure, (2) Activity, (3)
Participation. They reported that patients treated by VR
showed significant improvements across the three levels of
ICF domains compared with the control group. They also
conducted subgroup analyses to address the different effec-
tiveness of CBVE- and CVGC-based therapy systems for UL
motor recovery, although no statistically significant difference
between CBVE and CVGC therapies was observed across the
three levels of ICF domains. However, this study did not
examine the impact of the potential factors that may affect
the effectiveness of VR therapies over the control treatments
such as initial severity of the UL, training dose, and length of
therapy sessions. In 2017, Laver KE and colleagues (16) pre-
sented an updated Cochrane review of 72 RCTs published in
2011 and 2015. They concluded that the use of CBVE and
CVGC had no superior impact on the use of CT in the
recovery of upper limb function. Maier and colleagues (29)
conducted a systematic meta-analysis that investigated the
efficacy of CBVE and CVGC therapy systems versus CT in
the recovery of UL function and activity post-stroke. They
reported that the CBVE therapy systems had statistically
superior impacts on body function and activity than did the
CT, whereas the CVGC therapy systems did not.

Overall results in the recent meta-analysis were consider-
ably variable. The major source of variability may be due to
the inconsistency of therapy protocols: frequency, intensity,
and dose; VR therapy systems: CBVE or CVGC; characteris-
tics of study participants: stage of stroke recovery and initial
severities. Furthermore, the results were mostly reported in
composite measure. For instance, while the study originally
reported two activity outcomes using two different evaluation
scales, a review of the work may have averaged the two
activity outcomes to provide a single outcome point (15,16).
Hence, many researchers and healthcare professionals may be



confused about which clinical scale to use for assessing UL
motor recovery following VR therapy in stroke survivors.
There are only a few large RCTs on VR. New evidence in
support of either VR therapies are or are not superior need to
be collected and studied, perhaps by looking at various sub-
grouping strategies according to chronicity, total amount of
intervention, and ICF levels (body structure/function level,
activity level, and participation level). Therefore, the objec-
tives of this meta-analysis are to: (1) evaluate the overall
effectiveness of VR therapies compared to conventional thera-
pies in the recovery of UL functions across the three ICF
domains; (2) explore the impact of total amount of interven-
tion and stage of stroke recovery that might be related to the
effectiveness of VR therapies over conventional therapies
across the three ICF domains; and (3) identify the frequently
used outcome measures for each of the three ICF domains.

Methods

This study was conducted according to Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA). It
is to be noted that the study protocol was not registered.

Criteria for considering studies for this meta-analysis

Randomized control trials

The main inclusion criteria were RCTs (published in the
English language) that assigned patients to a VR group to
receive VR therapy or to a control group to receive a dose-
matched CT. We excluded trials that compared two VR
groups without a control condition. We did not include trials
that primarily measured lower limbs. In addition, review
articles, letters, editorials, and case reports were excluded
from this meta-analysis.

Eligible participants

Eligible study participants were adults (older than 18 years)
with a clinical diagnosis of stroke confirmed by computed
tomography or MRI. Study participants were not filtered in
terms of time post-stroke (acute/subacute or chronic), types of
stroke (ischemic or hemorrhages), lesion locality (cortical or
subcortical), or levels of initial UL severity (mild, moderate, or
severe). Study participants were excluded if they had
a previous stroke or comorbidities, or if they were children.

Types of UL therapies

We included studies that used CBVE and CVGC (8,18,30).
We excluded studies that used a “hybrid” approach such as
combining VR with robotics or approaches involving electri-
cal augmentation (such as functional electrical stimulation,
transcranial magnetic stimulation). The control group may
receive conventional therapy (CT, physical and/or occupa-
tional therapy).

Outcome measures

We aimed to include studies based on the three ICF domains
(Body Structure and Function, Activity, Participation). Multiple
outcome measures from each comparable study were extracted
and organized according to the three ICF domains
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(supplementary information, Table S2). Hence, we selected one
outcome measure that was the most frequently occurring across
the studies in each ICF domain, which turned out to be the FM-
UE (31), BBT (32), and MAL (33). Therefore, we excluded
a study if none of the three scales was employed in it.

