• Home
  • UNSW Sydney
  • School of Electrical Engineering and Telecommunications
  • Derrick Wing Kwan Ng
Derrick Wing Kwan Ng

Derrick Wing Kwan Ng
UNSW Sydney | UNSW · School of Electrical Engineering and Telecommunications

About

544
Publications
61,779
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,007
Citations
Introduction
Derrick is currently a Senior Lecturer (Tenured Associate Professor in U.S. system) at the University of New South Wales, Sydney, Australia. Please visit my webpage for more information: http://www2.ee.unsw.edu.au/~derrick/index.html

Publications

Publications (544)
Preprint
This paper investigates a novel method for designing linear precoders with finite alphabet inputs based on autoencoders (AE) without the knowledge of the channel model. By model-free training of the autoencoder in a multiple-input multiple-output (MIMO) system, the proposed method can effectively solve the optimization problem to design the precode...
Preprint
Deep learning (DL) applied to a device's radio-frequency fingerprint~(RFF) has attracted significant attention in physical-layer authentications due to its extraordinary classification performance. Conventional DL-RFF techniques, trained by adopting maximum likelihood estimation~(MLE), tend to overfit the channel statistics embedded in the training...
Preprint
Full-text available
This paper studies a downlink secure integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) transmits confidential messages to a single-antenna communication user (CU) while performing sensing on targets that may act as suspicious eavesdroppers. To ensure the quality of target sensing while preventing their p...
Preprint
Reconfigurable intelligent surface (RIS) is a promising technique to enhance the performance of physical-layer key generation (PKG) due to its ability to smartly customize the radio environments. Existing RIS-assisted PKG methods are mainly based on the idealistic assumption of an independent and identically distributed (i.i.d.) channel model at bo...
Preprint
In this letter, we propose a symbol-wise puncturing scheme to support hybrid automatic repeat request (HARQ) integrated probabilistic amplitude shaping (PAS). To prevent the probability distribution distortion caused by the traditional sequential puncturing and realize the promised gain of PAS, we perform symbol-wise puncturing on the label sequenc...
Preprint
We consider a cell-free massive multiple-input multiple-output (MIMO) system with multi-antenna access points and user equipments (UEs) over Weichselberger Rician fading channels with random phase-shifts. More specifically, we investigate the uplink spectral efficiency (SE) for two pragmatic processing schemes: 1) the fully centralized processing s...
Preprint
Full-text available
The roll-out of various emerging wireless services has triggered the need for the sixth-generation (6G) wireless networks to provide functions of target sensing, intelligent computing and information communication over the same radio spectrum. In this paper, we provide a unified framework integrating sensing, computing, and communication to optimiz...
Preprint
Full-text available
In this paper, we investigate the robust resource allocation design for secure communication in an integrated sensing and communication (ISAC) system. A multi-antenna dual-functional radar-communication (DFRC) base station (BS) serves multiple single-antenna legitimate users and senses for targets simultaneously, where already identified targets ar...
Preprint
Full-text available
In this paper, an intelligent reflecting surface (IRS) is introduced to assist an unmanned aerial vehicle (UAV) communication system based on non-orthogonal multiple access (NOMA) for serving multiple ground users. We aim to minimize the average total system energy consumption by jointly designing the resource allocation strategy, the three dimensi...
Preprint
Full-text available
This paper investigates a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme for the sixth-generation (6G) wireless networks with massive sporadic traffic devices. First of all, this paper proposes a novel joint active device separation (the message recovery of active device) and channel estimation architecture for...
Preprint
Radio-frequency (RF) energy harvesting (EH) in wireless relaying networks has attracted considerable recent interest, especially for supplying energy to relay nodes in Internet-of-Things (IoT) systems to assist the information exchange between a source and a destination. Moreover, limited hardware, computational resources, and energy availability o...
Preprint
Full-text available
Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning empowered connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distri...
Preprint
Full-text available
To process and transfer large amounts of data in emerging wireless services, it has become increasingly appealing to exploit distributed data communication and learning. Specifically, edge learning (EL) enables local model training on geographically disperse edge nodes and minimizes the need for frequent data exchange. However, the current design o...
Preprint
Full-text available
In this paper, the secure performance of multiuser multiple-input single-output wireless communications systems assisted by a multifunctional active intelligent reflection surface (IRS) is investigated. The active IRS can simultaneously reflect and amplify the incident signals and emit artificial noise to combat potential wiretapping. We minimize t...
