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Interfacial scattering in magnetic multilayers and spin valves
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We consider electron transport in magnetic multilayers. In particular, we consider how electron transport is
affected by disorder at the interface between two layers. Standard semiclassical approaches characterize dif-
fusive scattering at interfaces with a specularity constantS such thatS is the fraction of electrons that are
specularly scattered.S is typically considered to be the same for the reflected and transmitted electron beams.
Here we show for two models of interfacial disorder that~a! S is not a constant, but depends on the angle of
incidence as well as the energy and the degree of interfacial disorder, and~b! S is different for reflected and
transmitted electrons. The two different models that we consider are~1! random point scatterers at a planar
interface between layers in a free electron approximation and~2! random substitutional disorder of atoms on
atomic layers near the interface. The latter model is treated within the coherent potential approximation using
the layer Korringa-Kohn-Rostoker method. The fraction of electrons scattered diffusely@12S(ki)# is shown to
have the same dependence onki ~i.e., angle of incidence! in the free electron limit of model~2! as in model~1!.
Model ~2! provides a realistic description of interfacial scattering that can be readily evaluated for technologi-
cally important systems such as Co-Cu.
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I. INTRODUCTION

The discovery of giant magnetoresistance1 ~GMR! and the
reemergence of tunneling magnetoresistance researc2–4

have led to active study of electronic transport in laye
magnetic systems. Magnetoresistance in these system
sults both from spin-dependent scattering of the electr
within the layer and from spin-dependent scattering at
interfaces. Information on the scattering within the layers c
be obtained experimentally by measuring the sheet resist
of individual films as a function of thickness. This allow
one to infer effective electron lifetimes for the nonmagne
layers and to obtain constraints on the lifetimes in the t
spin channels for the magnetic layers. Information on el
tron scattering rates at interfaces is more difficult to obta

Advances in both molecular dynamics simulations a
experimental techniques are now providing crucial inform
tion on the makeup of multilayer interface regions.5,6 These
studies present convincing evidence that the interface
some technologically important multilayers can be appro
mated as locally crystalline with interdiffusion of differen
atom species occurring within a few layers of the interfa
We will adopt this model for the interfacial structure an
investigate the effects of disorder on the specular transm
sion and reflection and on the diffuse scattering.
0163-1829/2003/68~1!/014433~14!/$20.00 68 0144
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While several studies have attempted to incorporate
fusive scattering into semiclassical and quantum interf
models, most have relied on approximations in which
probability for diffuse scattering was assumed to be indep
dent of the angle of incidence of the electron and of whet
the electron was reflected or transmitted.7,8 This approach is
similar to the method used by Fuchs over 60 years ago
model conductivity in thin metallic films.9,10 In order to sat-
isfy boundary conditions for the Boltzmann transport equ
tion, Fuchs assumed that each electron incident on a sur
had a probabilityP of being specularly reflected and a pro
ability (12P) of being diffusely~and isotropically! reflected
~Fig. 1!. The specular reflection probabilityP was assumed
to be the same for all electrons, independent of the angl
incidence. A similar approach that invoked a constant spe
lar transmission and reflection probabilityS for electrons in-
cident on interfaces was introduced by Hood and Falic7

and has been used in other semiclassical models
multilayer transport.8,11 A number of papers have address
these issues for free electron scattering at surfaces. Exp
sions have been developed which incorporate an angular
pendence of theS parameter for the case of reflection fro
rough exterior surfaces.12,13

The importance of specular scattering has been emp
sized by recent experimental studies that have used o
layers to enhance specular scattering and increase the
©2003 The American Physical Society33-1
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magnetoresistance effect in spin valves and magn
multilayers.16 While these techniques have been succes
in raising GMR, a detailed theory of the relationship betwe
interfacial structure and specular scattering that can be
plied to real materials remains elusive. It should be no
that a novel approach to the problem of scattering at dis
dered interfaces which utilizes random matrix theory h
been presented recently.17,18 In addition, the conductanc
through magnetic multilayers with simulated disorder us
relatively small supercells has also been calculated.19

A clear understanding of the probability for specular sc
tering at interfaces is essential for the success of b
quantum20 and semiclassical8 transport models. It is also ex
pected to be extremely important in understanding sp
dependent tunneling experiments. Recent calculations21–23

have predicted extremely large tunneling magnetoresista
for certain systems based on the assumption of transv
momentum conserving~i.e., specular! transmission through
interfaces. A better understanding of how these predicti
are affected by interfacial disorder is badly needed.

In this paper, we investigate two models for scattering
an interface between layers. We first examine interfacial s
tering within a free electron model with a steplike interfa
in which random point scatterers are confined to the inte
cial plane. We also consider a more realistic model in wh
Bloch electrons encounter an interface between cobalt
copper in which there is interdiffusion between the cob
and copper atoms over one or more atomic layers at
interface. In this model the electronic structure is calcula
from first principles using the layer Korringa-Kohn-Rostok
~LKKR ! technique24 with the disorder being treated withi
the coherent potential approximation~CPA!.25–27 We show
that both models lead to anS parameter that depends onki .