The FM-UE measure was proposed to evaluate impairments in
UL motor function (31). It comprises 33 items with a total score of
66 points (range: 0-66), such that the lower the score, the more
severe of motor dysfunction. The BBT measure (32) was devel-
oped to assess the UL activity limitation of neurologically impaired
populations such as patients with stroke. During the assessment,
a patient is instructed to pick up and put small blocks from one
portion to the other portion of a box using the UL that is relatively
more severely affected. MAL is a structural interview used to
evaluate the UL participation restriction. A patient is instructed
to evaluate how much and how well the affected UL is used during
a variety of daily activities (33). It rates on a 6 point scale ranging
from 0 to 5. The lower the score, the weaker of the UL; and the
higher the score indicates the better recovery of the UL.

Many differences exist across studies regarding classifica-
tion of the BBT and MAL outcome measures. For instance,
Laver et al (2015) classified BBT as body function outcome
measure and MAL as participation (34). In their updated
Cochrane review (2017) (16), they have classified BBT and
MAL as body function. Meta-analysis conducted by Anna
et al (2018) and Lohse et al (2014) classified BBT as activity
outcome measurement and MAL as participation outcome
measurement (15,35). A recent meta-analysis conducted by
Maier et al (2019) classified BBT as activity outcome measure-
ment (29). Based on these growing evidence, we classified
BBT and MAL as a gold standard outcome measure for
assessing the effect of VR therapy on activity and participation
outcome measure, respectively.

Electronic databases and search strategy

Studies exploring the effects of VR therapies versus conven-
tional therapies in UL motor recovery following stroke were
searched in EMBASE, MEDLINE, PubMed, and Web of
Science, which are the scientific literature databases that are
most popularly used in the research community. Included
trials were full-text articles in English published between
2010 and March 2019. Keywords used to identify potentially
relevant articles were: stroke, after stroke, post-stroke, stroke
rehabilitation, hand, arm, upper limb, upper extremity, virtual
reality, virtual, augmented reality, and video game.

Study identification and data extraction

We searched published articles from each computerized data-
base (EMBASE, MEDLINE, PubMed, and Web of Science)
and identified the relevant articles by titles and abstracts. After
removing duplicate articles, the remaining articles underwent
full-text screening and were ranked as relevant or irrelevant
according to the inclusion criteria. Then, we excluded all trials
ranked as irrelevant. Finally, the remaining relevant articles
underwent data extraction. Two reviewers (D.B.M and J.H.)
extracted the following information: contents of therapies
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(Table S1); characteristics of study participants, therapy sche-
dule, and outcome measures (Table S2).

Data analysis

Quality assessments

The individual study quality was evaluated using the
Physiotherapy Evidence Database (PEDro) scale (36). This scale
comprises the following publication bias-reducing items: method
of randomization, adequacy of allocation concealment, baseline
group comparability, blindness of outcome assessor, blindness of
patients and caregivers, incomplete outcome reporting rate, inten-
tion to treat analysis, availability of group comparison key out-
come report, and availability of both mean scores and standard
deviations. Hence, the authors scored the quality of trials using the
individual PEDro bias-reduction items as “1” when a trial met the
criteria and “0” when a trial did not meet the criteria.

Dealing with missing data
All articles were analyzed on a per-protocol basis. We did not
contact the authors to retrieve their unpublished findings.

Quantitative analysis

Post-therapy mean scores, their precision (standard deviations),
and group size for each comparable trial were entered into
RevMan software version 5.3.5. Pooled results were estimated
by calculating the mean difference (MD) with 95% confidence
intervals (CI). In the data collection, some studies (21,22,37-39)
reported findings in terms of median, minimum, maximum,
and/or interquartile range (IQR), and we estimated the mean
values and standard deviations following the method proposed
by (40). Heterogeneity between trials was assessed using the I>
statistic. When significant heterogeneity between trials existed
(I*>50%), the random-effect model was applied to pool trial
results for outcomes FM-UE, BBT, and MAL; and when low
heterogeneity was observed between trials (I <50%), the fixed
effect model was applied. Forest plot graphics were generated to
present the pooled effect. All tests are two sided, and P-value
<0.05 was considered to be statistically significant.

