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Abstract Decision-making is a complex and demanding process often constrained in a
number of possibly conflicting dimensions including quality, responsiveness and cost. This
paper considers in situ decision making whereby decisions are effected based upon infer-
ences made from both locally sensed data and data aggregated from a sensor network.
Such sensing devices that comprise a sensor network are often computationally challenged
and present an additional constraint upon the reasoning process. This paper describes a
hybrid reasoning approach to deliver in situ decision making which combines stream based
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computing with multi-agent system techniques. This approach is illustrated and exercised
through an environmental demonstrator project entitled SmartBay which seeks to deliver in
situ real time environmental monitoring.

Keywords Intelligent agents · BDI agents · Hybrid intelligence · Distributed decision-
making · Resource bounded reasoning · Stream computing · Environmental monitoring

1 Introduction

Decision making is a complex and demanding process often constrained in a number of pos-
sibly conflicting dimensions including quality, responsiveness and cost. Decision delivery
is governed by a variety of Quality of Service (QoS) parameters, which must be configured
according to the particular context within which a decision is required. In certain safety
critical circumstances, priority will rest with the overall quality and confidence that may be
ascribed to a given decision. In highly dynamic scenarios, latency and responsiveness may be
of paramount importance while in embedded in situ applications that are governed by limited
computational and power availability, efficiency (cost) of the decision may prove singularly
important.

As context varies so the decision making process needs to adapt. This demands intelligent
decision-making and often necessitates the use of a number of distinct reasoning approaches.
Such hybrid intelligence approaches enable the accommodation of the benefits of compli-
mentary techniques. This paper presents a hybrid reasoning approach that fuses stream based
computing with collaborative reasoning as realized through multi-agent system techniques.
Often such a decision-making apparatus is embedded within the environment and hosted
upon a distributed network of ambient devices. This approach is illustrated and exercised
through an environmental demonstrator project entitled SmartBay, which seeks to deliver in
situ real time environmental monitoring.

2 Related research

Intelligent systems have been the subject of active research since the 1960s. As a result of this,
many techniques have been developed including neural networks, fuzzy reasoning, machine
learning, case-based reasoning, decision support systems and intelligent agents. Each tech-
nique encompasses characteristics that make it more apt for certain problem domains. How-
ever, it has been recognized that a select and prudent combination of AI techniques can result
in a potent solution for particular problems, resulting in so-called hybrid intelligent systems.
A number of such systems have been described in the literature. These have been deployed
in various domains including terrain mapping (Fregene et al. 2005), health management
(Fleming et al. 2007), urban planning (Wu 1998) amongst many others. For the purposes of
this discussion we examine a number of exemplary systems that focus on issues pertaining
to the monitoring of various aspects of the environment.

Recknagel et al. (1994) describe an expert system DELAQUA that assists in the control
of water quality in lakes and reservoirs. This early example is constructed using expert sys-
tem technologies and harnesses fuzzy models for simulation purposes. Likewise in the water
domain, Taha and Ghosh (1995) have developed a hybrid intelligent system for the control
of water reservoirs. Their system incorporates select aspects of rule-based systems and con-
nectionist architectures. Successful wastewater treatment is a priority for sustainable living;
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Feng et al. (2003) describe the construction of a virtual sensor for water quality control that
incorporates neural networks and fuzzy logic. In maritime environments, Chen and Mynett
(2006; Chen et al. 2006) use a fuzzy cellular automata approach for modeling algae blooms
in Dutch coastal waters. As can be seen from this brief description, the use of AI and hybrid
intelligence has been applied quite a number of years in this singular aspect of environmental
informatics. More applications exist and the interested reader is referred to Chen et al. (2006;
Chen and Mynett 2006) for an overview of the use of AI for modeling environmental systems,
and to Chan and Huang (Chan and Huang 2003) for their use in pollution management.

A major challenge facing AI researchers concerns the deployment on devices of limited
computational capacity such as mobile phones, sensors and other embedded computational
artefacts. Embedded Agents (O’Hare et al. 2006; O’Grady and O’Hare 2004, 2005; Keegan
et al. 2008; Muldoon et al. 2003), for example, and neural networks (Heaton 2005) are two
candidate technologies that have been deployed upon mobile devices. However, realizing
effective reasoning strategies in such circumstances can prove computationally intractable
using traditional approaches. However, new approaches are under investigation and involve
consideration of energy implications associated with the reasoning process itself together
with the cost of affecting any associated course of action. For a more detailed description of
the issues involved, the reader is referred to Shen et al. elsewhere within this special issue. In
this paper we focus upon two particular instruments for delivering decision-making within
the associated application constraints, these are those of stream processing and collaborative
decision making systems which we each consider in turn.