The paper is organized into the following sections. In S
II, the specular and diffuse scattering of free electrons fr
random point scatterers confined to an interface is calcul
to lowest nonvanishing order in the strength of the potent
using a Green-function-based technique. Closed-form
pressions are obtained for the specularity parameters
transmission and reflection. In Sec. III, we compare res
from the LKKR-CPA approach with the Green’s functio
technique for the case of free electrons. We also determ
the specularity parameter for a CouCu interface. Finally, in

FIG. 1. ~Color online! The specularity parameterP is used for
matching boundary conditions in the semiclassical Boltzma
transport equation. The dependence of the specularity paramet
roughness is shown for two extremes cases: a smooth interfacP
51) and a rough interface (P50).
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Sec. IV, we discuss some of the implications of this resea
on current Boltzmann transport models.

II. SPECULAR AND DIFFUSE SCATTERING FOR THE
FREE ELECTRON MODEL

Consider an interface between two perfectly periodic la
ers. A Bloch electron incident from one layer will be eith
reflected back into that layer or transmitted through the
terface to the opposite layer. If there is two-dimensional
riodicity in the plane of the layers including the interfaci
region, then the component of the crystal momentum of
electrons parallel to the layers,ki , will be conserved and the
Bloch electron will be reflected with amplituder (ki) and
transmitted with amplitudet(ki). If, however, the interface is
disordered,ki may no longer be conserved. In this secti
we shall investigate these effects for the model of free e
trons with random point scatterers~FERPS!.13

Let G0
1(2)(r ,r 8;E) be the retarded~advanced! one elec-

tron Green function for a system with a single interface
z50. The electron is assumed to move in a homogene
potentialU1 for z,0 andU2 for z.0. The Green function
satisfies the equation

FE1
\2

2m
¹22U~z!GG0

1~r ,r 8;E!5d~r2r 8!. ~1!

Here, the energy is assumed to have an infinitesimal pos
imaginary part. The advanced Green function satisfies
same equation, but with the energy having an infinitesim
negative imaginary part. Following standard techniques,
take advantage of the two-dimensional homogeneity of
system in the absence of impurities to write the Green fu
tion as

G0
1~r ,r 8;E!5

1

4p2E dkie
iki•rG0

1~z,z8;E,ki!, ~2!

wherer is a two-dimensional vector in the plane of the i
terface,r5(x2x8) x̂1(y2y8) ŷ. By writing

d~r2r 8!5
d~z2z8!

4p2 E dkie
iki•r, ~3!

we obtain immediately the equation for the one-dimensio
Green functionG0

1(z,z8;E,ki):

S d2

dz2
1

2m

\2
@E2U~z!#2ki

2D G0
1~z,z8;E,ki!

5
2m

\2
d~z2z8!. ~4!

This equation has a solution of the form

G~z,z8;E,ki!5
2m

\2

CL~z,!CR~z.!

W
, ~5!

n
on
(

3-2
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whereCL(z) and CR(z) are solutions to the homogeneo
Schrödinger equation, satisfying boundary conditions on
left and right sides, respectively. For the retarded Gr
function, CR vanishes forz→1` and CL vanishes forz
→2`. W represents the Wronskian of the two solutions,

W5CL~z!
dCR~z!

dz
2

dCL~z!

dz
CR~z!, ~6!

which can easily be shown to be independent ofz.
Writing CL(r ) andCR(r ) as

CL~z!5e2 ik2z1r Leik2z, z.0,

CL~z!5tLe2 ik1z, z,0,

CR~z!5tReik2z, z.0,

CR~z!5eik1z1r Re2 ik1z, z,0, ~7!

we obtainG1(z,z8;E,ki) for the particular case of a singl
interface atz50. The advanced Green function would ha
been constructed from wave functions having opposite s
for the exponentials. Defining thez component of the mo-
mentum on either side of the interface ask1

5A(2m/\2)(E2U1)2ki
2 and k25A(2m/\2)(E2U2)2ki

2

and suppressing the argumentsE andki , we write the Green
function as

G0
1~z,z8!5

2m

\2

tR

2ik1
e2 ik1zeik2z8, z,0, z8.0,

G0
1~z,z8!5

2m

\2

tL

2ik2
e2 ik1z8eik2z, z.0, z8,0,

G0
1~z,z8!5

2m

\2

1

2ik1
@eik1uz2z8u1r Re2 ik1(z1z8)#,

z,0, z8,0,
e
n

s

G0
1~z,z8!5

2m

\2

1

2ik2
@eik2uz2z8u

1r Le2 ik2(z1z8)#, z.0, z8.0. ~8!

HeretL , tR , r L , andr R are determined by boundary con
ditions at the interface. These quantities and the Wronsk
of the system can be expressed in terms ofk1 andk2:

tL5
2k2

k21k1
, tR5

2k1

k21k1
,

r L5
k22k1

k21k1
, r R5

k12k2

k21k1
,

W5
4ik1k2

k21k1
. ~9!