Subgroup analysis

We also performed subgroup meta-analyses by subdividing
the studies according to time post-stroke (41): subacute stage
(within 6 months) versus chronic stage (more than 6 months);
and total amount of intervention (16): less than 15 h of
intervention versus more than 15 h of intervention. While
Bernhardt and colleagues’ work (41) classified the time frame
of stroke recovery as acute (within 7 days of onset of stroke),
subacute (from 1 week of stroke onset to 6 months) and
chronic phase (more than 6 months of stroke onset), our
strategy merged acute into subacute to take all the work in
our collection into consideration consistently.

Results
Flow of studies through review

As described in the method section, four computerized data-
bases were used for searching potentially relevant published

articles (Figure 1). The search strategy provided a total of
3,784 records. After removal of duplication, 2,405 studies were
further screened based on their titles and contents in the
abstracts. After the full-text screening, 27 randomized control
trials met the inclusion criteria. All these studies targeted UL
motor recovery, comparing VR versus dose-matched CT.

Characteristics of study participants

The included studies contained 1,094 participants; 555 of
them were randomized to the experimental group to receive
VR therapy plus CT if applicable and the remaining 539
participants were randomized to the control group to
receive CT. The mean age of participants was 63.48 (SD =
12.47) years. Twelve studies (7,8,17,18,21,23,24,30,42-45)
recruited patients in the subacute phase of stroke (range:
0.43-5.7 month); fourteen studies (22,37,38,46-56)
recruited patients in the chronic phase of stroke (range:
6.11-51 months; Table S1). One study did not report the
patients’ recovery stage (39).

Quality assessment and publication bias

The quality of the individual trials judged by the review
authors using the PEDro bias-reduction items is presented
in supplementary Table S3. The overall quality of the included
studies was high (average total PEDro score of 6.29). All trials
properly reported eligibility criteria, method of randomiza-
tion, outcome analysis between groups, and mean scores and
standard deviations. Most studies reported outcome assessor
blindness (23 studies, 85.18%), group comparability at base-
line (22 studies, 81.48%), drop-out rate less than 15% partici-
pants (20 studies, 74.07%), adequacy of allocation
concealment (13 studies, 48.14%), and intent-to-treat analysis
(11 studies, 40.74%). Given the nature of the trials being
studied, both participants and caregivers were not naive to
the experimental or control therapy.

The content of VR and CT therapies

Of the 27 included studies, 21 used CBVE therapies and the
remaining six studies used CVGC therapies. Most of the CBVE
therapies involved a video capturing system, which required the
patients to be seated facing a video camera while performing the
task, which was typically reach-to-grasp exercises such as one
that used the rehabilitation gaming system (7), YouGrabber
(24), or RehabMaster (22,23). The CVGC therapy systems
included Nintendo Wii and Xbox Kinect, which required
patients to hold an interface device (8) or not hold any interface
device but use an infrared camera to track the UL movements
(30). Most of the included studies provided “conventional ther-
apy” for both groups (VR and control). In some studies, the
conventional therapy was mentioned as usual care (39), stan-
dard rehabilitation (7,52), or conventional rehabilitation pro-
gram (18,30), which basically emphasized their nature of
physical or occupational therapy.



Studies identified in search
Through databases (n=3, 784)
1. EMBASE: n=1, 140

g. gﬁ;&JgE:nz$g9 Additional studies identified
. PubMed: n= through other sources
4. Web of Science: n =1, 410 ¢ (n=0)

Total records following
duplication removed
(n=2, 405)

A4

Screened by title and

abstract (n=2, 405)

A 4

Full text screening

Excluded records (n=2, 145)

Targeted for lower limb
(n=375)

Review, case study,
conference, not published
in English (n=514)
Population (614)

Others (n =642)

A 4
Studies included in
meta-analysis
(n=27)

Figure 1. Flowchart of our study screening procedure.