3 Stream processing

In the case of continuous data environments with heterogeneous data types and dissimilar
data streaming rates, intelligent stream processing has been of interest in the networking
and database domains. The processing of streaming data may be thought of in terms of
two components: handling (ingestion, logging, etc.) and analytical processing. We discuss
here a prototype system known as System S from IBM Research which is currently being
applied to a number of problem domains including environmental sensor-based solutions
known as cyberphysical systems (Jain et al. 2006). These environments are now known as
the object-based software integration frontiers for the physical world of measurements and
actions (sensors/transducers and actuators of various sorts) and the traditional information
technology environment. Cyberphysical systems are characterized by heterogeneous data
types, telemetry, and computational hardware. In this section we provide an overview of the
System S architecture and cite and several important enhancements.

System S has been designed with the goal of functioning in a distributed environment
which experiences high loads and dynamic input. Distributed analytics are a key design point
which support analytical functions ranging from filtering and traditional signal processing
techniques to deep artificial intelligence (AI)-based analytics and complex modeling. Ana-
lytical algorithms are implemented through the construct know as processing elements (PEs).
Incoming stream data objects (SDOs) are received by the input ports of the PE. Analytical
algorithms within the PE process the stream and then may generate new SDOs for additional
processing by one or more downstream PEs (see Fig. 1). A System S application may be
thought of as a stream connected PE graph and the overall System S middleware platform
provides services to run these applications.

As a middleware platform, System S has unique features such as dynamic application
composition and stream discovery. Dynamic application composition allows the establish-
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Fig. 1 Schematic representation of the System S distributed streaming analytical system. Interconnected
processing elements (PE) reside on distributed processing nodes (PNs)

ment and termination of stream connections as new data sources and applications move in
or out of the system realm. Reuse is supported for cross-platform/node collaboration as it
is important for distributed, resource constrained environments. System S is a distributed
stream processing platform that provides the architectural foundation to enable efficient ana-
lytical processing of large amounts of streaming data. Improvements to System S in terms
of advanced distributed resource control have been pursued with ACES: Adaptive Control
for Extreme-scale Stream processing systems which employed a two-tiered approach for
adaptive, distributed resource control in environments with variable streaming data rates
(Amini et al. 2006). ACES uses global optimization for the weighted throughput for pro-
cessing graphs using input stream rates averaged over time. This is done dynamically as
PEs are deployed or terminated, thereby ensuring responsiveness to changing workloads and
resources. A resource controller then applies an adaptive, scalable and distributed optimi-
zation technique to optimize input and output rates of PEs factoring in the instantaneous
processing rate of the PE with the goal of system stabilization for “bursty” workloads.

In Fig. 2 we describe the key architectural components of System S. The Dataflow Graph
Manager (DGM) determines connections between PEs and matches the output port stream
descriptions with input port specifications. Data transport in the distributed environment is
handled by a set of daemons within the Data Fabric (DF). A daemon on each node of the
system establishes transport connections between PEs and facilitates the movement of SDOs
between “producer” PEs and “consumer” PEs. Runtime context and access to the middleware
is performed by Processing Element Execution Containers (PECs). The PECs also provide
a level of isolation required to prevent any possible corruption from user written PE code.
PECs and DF daemons provide runtime statistics to the Resource Manager (RM) which
makes global resource decisions for PEs as well as determines their placement.
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Fig. 2 The key components of System S that provide services to run stream applications (from (Jain et al.
2006))

Data flow graphs are used to represent applications and they are comprised of PEs that
consume and produce data streams via respective input and output ports. These graphs are
defined in a job configuration file and specify flow connections between the PEs. Stream
data object data types acceptable to PEs (input and output) are specified in PE templates.
PE connections are determined dynamically at runtime through the matching of SDO data
types (defined in a single XML file) with flow specifications and this facilitates operations
such as the discovery of new streams as they become available. This design adds flexibility
and agility to the system as it prevents the need for the application developer to hardwire
these connections. System S uses the Unstructured Information Management Architecture
(UIMA) developed by IBM for unstructured information management solutions and made
open source (IBM 2008).