The flux-conserving transmission and reflection probab
ties for the ideal interface are given byT0(E,ki)5tLtR and
R0(E,ki)5ur Lu25ur Ru2, respectively. As expected, the tran
mission and reflection probabilities are equivalent to for
found in standard quantum mechanics textbooks for sca
ing from a potential step. Techniques for calculating tra
mission and reflection amplitudes have also been derived
the first-principles-based layer Korringa-Kohn-Rostok
technique14 and for the semiempirical tight-binding
technique.15

From the above equations we see that the electron G
function can be related to the transmission or reflection a
plitudes depending on whether its spatial arguments are
the same or different sides of the interface. In order to c
culate the effects of interfacial disorder and roughness on
probability of transmission or reflection, it is useful to co
sider the quantityF5*dr8^G1(r ,r 8)G2(r 8,r )&, the prob-
ability for an electron~at the Fermi energy! to propagate
from pointr to any point in the plane defined byz8. Here the
angular brackets indicate an average over the interfacial
order. For the case of a perfect interface this quantity can
easily evaluated to give
F05
1

4p2E dki E dki8G0
1~z,z8;ki!G0

2~z8,z;ki8!d~ki2ki8!

55 S m

p\2D 2E dki
T0~ki!

4k1~ki!k2~ki!
, if z,0, z8.0,

S m

p\2D 2E dki
11R0~ki!12 Re@r Re22ik1z8#

4k1
2~ki!

, if z,0, z8,0.

014433-3
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STEWART, BUTLER, ZHANG, AND LOS PHYSICAL REVIEW B68, 014433 ~2003!
Thus F0 can be expressed in terms of the transmission
reflection probabilities of the perfect interface divided by v
locity factors that depend on the velocities in the leads.
transmission we have

4p2F05E dki E dki8
T0~ki ,ki8!d~ki2ki8!

\2v1~ki!v2~ki8!
,

z,0, z8.0, ~10!

and ~ignoring the interference terms that depend onz8) for
reflection,

4p2F05E dki E dki8
@11R0~ki ,ki8!#d~ki2ki8!

\2v1~ki!v1~ki8!
,

z,0, z8,0, ~11!

where v15\k1 /m and v25\k2 /m. These results are no
surprising given the known relationships between the Ku
and Landauer formulas for conductance.28–30At the cost of
significantly greater complexity, rather than working with t
quantityF, we could have worked withF8 defined by

F85E dr8K ]

]z
G~r ,r 8!

]

]z8
G~r 8,r !1

]

]z8
G~r ,r 8!

]

]z
G~r 8,r !

2
]

]z

]

]z8
G~r ,r 8!G~r 8,r !2G~r ,r 8!

]

]z

]

]z8
G~r 8,r !L ,

~12!

whereG(r ,r 8)5G0
1(r ,r 8)2G0

2(r ,r 8). BecauseF8 includes
the current operator in its definition, it is proportional to t
transmission probability~for z,0, z8.0) without the veloc-
ity factors that appear in the denominator of Eqs.~10! and
~11!.

In the presence of interfacial disorder or roughness,
Green function can be expanded as

G~r ,r 8!5G0~r ,r 8!1E dr1G0~r ,r1!Vi~r1!G0~r1 ,r 8!

1E E dr1dr2G0~r ,r1!Vi~r1!G0~r1 ,r2!

3Vi~r2!G0~r2 ,r 8!1•••, ~13!

where G(r ,r 8) is the Green’s function in the presence
interface impurities andVi(r ) is the interface impurity po-
tential.

In our case we have assumed that the distribution of r
dom point scatterers and the potentialVi(r ) possess the fol-
lowing properties:

^Vi~r !&50 ~14!

and

^Vi~r !Vi~r 8!&5gd~r2r8!d~z!d~z8!, ~15!
01443
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where the configurational average has been taken over
interface impurity potential and the correlation coefficientg
acts as a measure of the strength of the impurity scatterin
the interface.

A. Specular transmission and reflection

In a condensed notation, the configurational avera
^G1(r ,r 8)G2(r 8,r )& can be written as

^G1G2&5^~G0
11G0

1ViG0
11G0

1ViG0
1ViG0

11••• !

3~G0
21G0

2ViG0
21G0

2ViG0
2ViG0

21••• !&

5^G1&^G2&1vertex corrections. ~16!

Because the configurational average restores the t
dimensional periodicity, use of the separately averag
Green functions inF yields

4p2F5E dki^G
1~z,z8;ki!&^G

2~z8,z;ki!&, ~17!

where

^G1~r ,r 8;E!&5
1

4p2E dkie
iki•r^G1~z,z8;E,ki!&.

~18!

Thus, use of the separately averaged Green function inF will
yield expressions for the averaged transmission and re
tion probabilities that depend only on a single value ofki .
These ki-conserving terms describe specular transmiss
and reflection.

We can evaluate the specular transmission and reflec
probabilities to lowest order within the FERPS model d
rectly. If we take the configurational average ofG(r ,r 8), the
second term in Eq.~13! drops out due to the properties of th
perturbing potential@Eq. ~14!# and the averaged Green
function for the system is given to lowest order by

^G~r ,r 8!&5G0~r ,r 8!

1E dr1E dr2^G0~r ,r1!Vi~r1!G0~r1 ,r2!

3Vi~r2!G0~r2 ,r 8!&. ~19!

Substituting forG0 using Eq.~2! and for^Vi(r1)Vi(r2)& us-
ing Eq. ~15! we obtain

^G~z,z8;ki!&5G0~z,z8;ki!1G0~z,0;ki!G0~0,z8;ki!
g

4p2

3E dki8G0~0,0,ki8!. ~20!