Total amount of intervention

Nineteen studies (7,8,17,18,21-24,37,44,46,48-53,55,56) provid-
ing less than 15 h of VR therapy (mean [SD] = 9 [2.8] hours)
and the remaining 8 studies (30,38,39,42,43,45,47,54) providing
more than 15 h of VR therapy (mean [SD] = 24.25 [12.85] hours).

(n=260) >

Excluded studies (n=237)

Population (n=55)
Targeted other than upper
limb (n=83)

Used hybrid intervention
e.g. VR + robotic (n=94)
Studies not reported FM-
UE, BBT or MAL (n=5)

Meta-analysis at post-therapy

FM-UE meta-analysis
When analyzing the overall FM-UE outcomes, the VR group
showed significantly more improvement in the recovery of UL
functionality than did the control group (20 studies, MD = 3.84,
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Virtual Reality therapy ~ Control therapy Mean Difference Mean Difference
Study Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% ClI
Afsar2018 43.05 1259 19 3444 1053 16 6.00% 8.61[0.95, 16.27] —
Askin2018 4125 961 18 35 1044 20 6.90% 6.25[-0.13,12.63] e
Cameirao 211 846 184 8 669 229 8 1.70%  17.70[-2.66, 38.06] I
Choi 2014 403 184 10 472 105 10 3.30% -6.90[-20.03,6.23] — 1
Duff 2012 5092 7.85 11 56.83 6 10 7.30% -5.91[-11.86,0.04] -]
n2012 5945 742 1" 49.57 1295 8 4.70% 9.88[-0.11,19.87]
Kim 2018 494 142 12 46.8 16 11 3.60% 2.60[-9.81,15.01] T
Kiper 2011 489 152 40 464 1741 40 6.40% 2.50 [-4.59, 9.59] -1
Kiper 2014 498 125 23 495 162 21 5.40% 0.30 [-8.31,8.91] I —
Kiper 2018 4771 1574 68 4629 1725 68 7.50% 1.42[-4.13,6.97] =
Kottink 2014 45 14 8 41 18 10 2.80% 4.00[-10.78, 18.78] —
Levin2012 473 119 6 449 117 6 3.30% 240[-10.95, 15.75] —
Piron 2010 49.7 1041 27 46.5 97 20 7.40% 3.20[-2.51,8.91] aE
Shin2014 51.1 78 9 407 9.8 7 5.30%  10.40[1.53,19.27]
Shin2015 3853 11.79 16 48.1 1764 16 450% -9.57[-19.97,0.83] T
Shin2016 58.3 1.7 24 496 27 22 10.20% 8.70[7.38,10.02] 2
Sin2013 4772 15.34 18 3459 2072 17 3.70%  13.13[1.00, 25.26]
Thielbar 2014 504 104 7 436 8.1 7 4.80% 6.80 [-2.97, 16.57] ]
Wen 2019 39.17 15.76 17 36.83 19.91 16 3.60% 2.34[-9.96, 14.64] -1
Yin 2014 53 246 11 4835 29.35 12 1.50% 4.65[-17.42,26.72]
Total (95% Cl) 363 345  100.00% 3.84[0.93, 6.75] 0

Heterogeneity: Tau? = 21.12; Chi? = 52.86, df = 19 (P < 0.0001); P = 64%
Test for overall effect: Z=2.59 (P =0.010)

Favours CT Favours VRT

25

Figure 2. Forest plot of FM-UE outcome. A pooled result favoring VRT indicates positive values, and favoring CT indicates negative differences between VRT and CT.

Note: VRT = Virtual reality therapy, CT = Conventional therapy.
VRT = Virtual reality therapy, CT = Conventional therapy
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95% CI = 0.93 to 6.75, P = .01, Figure 2). Heterogeneity was
considerably high (I* = 64%).