To simplify the design and construction of streaming applications, a rapid application
development environment for System S known as SPADE has recently been developed which
utilizes an intermediate language for the composition of parallel and distributed flow graphs
(Gedik et al. 2008). SPADE also provides a toolkit of stream processing operators for both
scalar and vector processing and a robust library of stream adapters for stream ingestion and
publication from/to outside sources.
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4 Collaborative decision making

The real world is both unpredictable and unforgiving. Decisions often need to be made where
the contributory evidence is uncertain, incomplete, contradictory and highly dynamic. The
environmental arena is a case in point. This collage of factors is contributed to by the lossy
nature of the environment and the fact that the sensed data (sensors) enable a set of beliefs to
be derived about the current state of the environment. They are beliefs and not knowledge.
Each sensed data stream offers insights along a specific geographic and temporal dimension
and as such offers a partial inaccurate view. In reality such partial views must be aggregated
or fused in order for example to achieve corroboration of a particular hypothesis. Such aggre-
gation however is necessarily collaborative in nature demanding individual sensors cooperate
in not only the diagnosis of a given situation, but rather a diagnosis that conforms to the given
quality of service decision making constraints.

4.1 Multi-agent system approach

Collaborative Decision Making facilitates the establishment of partnerships to pool resources,
jointly plan, and share expertise or knowledge so as that objectives may be achieved that go
beyond the purview of any individual partner involved. This discussion focuses on the use
of a Multi-Agent-System (MAS) to facilitate the collaborative decision making process. An
agent is an autonomous system. That is, a system that is capable of deciding for itself what
needs to be done in order to achieve its goals at runtime and without human intervention.
Though endowed with particular responsibilities, each individual agent interacts with other
agents, in a distributed manner, to fulfil the requirements of the application and in forming a
MAS.

The Belief, Desire, Intention (BDI) model of agency (Rao and Georgeff 1995) is a mature
and computationally tractable model of strong agenthood. Within the BDI model, beliefs
represent possibly inaccurate information that an agent has of the world at a given instance
in time; their underlying semantics conform to belief logics. Desires or goals represent a
state of the world that an agent wishes to bring about. By providing agents with a means of
identifying the purpose of a task, goals enable agents to recover from failures and to take
advantage of unexpected events as they occur. An agent has a partial view of the world, and
is resource bounded; it will therefore not capable of achieving all of its desires even if its
desires are consistent. The agent must fix upon a subset of desires and commit resources
to achieving them. This subset of desires represents the agent’s intentions or commitments.
Agents do not blindly commit to actions or plans, but revise their commitments at various
stages throughout execution.

Traditionally, the BDI model was considered too computationally intensive for resource
constrained mobile devices. In particular the emergence of a new generation of sensor devices
which offer greater processing and memory capabilities as typified by the Stargate and Sun
SPOT motes, the associated possibility of hosting restricted Java Virtual Machines as typ-
ified by the Squawk operating system and the development commercial Java based sensor
software such as Sentilla all point to the possibility of hosting strong agents delivered via
java on embedded sensing networks. This, combined with improvements in the efficiency of
algorithms (Shen and O’Hare 2008), and the dissemination of good design practices mean
that this argument no longer holds. It is for this reason that there are now a number of
agent-based ambient systems. Of late there has been a rush toward the development of shrink
wrapped agent platforms as exemplified by CourgarME (Wright and Moore 2003) and Agilla
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(Fok et al. 2005). The agent-based component of Smart Bay has been developed using one
such system, namely Agent Factory Micro Edition (AFME) (Muldoon et al. 2006). AFME
distinguishes itself from other embedded agent frameworks, such as 3APL-M (Koch et al.
2005), LEAP (Berger et al. 2003), CourgarME, and Sage-lite (Khalique et al. 2007), in a
number of ways (see (Muldoon 2007)). It offers the smallest BDI software footprint available
worldwide and represents the first BDI framework to be deployed on leaf nodes of a wireless
sensor network, specifically Sun SPOT motes.