This form of the equation allows us to use the expressi
determined earlier for the ideal interface to calculate the
erage Green’s function. The first term in the above expr
sion forG(z,z8;ki) represents an electron that travels fromz
to z8 without interacting with the impurities on the interfac
3-4
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INTERFACIAL SCATTERING IN MAGNETIC . . . PHYSICAL REVIEW B68, 014433 ~2003!
The second term accounts for electrons that travel fromz,
scatter from an impurity atz50, and travel toz8.

We first consider the case in whichz andz8 are on oppo-
site sides of the interface,z,0 z8.0. Substituting the forms
for the one-dimensional Green functions from Eq.~8! we
obtain

^G1~z,z8!&5
2m

\2

tR

2ik1
e2 ik1zeik2z8

3F11
2m

\2

tL

2ik2
gG0

1~0;E!G , ~21!

which allows us to expresŝG1&^G2& to first order ing as

^G1~z,z8;ki!&^G
2~z8,z;ki!&

5S 2m

\2 D 2
T0~ki!

4k1~ki!k2~ki!
F11

2m

\2

tL~ki!

2ik2
g

3@G0
1~0;E!2G0

2~0;E!#G . ~22!

Note that the equal-argument three-dimensional Gr
function that appears in Eq.~21!, G0

1(0;E)[G0(r ,r ;E)
wherer lies at the interface, is formally divergent. This pro
lem is inherent in the randomd-function model in three di-
mensions and can be avoided by considering scattering f
scatterers with small but finite size or by cutting off the d
vergent integral over momentum at a valuekmax which is on
the order of the size of the scatterers.31 The divergence, how-
ever, does not affect the imaginary part of the equ
argument Green function which appears in Eq.~22! and rep-
resents the density of states at the interface:

G0
1~0;E!2G0

2~0;E!5
1

3p i

2m

\2 S k1~0!32k2~0!3

k1~0!22k2~0!2D
522p i n0~0;E!, ~23!

where\k1(0)5A2m(E2U1) and \k2(0)5A2m(E2U2).
Thus the specular part of the transmission probability for
disordered interface,T(ki), can be written as the transmis
sion probability for the ideal interface multiplied by a fact
that depends onki . This dependence onki can, of course, be
translated into a dependence on the angle of incidence:

T~ki!5T0~ki!St~ki!5T0~ki!S 12
4p

\

gn0~0;E!

v1~ki!1v2~ki!
D .

~24!

Here v1(ki) and v2(ki) are thez components of electron
velocity in each material for a givenki . The specularity
factor for transmission at the rough interface is given
St(ki). The transmission equation derived above is simila
expressions for point scatterers at an interface previously
rived using wave function boundary matchin
conditions.32,33
01443
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Within the FERPS model, the reduction of specular tra
mission due to diffuse scattering is smallest at normal in
dence and increases as the normal components of the v
ity on either side of the interface become small. Since
second term is always positive, diffusive scattering from
interface can only reduce the transmission probability
electrons~at least within lowest-order perturbation theory!.
The apparent singularity in the specularity parameter
v1(ki)→0, especially whenv1(ki)5v2(ki), which makes it
appear thatSt might become negative is an artifact of our u
of lowest-order perturbation theory. When higher-order ter
in the dimensionless parametergn0 /(\vF) are included as
described in the Appendix~and the artificial divergence
caused by the use of point impurities is handled! the specular
transmission and reflection probabilities are never negati

We can obtain the probability for specular reflection
evaluatingF for the case in which the Green function arg
mentsz and z8 are on the same side of the interface. T
Green’s function in this case is given by

G0
1~z,z8;ki!5G0

1L~z,z8;ki!1
r R

2ik1
e2 ik1(z1z8), ~25!

where G0
1L(z,z8;ki) is the Green function for an infinite

medium with properties of the material on the left side. F
this casê G1(z,z8;ki)& is given to first order ing by

^G1~z,z8;ki!&5
2m

\2

e2 ik1zeik1z8

2ik1
1

2m

\2

e2 ik1ze2 ik1z8

2ik1

3S r R1
2m

\2

~11r R!2

2ik1
gG1~0;E!D .

~26!

In this form, we see that the reflection amplituder R is effec-
tively modified by the presence of the impurity scatteri
leading to an effective reflection amplituder R given by

r R5r R1
2m

\2

~11r R!2

2ik1
gG1~0;E!. ~27!

Although this form contains the divergent equal-argum
Green function, the lowest-order expression for the reflect
probability again contains only the well-defined imagina
part

R~ki!5R0~ki!2
8p

\

v1~ki!@v1~ki!2v2~ki!#

@v1~ki!1v2~ki!#
3

gn0~0;E!.

~28!

The expression for the effective reflectivityR(ki) can also
be expressed in terms of a specularity constant for reflec
and the reflection probability for an ideal interface. This
given as

R~ki!5Sr~ki!R0~ki!, ~29!

whereSr(ki) is given by
3-5
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STEWART, BUTLER, ZHANG, AND LOS PHYSICAL REVIEW B68, 014433 ~2003!
Sr~ki!512
8p

\

v1~ki!

v1
2~ki!2v2

2~ki!
gn0~0;E!. ~30!

Again, the apparent singularity for a symmetric interfa
which makes it appear thatSr might become negative is a
artifact of our use of lowest-order perturbation theory. It
shown in the Appendix thatSr is always greater than zero.