Article
Grant-free non-coherent index-modulation (NC-IM) has been recently considered as an efficient massive access scheme for enabling cost- and energy-limited Internet-of-Things (IoT) devices that transmit small data packets. This paper investigates the grant-free NC-IM scheme combined with orthogonal frequency division multiplexing for applicant to unm...
Preprint
In order to fully exploit the advantages of massive multiple-input multiple-output (mMIMO), it is critical for the transmitter to accurately acquire the channel state information (CSI). Deep learning (DL)-based methods have been proposed for CSI compression and feedback to the transmitter. Although most existing DL-based methods consider the CSI ma...
Article
Full-text available
The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potenti...
Article
The core requirement of massive Machine-Type Communication (mMTC) is to support reliable and fast access for an enormous number of machine-type devices (MTDs). In many practical applications, the base station (BS) only concerns the list of received messages instead of the source information, introducing the emerging concept of unsourced random acce...
Preprint
Full-text available
In this paper, we study an active IRS-aided simultaneous wireless information and power transfer (SWIPT) system. Specifically, an active IRS is deployed to assist a multi-antenna access point (AP) to convey information and energy simultaneously to multiple single-antenna information users (IUs) and energy users (EUs). Two joint transmit and reflect...
Preprint
Edge federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications. This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning, which simultaneously uploads local model parameters and...
Preprint
Full-text available
In this letter, we study the parameter estimation performance for monostatic downlink integrated sensing and communications (ISAC) systems. In particular, we analyze the mean squared error (MSE) lower bound for target sensing in the downlink ISAC system that reveals the suboptimality in re-using the conventional communication waveform for sensing....
Preprint
Precoding design exploiting deep learning methods has been widely studied for multiuser multiple-input multiple-output (MU-MIMO) systems. However, conventional neural precoding design applies black-box-based neural networks which are less interpretable. In this paper, we propose a deep learning-based precoding method based on an interpretable desig...
Article
Reconfigurable intelligent surfaces (RISs) have attracted significant attention due to their capability in customizing wireless communication environments to improve system performance. In this study, we investigate the performance of an RIS-assisted multi-user multiple-input single-output wireless communication system, considering the impact of ch...
Preprint
In this paper, we investigate an unsourced random access scheme for massive machine-type communications (mMTC) in the sixth-generation (6G) wireless networks with sporadic data traffic. Firstly, we establish a general framework for massive unsourced random access based on a two-layer signal coding, i.e., an outer code and an inner code. In particul...
Preprint
Full-text available
The implementation of integrated sensing and communication (ISAC) highly depends on the effective beamforming design exploiting accurate instantaneous channel state information (ICSI). However, channel tracking in ISAC requires large amount of training overhead and prohibitively large computational complexity. To address this problem, in this paper...
Preprint
Full-text available
Wireless energy transfer (WET) is a ground-breaking technology for cutting the last wire between mobile sensors and power grids in smart cities. Yet, WET only offers effective transmission of energy over a short distance. Robotic WET is an emerging paradigm that mounts the energy transmitter on a mobile robot and navigates the robot through differe...
Preprint
In future sixth-generation (6G) mobile networks, the Internet-of-Everything (IoE) is expected to provide extremely massive connectivity for small battery-powered devices. Indeed, massive devices with limited energy storage capacity impose persistent energy demand hindering the lifetime of communication networks. As a remedy, wireless energy transfe...
Preprint
Full-text available
Integrated sensing and communication (ISAC) has opened up numerous game-changing opportunities for realizing future wireless systems. In this paper, we propose an ISAC processing framework relying on millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Specifically, we provide a compressed sampling (CS) perspective to fac...
Preprint
Full-text available
To mitigate the radar and communication frequency overlapping caused by massive devices access, we propose a novel joint communication and sensing (JCS) system in this paper, where a micro base station (MiBS) can realize target sensing and cooperative communication simultaneously. Concretely, the MiBS, as the sensing equipment, can also serve as a...
Article
Full-text available