4.2 Agent factory micro edition

AFME is a minimised footprint deliberative agent platform that has been designed for use
with resource constrained ubiquitous devices. It is based on Agent Factory, a pre-existing
framework for the development of agents for desktop environments. AFME uses rules to
define the conditions under which commitments will be desired and or adopted/retracted.
These rules govern and encode agent behaviour. The following is an example of one such
rule:

a(?variable1), b(?variable2) > doSomething(?variable1,?
variable2);

If the agent adopts beliefs that match the a and b predicates, a commitment to doSome-
thing will be adopted. The truth of the belief sentence is evaluated using resolution-based

Fig. 3 AFME Control Process
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reasoning. Fig. 3 illustrates the control process. In the control process, four functions are
performed. First, perceptors that monitor the environment or agent’s state are fired and the
agent’s belief set is updated. Second, the agent’s desired states are identified. Third, a subset
of commitments is chosen from the desire states in the intention selection process. Last,
depending on the nature of the commitments adopted, various actuators are fired.

5 SmartBay: an environmental monitoring system

SmartBay, a pioneering project by the Marine Institute of Ireland, compromising a network
of buoys linked by both fixed (cables) and wireless technologies. Each buoy incorporates
a range of sensors and telemetry resulting in a real-time oceanographic monitoring system.
One example of a sensor used in SmartBay for measuring phosphate levels is illustrated in
Fig. 4. This sensor performs colorimetric chemistry and optical detection for measurement
purposes. While monitoring standard oceanographic parameters, such as wave and tidal char-
acteristics, it is hoped that SmartBay will provide data that will enable any perceived effects
of climate change be measured in a meaningful way.

In collaboration with the SmartBay project, System S is being incorporated in an intel-
ligent distributed cyber-infrastructure for the monitoring of the ocean and coastal areas of
Ireland. SmartBay focuses on a number of knowledge domains with a particular empha-
sis on environmental variables and will support a diverse set of application areas and users
(from research to commercial) using a number of data sources ranging from a myriad of sen-
sors to external heterogeneous data sources (Fig. 5). Streaming data will support real-time

Fig. 4 One category of a sensor harnessed by SmartBay. This example measures phosphate levels
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Fig. 5 A distributed analytical platform (DAP) will host System S streaming analytics for the SmartBay
project. Multiple sensors will supply the inputs through direct connections (Sx) and various telemetry options
including wireless (depicted as remote sensors at a concentrator node CN1), and acoustic (Sa) links such as
those used in underwater remotely operated undersea vehicles (ROVs). The DAP is connected to the overall
cyber-infrastructure via various communications options

monitoring and response applications. It is important to note that it is of great interest to
share data between environmental observatories and to support some level of interoperability
since these systems involve sizeable initial investments and require substantial resources for
operations and maintenance. Given these factors, optimal utilization of these systems is an
imperative as is the sharing of vast amounts of data/information to support scientific research
efforts of local and global importance. A new approach for collaboration across stream pro-
cessing systems has been reported as an enhancement to System S and is known as CLASP
(Collaborating, Autonomous Stream Processing) (Branson et al. 2007). CLASP provides
several benefits including improved sharing of raw data streams and derived data, thereby
improving the breadth of analyses. In addition, CLASP supplies additional intelligence for
resource sharing (“analytical load balancing”) and reliability, the latter In terms of recover
from job/application failures at distributed sites.

While System S can exist on the sensor devices themselves—it is vitally important to
remember that other devices may not support such decision making entities. In reality
a hybrid decision making architecture is required when dealing with a range of hetero-
geneous devices that have a broad spectrum of resources. SmartBay is no different and
this gives rise to cooperation among these entities that reside on the devices, as discussed
next.
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Fig. 6 Hybrid Decision-making within SmartBay

5.1 Hybrid decision-making

Within the SmartBay project, there are a number of areas where decisions can be taken to
improve the performance of the system. These range from isolated or localised collaboration
between nodes, to macro level decisions about the functioning of the system as a whole
(Fig. 6).

Crucially the decision-making at each point is necessarily of a different type due to the
distinct functions, quality of solution required and the resource limitations afforded by the
hardware. This gives rise to a hybrid decision-making system in which multiple entities must
coexist and cooperate to ensure the performance of the system is maintained. A number of
possible metrics can be used to determine what exactly performance of the SmartBay system
means:

– Longevity: Having a deployed network of sensors that will remain in operation for a few
days will not suffice in most cases. Therefore decisions must be taken in order to conserve
the limited power resources of the nodes.

– Sample Quality: Chemical sensors in general pose an idiosyncratic problem of device
cleaning, and the phosphate sensor in use within SmartBay is no different. The quality of
the next sample will depend on how well the device is flushed prior to taking the reading.
This will inevitably lead to a reduced lifetime due to the power consumed in the cleaning
cycle. Local decisions, informed by localized or indeed macro level policies can facilitate
power conservation when sampling quality is not essential.