A few general observations may be made concerning
specularity functions for reflection and transmission with
the FERPS model:~1! The relative effect of diffuse scatter
ing on the reflected beam can be much larger than its ef
on the transmitted beam,

12Sr~ki!

12St~ki!
5

2v1~ki!

v1~ki!2v2~ki!
, ~31!

especially whenv1(ki)'v2(ki). ~2! For the case of trans
mission, increased surface roughness can only reduce sp
lar transport across the interface, whereas for the cas
reflection, interfacial disorder can either increase or decre
the specular reflection depending on the electron veloc
for each material at a particular value ofki . This model
actually predicts that interfacial disorderincreasesthe specu-
larly reflected flux forv2(ki).v1(ki). ~3! Specular trans-
mission remains symmetric in the sense that transmis
from left to right remains the same as from right to le
Specular reflection, however, is no longer symmetric in
presence of a disordered interface.

The specularity parameters are plotted both as funct
of ki /kF1 andki /kF2 in Fig. 2. Note that within this mode
the diffuse scattering in reflection vanishes aski→kF1 where
kF1.kF2. Generally, however, the model predicts the effe
of diffuse scattering to be significantly greater for the
flected beam than for the transmitted beam. The range
kx/kF1 for which no values are given for 12St corresponds
to the values ofki which yield total reflection; that is, there i
no specular transmission probability because the transm
waves are evanescent.

FIG. 2. 12St and 12Sr in the FERPS model. The Fermi mo
mentumkF1 corresponds to 0.5 electrons per spin channel~e.g., as
in Cu! while kF2 corresponds to 0.3 electrons per spin channel~e.g.,
as in majority Co!. The values of 12St and 12Sr are measured in
terms of the dimensionless parameter 2megn0a/\2, wherea is the
lattice constant for an assumed fcc lattice.
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The total flux removed from the specular beams by
interfacial disorder is given by

Fd5
4p

\
gn0~0;E!

2v1~ki!

@v1~ki!1v2~ki!#
2

. ~32!

This flux must reappear as diffuse flux if current is to
conserved.

B. Diffuse scattering

In addition to the specular part of the transmitted a
reflected fluxes, there will be diffusely scattered electro
The transmission and reflection probabilities for diffuse sc
tering can be obtained from theki nonconserving contribu-
tions to ^G1G2&. For the simple model of free electron
with random point scattering this is given in lowest order
^G0

1VG0
1G0

2VG0
2&. Thus the lowest-order vertex correctio

to F is given by

Fvc5E dr8dr1dr2S 1

4p2D 2E dkidki8dki9dki-gd~r12r2!

3d~z1!d~z2!eiki•(r2r1)eiki8•(r12r8)eiki9•(r82r2)

3eiki-•(r22r)G0
1~ki ,z,z1!G0

2~ki8 ,z1 ,z8!

3G0
1~ki9 ,z8,z2!G0

2~ki- ,z2 ,z!. ~33!

This can be evaluated to yield

Fvc5
g

16p4 S 2m

\2 D 4E dki E dki8

3
1

@k1~ki!1k2~ki!#
2

1

@k1~ki8!1k2~ki8!#2
. ~34!

Comparison with Eq.~10! allows us to write the diffuse con
tribution to the transmission as

Tvc~ki ,ki8!

5
16g

4p2\2

v1~ki!

@v1~ki!1v2~ki!#
2

v2~ki8!

@v1~ki8!1v2~ki8!#2
.

~35!

Similarly, the diffuse contribution to reflection is given by

Rvc~ki ,ki8!

5
16g

4p2\2

v1~ki!

@v1~ki!1v2~ki!#
2

v1~ki8!

@v1~ki8!1v2~ki8!#2
.

~36!

The total diffuse flux
3-6
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Fd5E dki8@Tvc~ki ,ki8!1Rvc~ki ,ki8!# ~37!

is easily seen to be equal to the missing specular flux gi
in Eq. ~32!.
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For the particular case of the FERPS model, the transm
sion and reflection depend only on the magnitude ofki and
ki8 . Thus the expressions for the transmission and reflec
can be simplified for visualization as
Tvc~x,y!5
16g

h2vF1vF2

A12x2

~A12x21Aa22x2!2

A12y2

~A12y21Aa222y2!2
, ~38!
for
ring

the
he
he

s-
s

where x5ki /kF1 , y5ki8/kF2, and a5kF2 /kF1. For ki
.kF2 ~equivalent tox.a), the Green functions in Eq.~33!
yield

Tvc~x,y!5
16g

h2vF1vF2

A12x2

12a2

A12y2

~A12y21Aa222y2!2
.

~39!

Similarly, the diffuse reflection probability can be simp
fied for visualization as

Rvc~x,y!

5
16g

h2vF1
2

A12x2

~A12x21Aa22x2!2

A12y2

~A12y21Aa22y2!2
,

~40!

wherex5ki /kF1 , y5ki8/kF1, and a5kF2 /kF1. For x or y
greater thana, the denominator again becomes 12a2.