In this paper, we study the optimal resource allocation algorithm design for large intelligent reflecting surface (IRS)-assisted simultaneous wireless information and power transfer (SWIPT) systems. To facilitate efficient system design for large IRSs, instead of jointly optimizing all the IRS elements, we partition the IRS into several tiles and e...
Preprint
Full-text available
Grant-free non-coherent index-modulation (NC-IM) has been recently considered as an efficient massive access scheme for enabling cost- and energy-limited Internet-of-Things (IoT) devices with small data packets. This paper investigates the grant-free NC-IM combined with orthogonal frequency division multiplexing for unmanned aerial vehicle (UAV)-ba...
Preprint
Full-text available
The core requirement of massive Machine-Type Communication (mMTC) is to support reliable and fast access for an enormous number of machine-type devices (MTDs). In many practical applications, the base station (BS) only concerns the list of received messages instead of the source information, introducing the emerging concept of unsourced random acce...
Article
In this work, we aim to maximize the timeliness of data collection subject to a covertness constraint in unmanned aerial vehicle (UAV)-aided Internet-of-Things (IoT) networks, where a UAV periodically conducts wireless power transfer (WPT) to charge an energy-constrained IoT device and then the IoT device opportunistically sends its collected data...
Article
Full-text available
Faster-than-Nyquist (FTN) signaling aided non-orthogonal multiple access (NOMA) is conceived and its achievable rate is quantified in the presence of random link delays of the different users. We reveal that exploiting the link delays may potentially lead to a signal-to-interference-plus-noise ratio (SINR) gain, while transmitting the data symbols...
Article
In this letter, we jointly investigate packet generation and covert communication in delay-intolerant status update systems. For the first time, we establish a bridge between the prior transmission probability and the finite block-length in covert communication by modeling the stochastic status packet generation as a Poisson process. Considering a...
Article
This paper investigates resource allocation design for intelligent reflecting surface (IRS)-aided joint processing coordinated multipoint (JP-CoMP) downlink cellular networks with underlaying device-to-device (D2D) communications. In particular, an IRS is employed to establish favorable communication channel conditions and to mitigate the malignant...
Article
This work investigates the effect of double intelligent reflecting surface (IRS) in improving the spectrum efficient of multi-user multiple-input multiple-output (MIMO) network operating in the millimeter wave (mmWave) band. Specifically, we aim to solve a weighted sum rate maximization problem by jointly optimizing the digital precoding at the tra...
Preprint
This work investigates the effect of double intelligent reflecting surface (IRS) in improving the spectrum efficient of multi-user multiple-input multiple-output (MIMO) network operating in the millimeter wave (mmWave) band. Specifically, we aim to solve a weighted sum rate maximization problem by jointly optimizing the digital precoding at the tra...
Article
The physical layer security (PLS) of millimeter wave (mmWave) communication systems is investigated, where the secure source-to-destination communication is assisted by an untrusted relay selected from a group of them and there are also several passive eavesdroppers (Eves) in the network. In the considered system model, while the distributions of t...
Article
This paper investigates the performance of non-orthogonal multiple access (NOMA)-based cell-free massive MIMO (mMIMO) for the Internet-of-Things (IoT) considering spatially correlated Rician fading channels. The exact closed-form of downlink spectral efficiency (SE) and energy efficiency expressions are derived with three estimators and the maximum...
Preprint
Cell-free massive multiple-input multiple-output (MIMO) employs a large number of distributed access points (APs) to serve a small number of user equipments (UEs) via the same time/frequency resource. Due to the strong macro diversity gain, cell-free massive MIMO can considerably improve the achievable sum-rate compared to conventional cellular mas...
Article
Cell-free massive multiple-input multiple-output (MIMO) employs a large number of distributed access points (APs) to serve a small number of user equipments (UEs) via the same time/frequency resource. Due to the strong macro diversity gain, cell-free massive MIMO can considerably improve the achievable sum-rate compared to conventional cellular mas...
Preprint
Full-text available
Faster-than-Nyquist (FTN) signaling aided non-orthogonal multiple access (NOMA) is conceived and its achievable rate is quantified in the presence of \emph{random} link delays of the different users. We reveal that exploiting the link delays may potentially lead to a signal-to-interference-plus-noise ratio (SINR) gain, while transmitting the data s...
Article
Wireless communication is an essential technology to unlock the full potential of unmanned aerial vehicles (UAVs) in numerous applications and has thus received unprecedented attention recently. Although technologies such as direct link, WiFi, and satellite communications are still useful in some remote scenarios where cellular services are unavail...