!powerLevel(low,?level), flush, flushTime(?x) > flushSample
(?x);

– Sampling Frequency: As with the previous issue, sampling frequency must be balanced
with node lifetime in addition to Quality of Service concerns and this decision once again
will be hybrid in nature. For instance, when interesting events are observed in the envi-
ronment, the sampling rate of the node can increase.

sampTime(?x), eventDetected(?y) > sampTime(?z);

– Transmission Frequency: In many cases it may not be essential to relay every sensed value
back to some central repository, both bandwidth and power concerns can be factored into
the decision here in order to decide on whether a nodes should transmit:

transTime, processedData(?info), neightbour(?agent) >
inform(?agent,?info);
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– Analytics: Not only is there a decision about what analysis to apply to the data, but there can
also be a decision about where that analysis is done. In some cases, it may be best suited to
higher-level System S processing rather than local processing on a node. In addition to the
QoS metrics, the agents will also have to receive policy decisions about its operation from
the hybrid decision making components. Some examples of their behaviour is depicted
below:

message(request,?sender,adoptPolicy(?policy)) >
processPolicy(?policy);

policy(?sampX, remoteAnalysis(?remoteAgent)) ,
sampleData (?sampX, ?data) , powerLevel(high,?level) >
inform (?remoteAgent,sampleData(?sampX,?data));

policy(?sampX, remoteAnalysis(?remoteAgent)) ,
sampleData (?sampX, ?data), powerLevel(low,?level) >
par(inform (?remoteAgent,sampleData(?sampX,?data)),
inform(?remoteAgent,policyChangeLocal),changeLocal);

policy(?sampX, localAnalysis),
sampleData(?sampX, ?data) >
processLocal(?data);

The agent contains a perceptor that is responsible for monitoring the power level. The
local/remote analytic analysis is catered for in the rules above as they designate what agent
will handle the analysis. The first rule above is responsible for processing policy requests from
remote agents. The policy adopted by the agent will inform the sampling rate, transmission
rate, and analytic processing decisions.

As can be seen from the previous list, decisions are very often taken on the basis of
power resources. However, once the data is off the low level devices, other factors come
into existence. Decisions about where best to locate the analytics engines can be made on
the fly in order to accommodate various hard or soft real time requirements that the system
may have. Additionally execution priorities may also be altered to ensure such deadlines
are met.

5.2 Implementation

AFME has been designed for use with CLDC (Constrained Limited Device Configuration).
This is the standard Java environment for mobile phones and the latest sensor devices. The
Stargate and Viper board in use for the SmartBay project has capabilities far in excess of
these devices and far exceed the requirements for executing AFME agents. They use CDC
(Connected Device Configuration), which, although it is classified as J2ME, is in reality
closer to standard Java than it is to CLDC (Muldoon 2007).

With the AFME compiler, Java classes are generated from a combination of an abstract
agent platform description file, agent design files, and abstract template files that determine
the imperative code generated. When agents were initially deployed on a Viper class device,
a new template file was created with dependencies on CDC rather than CLDC. Addition-
ally, new CDC platform services were created for message transport, discovery (yellow and
white pages services), and migration. With these templates and services, AFME agents can
be deployed on any device that supports CDC, such as the Viper or Stargate.
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6 Conclusion

Environmental informatics is but one domain which typifies the need to process real-time
heterogeneous data streams. The inherent complexities can benefit significantly from a
collaboration reasoning approach in managing uncertainty, incompleteness and the pres-
ence of contradictory data. By their very nature such systems are often more complex in
nature. To ensure a satisfactory Quality of Service (QoS), it is essential that appropriate deci-
sion making technologies be adopted, yielding a mix-and-match approach, influenced by
the requirements of a given application. Recent developments in AI have enabled intelligent
decision making to occur in resource-constrained devices such as WSNs. Such decision-
making may be deliberative, combining fuzzy reasoning with classical BDI approaches, and
may ultimately contribute to decision making elsewhere in the network or further up the
application stack. With the proliferation of WSNs and their associated technologies, it can be
expected that embedded decision making using a hybrid of techniques will become the norm
as the complexity and scale of applications built on such technologies increase. This paper
has described one such system Smartbay together with the particulars of the hybrid reasoning
approach to deliver in situ decision making which combines stream based computing with
multi-agent system techniques.
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