Figure 3 shows plots of the diffuse scattering as a funct
of ki and ki8 for transmission and reflection. The interfa
considered in this particular example is appropriate to a
electron model for the majority copper-cobalt interface, i
Fermi surfaces containing 0.5 electrons/atom~Cu! and 0.3
electrons/atom~Co!. The diffuse transmission@panel ~a!# is
symmetric in terms of whether the electron is incident fro
the larger (kF1) or smaller (kF2) Fermi surface. The diffuse
transmission can be seen to be fairly uniform over much
ki-ki8 space. On the side of the interface with the sma
Fermi surface, there is a small maximum for relatively lar
values ofki8 before it vanishes atki85kF2. On the side of the
interface with the larger Fermi surface, there is a large ma
mum with discontinuous slope at the largest value ofki for
which specular transmission is possible. For still larger v
ues ofki , there is a region for which diffuse transmission
possible, but not specular transmission. In this region
diffuse transmission rapidly decreases to zero~with infinite
slope! at ki5kF1 . Thus interfacial disorder allows transmi
sion of electrons with an incidentki ~on the larger Fermi
surface! that would normally be totally reflected and als
allows scattering into values ofki on the larger Fermi surfac
that are not accessible to specular transmission. For
n

e
.,

f
r

e

i-

l-

e

he

pointlike disorder considered here there is no evidence
enhancement of diffuse scattering near the forward scatte
direction (ki5ki8).

The diffuse reflection probability depends on whether
electron is incident on the larger Fermi surface or t
smaller. For electrons incident from the material with t
smaller Fermi surface@panel ~c!# the diffuse scattering is

FIG. 3. ~Color online! Calculated diffuse scattering in transmi
sion ~a! and reflection~b! and~c!. Plotted values are dimensionles
and should be multiplied by 16g/h2vF1vF2 ~transmission! or
16g/h2vF1

2 ~reflection!. For panel~b! electrons are incident from the
larger Fermi surface and for panel~c! from the smaller.
3-7
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STEWART, BUTLER, ZHANG, AND LOS PHYSICAL REVIEW B68, 014433 ~2003!
relatively smooth and uniform with a weak maximum befo
vanishing when either the incident or reflectedki equalskF .
For electrons incident from the larger Fermi surface@panel
~b!# there is a maximum in the diffuse reflection probabil
for the value ofki or ki8 for the critical angle at which tota
reflection begins for the specular beam. This maxim
comes from the same source@vanishing ofv2(ki)] in Eq.
~33! as the maximum in the transmitted diffuse scattering

III. LKKR-CPA CALCULATIONS

In this section, the LKKR method will be used to calc
late the probability for specular transmission and reflect
across an interface for the case of a more realistic model
should be appropriate for certain real interfaces such as t
that are formed by sputter or ion beam deposition of layer
cobalt and copper. In the previous section, we showed
the specular transmission and reflection probabilities
electrons incident on an atomically disordered interface
be obtained from the configuration-averaged Green funct
This is a quantity that the coherent potent
approximation25–27is designed to calculate. Thus, we can u
the LKKR technique to obtain the average Green function
the coherent potential approximation for the disordered in
face and then calculate the transmission and reflection p
abilities using this averaged Green function.14 This should
approximate the specular transmission and reflection p
abilities in the presence of the assumed interfacial disor
For both the free electron and real material interfaces,
specularity functions for transmission and reflection are
termined using the following equations:

St~ki!5
Tcpa~ki!

T0~ki!
,

Sr~ki!5
Rcpa~ki!

R0~ki!
, ~41!

whereTcpa(ki) andRcpa(ki) are the transmission and refle
tion probabilities in the CPA case andT0(ki) andR0(ki) are
similar quantities for the ordered interface.

In order to make contact with the results of the previo
section we shall begin with a calculation that mimics the f
electron calculations of that section within the context of
LKKR approach. Thus we assume, as in the last section,
the electronic structure on either side of the interface is
of free electrons. Within the LKKR approach which utilize
the atomic sphere approximation, a uniform potential is
proximated by a superposition of uniform potentials with
slightly overlapping atomic spheres of volume equal to
volume per atom. Thus our LKKR approximation to the d
ordered interface consists of atomic spheres of uniform
tential 1U on the left of the interface and uniform potenti
2U on the right of the interface. Each of these is arrang
on a semi-infinite fcc lattice with the interface perpendicu
to the ~100! direction. The interface consists of a single f
~100! layer of atomic spheres randomly occupied by1U or
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2U ‘‘atoms.’’ In the LKKR approach~as in a real system!
the disordered interface must have a finite width equal to
of at least one atomic layer.

T0(ki) andR0(ki) are calculated by replacing the atom
layer of 1U and 2U potentials with an atomic layer ofU
50 potentials as required by Eq.~14! ~Fig. 4!. The lattice
spacings and atomic sphere radii are appropriate to a co
lattice @layer thickness of 3.4083 a.u., the width of on
atomic layer of copper or cobalt in the~100! direction#. The
potentials on the left and right sides of the step are given
1U and 2U, respectively, whereU50.050 Ry. The free
electron energy was taken to be 0.664 Ry~corresponding
approximately to the Fermi energy of copper!.

The results of the LKKR-CPA calculation for the tran
mission specularity parameterSt are compared to the ana
lytic results derived in the previous section in Fig. 5. We fi
remarkably good agreement between the LKKR-CPA
proach and the analytic Green’s function technique, es

FIG. 4. ~Color online! Two separate interfaces are used wh
studying interface scattering for free electrons. The first interfac
a double potential step that has an intermediate potential level a
interface equal to the average of the two bulk potentials. In
LKKR calculation, this potential region is approximated as a C
alloy layer.