BBT meta-analysis

When analyzing the overall BBT outcomes, the VR group
showed significantly more improvement in the recovery of
UL activity limitation than did the control group (13 studies,
MD = 3.82, 95% CI = [0.26 to 7.38], P = .04, Figure 3).
Heterogeneity was considerably high (I = 53%).

MAL meta-analyses

Only six trials with 124 participants examined the participation
restriction outcome. When analyzing the MAL amount of use
outcomes, VR-based treated patients showed significantly more
improvement on the MAL scale than did the CT group (MD =
0.8, 95% CI = [0.44 to 1.15], P = .0001, I* = 0%, Figure 4).
Because of inadequate statistical power in this group of sam-
ples, we were unable to pool subgroup analysis.

Subgroup analyses

Stage of stroke recovery. We subdivided studies based on
whether their participants recruited within 6 months (suba-
cute) or more than 6 months (chronic) post-stroke. Patients
with subacute stroke demonstrated significant improvements

in the recovery of UL functional impairment (FM-UE: 9
studies; MD 3.72; P = .03; Supplementary Figure S3 upper
panel), but chronic patients had non-significant improve-
ments (FM-UE: 11 studies; MD 3.76; P = .08;
Supplementary Figure S3 lower panel). The BBT subgroup
meta-analysis showed no significant effects neither studies
recruited patients with subacute stroke (6 studies; MD 3;
P = .26; Supplementary Figure S4 upper panel) nor patients
with chronic stroke (7 studies; P = .07; Supplementary Figure
S4 lower panel).

Total amount of intervention. We compared studies deliver-
ing less than or equal to 15 h of VR intervention versus those
more than 15 h of VR intervention. In the studies delivering
less 15 h of intervention, the VR group did not show signifi-
cant improvements in the recovery of UL functional impair-
ment (FM-UE: 14 studies; MD 4.11; P = .06; Supplementary
Figure S1 upper panel) and activity limitation (BBT: 11 stu-
dies; MD 2.98; P = .13; Supplementary Figure S2 upper panel)
when compared with the control group. Whereas in the
studies delivering more than 15 h of VR intervention, the
VR group showed statistically significant improvements in
the recovery of UL functional impairments (FM-UE: 6 stu-
dies; MD 3.21; P = .02, Supplementary Figure S1 lower panel)
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Favours CT Favours VRT

Figure 3. Forest plot of BBT outcome. A pooled result favoring VRT indicates positive values, and favoring CT indicates negative differences between VRT and CT.

Note: VRT = Virtual reality therapy, CT = Conventional therapy.
VRT = Virtual reality therapy, CT = Conventional therapy
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Figure 4. Forest plot of MAL outcome. A pooled result favoring VRT indicates positive values, and favoring CT indicates negative differences between VRT and CT.

Note: VRT = Virtual reality therapy, CT = Conventional therapy.
VRT = Virtual reality therapy, CT = Conventional therapy



and activity limitation (BBT: 2 studies; MD 8.74; P = .01;
Supplementary Figure S2 lower panel) when compared with
the control group.

Discussion
Summary

Rehabilitation following stroke is a fundamental component
in any program that aims to restore an individual’s ability to
participate in normal life roles. Novel therapeutic approaches
such as VR have been introduced to overcome the “modest”
benefits of conventional therapies. A meta-analysis conducted
in 2011 by Saposnik and colleagues (14) suggested that future
practice for assessing the therapeutic potential of VR should
include an evaluation of the three ICF domains. With this in
mind, we screened 2,402 trials and identified 27 RCTs with
good quality that involved 1,094 participants who met the
inclusion criteria.

This study confirmed that VR-based therapy systems may
have significant impacts on the recovery of UL functional
impairment when the study participants were in the subacute
phase of stroke or when the studies provided more than 15
h of therapy dose. In addition, patients may also benefit from
VR in improving their UL activity limitation when they
received a therapy dose of more than 15 h. VR also had
a significant impact on improving participation restriction as
assessed by the MAL outcome. Furthermore, this study also
identified FM-UE, BBT, and MAL as the most frequently used
gold standard outcome measures to evaluate the effect of VR
therapies.