FIG. 5. The specularity parameter for transmission calcula
for the free electron interface shows good agreement between
analytical Green function~dotted line with crosses! and LKKR-CPA
~solid line with ‘‘1’’ symbols! approaches. The momentum states
which ky50 andkx is allowed to vary were considered. Units forkx

are a.u.21. In this case,U50.05 Ry andg f i t50.292 Ry2 a.u.4.
3-8
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INTERFACIAL SCATTERING IN MAGNETIC . . . PHYSICAL REVIEW B68, 014433 ~2003!
cially considering the fact that the LKKR method must a
proximate the uniform potential by a sum of spheric
potentials. In agreement with the analytic results, the tra
mission specularity parameter decreases rapidly as thz
component of the electron momentum or velocity becom
small.

The analytical Green’s function specularity parameter
the specularity parameter for transmission in the LKKR-C
case using a correlation parameterg50.292 Ry2 a.u.4 for
U50.05 Ry. This is quite close to the estimate forg based
on dimensional arguments,g5U2a450.334 Ry2 a.u.4,
wherea is the step size. Figure 6 shows thatg fitted to the
transmission specularity parameter is approximat
0.87U2a4 over a large range in the potential stepU.

Interfacial scattering at a~100! interface in a CouCu bi-
layer is also considered using the LKKR-CPA technique.
this approach, the electronic structure of the entire interf
region is calculated self-consistently. This interface reg
consists of 16 atomic layers that are allowed to relax in
process of achieving electronic self-consistency. During
self-consistency process, these interfacial layers are
rounded by semi-infinite bulk copper adjacent to the rela
copper and by semi-infinite bulk cobalt adjacent to the
laxed cobalt.

It is assumed that the diffusive scattering arises from
terdiffusion of the two materials on the scale of a few atom
layers. We therefore model the interface as having a sm
number of atomic layers in which the atoms are randomly
or Cu. The electronic structure of these layers is calcula
using the coherent potential approximation. In order to p
vide a computational estimate of thek zz-dependentS param-
eter, the transmission and reflection probabilities of two s
tems are calculated, a CouCu interface with no interdiffusion
and an interface with one or more layers of CoxCu12x alloy.

Figure 7 shows the transmission probability calculated
a sharp~no interdiffusion! interface and the specular tran
mission probability for an interface modeled with a sing
atomic layer of composition Co0.5Cu0.5. The majority chan-
nel was chosen for this example because it has only
Bloch state for mostki points in both Co and Cu and migh
therefore, be expected to have some similarity to the FER

FIG. 6. The fitted parameterg which measures the strength o
the interfacial potential scattering in the FERPS model andU2a4

are plotted as a function ofU, the interfacial potential used in th
CPA.
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model. Transmission in both cases drops as the momen
parallel to the interface increases and momentum perp
dicular to the interface vanishes. It should be noted, howe
that due to the close matching of the bands for majority
and Cu, the overall transmission is still extremely high f
most values ofkx .

Figure 8 shows the specular transmission and reflec
probabilities on a logarithmic scale for the majority coba
copper~100! interface as a function of the degree of interf
cial intermixing. Two features are surprising about Fig. 8.
the absence of intermixing the transmission probability
nearly unity and the reflection probability nearly zero ov
most of the range ofki . For comparison, a free electro
model for the ideal cobalt-copper interface withT and R
calculated from Eqs.~9! assuming Fermi sphere volumes
0.3 and 0.5 electrons/atom, respectively, would give a refl
tion probability at least 30 times larger than that shown
Fig. 8 for most values ofki .

In the absence of intermixing,R512T. At the lowest
values of intermixing that we considered~0.1%!, 12T is
very slightly greater thanR. In addition to diffuse scattering
the difference betweenR and 12T seen in Fig. 8 for the
lowest intermixing may be due to numerical inaccurac
that arise primarily because theT andR matrices are calcu-
lated using Green functions that have a small imaginary p
to the energy. This is needed to maintain their correct a
lytic behavior. The increase in reflection for largeki is due to
the Fermi surface of copper being larger than that of majo
cobalt so that total reflection occurs when for a given va
of ki there is no cobalt state for the electron to be refrac
into.

The second surprising feature is that substantial interm
ing of two atomic layers has only a small effect on the tra
mission and reflection probabilities. The structure in the
flection probability probably results from interference with
the disordered layers which have a finite thickness.

One feature of the specular transmission and reflec
probability that deserves special comment is the predic

FIG. 7. Transmission is shown for a sharp and interdiffus
~100! CouCu interface. Transmission for the perfect interface is re
resented by a solid line with crosses~1!. A dashed line with sym-
bols (3) is used for transmission across an interdiffused interf
modeled as a Co50Cu50 alloy layer. In the case of the interdiffuse
interface, there is enhanced diffusive scattering for higherki and a
significant drop in overall transmission. Units forkx are a.u.21.
3-9
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STEWART, BUTLER, ZHANG, AND LOS PHYSICAL REVIEW B68, 014433 ~2003!
that atomic-scale impurities are relatively ineffective in ca
ing diffuse scattering of electrons with sufficiently highki
(kx.0.7 in this case! that they undergo total internal reflec
tion. In this regard the first-principles results appear to dif
qualitatively from those of the FERPS model. This obser
tion should encourage strategies aimed at increasing cu
in the plane–GMR by enhancing the channeling effect
which electrons become trapped in the low-resistivity cop
layer for parallel alignment of the moments, thus increas
the GMR effect.34 Another feature of the calculated specu
reflection probability that should be noted is the predict
that for certain values ofki , diffuse scattering can actuall
increase the probability for specular reflection. This resul
consistent with the FERPS model results.