The overall FM-UE pooled effects revealed that recovery of
the UL functional impairments in the VR group was superior
to that in the control group with statistical significance. Our
results are in accordance with the findings of two recent meta-
analyses (14,16) which reported that the VR groups showed
more improvements in FM-UE score compared with their
respective control group.

The Meta-analysis of BBT revealed that patients treated by
VR-based therapies achieved more UL activity performance
improvement than patients treated by CT-based therapies.
Our results differ from the earlier meta-analysis reported
(14), in which Saposnik and colleagues did not find superior
effects in the VR group compared to the CT group concerning
the recovery of activity limitation. Because of the rapid
advancements in VR technology, which can provide patient-
centered, repetitive training, this meta-analysis has included
a relatively larger number of studies than in the meta-analysis
reported by Saposnik and colleagues (only three RCTs were
pooled). Our results agree with the results reported in the
recent meta-analyses (15,35), in which Lohse and colleagues
(15) reported that regardless of the type of VR interventions
(CBVE or CVGC), the VR group got significantly better
improvement in recovery of the UL activity limitations than
the control group.

The VR group showed statistically significant improvement
in participation outcome compared with the control group.
This finding differed from the earlier meta-analysis (15,35), in
which the authors did not find a statistically superior impact
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of VR on participation outcome versus CT. This discrepancy
may be due to the availability of one study, which is included
in our meta-analysis (55). Due to the lack of adequate number
of samples, we were unable to conduct subgroup meta-
analysis of MAL with respect to total amount of intervention
and stage of stroke recovery. Future studies are encouraged to
administer the participation assessment as part of the stan-
dard outcome measure.

Subacute versus chronic stage

As to the FM-UE subgroup meta-analysis with regard to time
post-stroke, our findings, based on nine comparable trials that
initiated therapies in the subacute phase of stroke, confirmed
that the VR group received statistically more improvement in
UL functional impairments than did the control group.
Although in 11 studies that initiated therapies in the chronic
phase of stroke showed positive effects favoring the VR group,
the observed effect was not statistically significant between the
VR and control groups. Our findings support the recent
knowledge in neuroplasticity-induced motor recovery (7).
The fact that VR therapies are more effective in the recovery
of UL function in subacute phases of stroke has been attrib-
uted to the fact that brain plasticity and cortical reorganiza-
tion should typically be high within a few days or weeks after
stroke onset (57) and reports have indicated that the recovery
of the ULs proceeds in parallel with brain plasticity and
functional reorganization (58). For the BBT subgroup meta-
analysis, we did not find statistically significant differences
between the VR and control groups, when VR therapy was
administered in the subacute or in the chronic phase of
stroke.

Total amount of intervention: higher versus lower VR
therapy dose

The impact of using a higher dose of VR therapy (more than
15-h intervention) in the recovery of UL functional impair-
ments and activity limitation had more positive effects than
did the lower dose of VR therapy (less than 15-h interven-
tion). These findings differed from the recent meta-analysis of
VR studies (16,35). Laver and colleagues (16) reported that
the impact of lower (less than 15 h) and higher (more than 15
h) dose of VR therapy has similar effect in the recovery of UL
functional impairment with statistically significant than did
the control group. Anna and colleagues (35) did not find
a clear benefit of VR therapy dose in the recovery of UL
functionality. This meta-analysis included relatively new arti-
cles (17,30,38,43,44,48,49,55,56), which have not been
included in the previous studies. Overall, our results indicated
that VR therapies may have a significant impact on the
recovery of UL functional impairments and activity limitation
better than did CT while studies providing more than 15 h of
VR intervention. However, only 6 studies (6 versus 14 studies)
providing more than 15 h of intervention while pooling the
FM-UE outcomes and 2 studies (2 versus 11 studies) in
pooling BBT results.

The added value of VR therapies on the recovery of UL
functional impairments, activity limitations, and participation
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restrictions compared with CT's may be associated with multi-
ple important factors. The first possible reason that may be
attributed to the effectiveness of VR therapies may be related
to providing multiple training options, in which the therapist
can choose different types of UL therapy modes based on
a patient’s need and actual motor capabilities (8). VR systems
may also allow creation of an individualized training program
that could automatically adjust the training intensity and
difficulty level to the patient’s actual motor status (59). Most
trials included in our meta-analysis incorporated graded
training programs that aimed to induce optimal neural plas-
ticity and continued active participation, which is necessary
for achieving optimal motor recovery after brain injury (24).
Therefore, flexibility in configuring a VR therapy system with
multiple training options may be crucially important in the
recovery of UL motor deficits after stroke.

The other possible reason that VR therapies may provide
better effects may be associated with the multiple types of
sensory feedback (e.g., visual, haptic, and auditory) that are
concurrently available in VR therapy systems. Feedback can
be classified as “intrinsic (inherent)” or “extrinsic (augmen-
ted).” Intrinsic feedback refers to an individual’s inner repre-
sentation of sensory information, including tactile, haptic, and
proprioceptive information. This sensory representation may
be impaired following a stroke (60). Patients with stroke are
believed to benefit from practicing with augmented feedback
(58). For instance, exercising based on slightly amplified
movements may facilitate the learning rate of motor skills
and recovery (59). All trials in this meta-analysis included
visual feedback, which was not immersive in the sense of
experiencing the reality of being in another world. Future
studies encourage the use of head-mounted devices such as
a VR goggle that may provide a strong sense of immersive
presence and may increase the effect of motor training.

Limitation

This work has some limitations that should be taken into
consideration when we interpret the effect of VR therapies
in the recovery of UL functionality. One of the possible
limitations would be the inclusion of a diverse stroke popula-
tion with regard to stroke type (ischemic or hemorrhage),
stroke locality (cortical or subcortical), level of initial UL
severities (mild, moderate, or severe), and stage of recovery.
Due to the small number of trials that were available, our
analyses were unable to control for the impact of initial
severity of stroke, stroke type, and locality on the effectiveness
of VR therapy. The second limitation of this meta-analysis
could be diverse therapies in the control group, which led to
a variation in the comparison between the VR and control
groups. Several of the included studies did not truly control
the VR therapies by the CT in terms of frequency, intensity,
level of task difficulty, motivation, and task specificity. For
instance, in six studies (17,21,23,30,38,46), the VR group
received a CBVE or CVGC therapy plus a CT, whereas the
control group received a CT alone, without matching therapy
frequency, intensity, and dose. In these studies, the VR group
received significant benefits with respect to the ICF category;
however, it remains unclear if the improvement was due to

the additional time-training dose. The third potential limita-
tion of this study is the diversity of VR therapy systems. We
did not investigate the different effectiveness of CBVE- and
CVGC-based therapy systems across the three ICF domains.
A recent meta-analysis conducted by Martina et al 2019 (29)
revealed that the use of CBVE-based therapy systems had
more significant impacts on body functions and activities
than did the CVGC. The fourth limitation of this meta-
analysis was date of publication. Because of the rapid advance-
ment in technology, a large number of older trials were
excluded from this review, which might also lead to
a selection bias.

Conclusion

Stroke rehabilitation is rapidly evolving. The use of VR thera-
pies may help individuals improve UL functionality. Evidence
from this meta-analysis suggests that VR has the potential to
alleviate UL motor impairments and may encourage motor
activities and societal participation. Subgroup analysis sug-
gests that participating in VR training over an extended ther-
apy time (more than 15 h of intervention) may be more
advantageous compared to a shorter period of time for indi-
viduals with stroke to improve their UL motor impairments
and activity limitation. Also, patients in the subacute phase of
stroke may benefit from VR therapies more than patients in
chronic phases of stroke. Finally, this meta-analysis suggests
that the FM-UE, BBT, and MAL may be the gold standard
clinical instruments for measuring the effect of VR therapy
across the three ICF domains.
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