Figure 9 shows the transmission specularity paramete
majority cobalt copper which may be compared with that
the free electrons with random point interfacial scatter
model shown in Fig. 2. One important difference is the va
ishing of the effect of diffuse scattering for electrons incide
on the interface with the highest values of transverse m
mentum, i.e., grazing incidence.

Figure 10 shows the calculated transmission and refl
tion probabilities for minority electrons at a cobalt-copp
interface. The reflection probability can be viewed as
probability of an electron in copper being reflected off of t

FIG. 8. ~Color online! Majority channel specular transmissio
~subtracted from unity! and specular reflection probabilities for a
interface between fcc cobalt and copper calculated in the cohe
potential approximation. There are two intermixed atomic laye
one with CuxCo12x on the cobalt side of the interface and one w
CoxCu12x on the copper side wherex50.1, . . .,0.5. The interface
is assumed to be perpendicular to the~100! direction.
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interface. Because the minority spin channel for cobalt
multiple bands for most values ofki , the transmission prob
ability can be viewed as the total probability that an electr
in copper will be transmitted into any of the bands with t
same value ofki . It is interesting that these calculation
predict that disorder can actually increase the transmis
for a few values ofki for which the transmission of the
ordered interface is particularly low and can increase
specular reflection for values ofki where it is especially low.

One of the important results of Figs. 8 and 10 is that
most values ofki the transmission probability is much highe
in the majority channel than for the minority channel.nt
,

FIG. 9. 12St for majority cobalt copper. The fraction of inter
mixing of two interfacial layers is indicated byx. ~See caption to
Fig. 8.!

FIG. 10. Specular transmission and reflection probabilities
the minority cobalt-copper interface.
3-10
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INTERFACIAL SCATTERING IN MAGNETIC . . . PHYSICAL REVIEW B68, 014433 ~2003!
addition, the effects of disorder are not nearly so dramatic
the majority transmission as on the minority. This differen
is one of the major contributors to the GMR effect and is d
to the relatively good matching of the electronic structures
cobalt and copper in the majority channel and the relativ
poor match in the minority channel.

IV. CONCLUSION

With the emergence of devices which rely on transp
across nanoscale interfaces, a clear understanding of sc
ing events and interdiffusion in this region is essential.
this study, we have demonstrated that the specular part o
transmission and reflection probabilities can be obtai
from the averaged single-particle Green function. The spe
larity parameter is demonstrated to be rather strongly dep
dent onki or equivalently on the angle of incidence of th
electron as it approaches the interface. For systems tha
proximate free electrons such as the majority spin channe
CouCu, the specularity parameter is highest for normal in
dence.

The derived results for the FERPS model clearly sh
that the cases of reflection and transmission possess diffe
specularity parameters. This has direct implications for se
classical Boltzmann transport models of magnetic multil
ers. Depending on the band structure of the two mater
diffuse scattering can lead to either enhanced or redu
specular reflection. Within the FERPS model, however,
terdiffusion always reduces specular transmission across
terfaces.

The layer KKR-CPA approach provides the ability to n
merically approximate the specularity parameter for a rea
tic model of material interfaces. Results for a~100! CouCu
interface provide an example which may illustrate some g
eral trends for scattering due to interfacial interdiffusio
Depositions which result in greater interdiffusion will lead
increased diffusive scattering, reducing the specularity
rameter for transmission. For the FERPS model and
~100! CouCu, the specularity parameter for transmission a
increases for high values ofki . This is most likely due to the
reduction of electron velocities near the Brillouin zone ed

This work provides the tools necessary to build a se
classical model that incorporatesab initio band structure in-
formation including a reasonable model of interface scat
ing. Recently molecular dynamics models have been abl
determine the degree of interdiffusion for different depo
tion conditions.6 Using the composition profiles obtaine
from these calculations, the LKKR-CPA model should pr
vide accurate specularity parameters for different deposi
conditions. It is hoped that these issues can be address
an upcoming work. Another issue that is dealt with here f
mally ~Appendix! and in the section on the FERPS mod
but not from first principles, is the full angular dependence
the diffuse scattering. We also hope to address this prob
soon by developing a first-principles approach that wo
sum the ladder diagrams for the vertex corrections. This
proach would be similar to the techniques that have b
applied to homogeneous systems.35,36
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APPENDIX

In order to go beyond second-order perturbation the
within the FERPS model, it is convenient to consider t
Green function expansion in theki representation. Defining
the ki representations for the Green’s function in the pr
ence of the interface impurity potentialVi(r )5Vi(r)d(z)
and for an ideal interface as

G1~r ,r 8;E!5
1

A (
kuukuu

8
ei (kuu•r2kuu8•r8)G1~z,z8;E,kuu ,kuu

8 !

~A1!

and

G0
1~r ,r 8;E!5

1

A (
kuu

eikuu•(r2r8)G0
1~z,z8;E,kuu!, ~A2!

respectively, wherer5xx̂1yŷ is a two-dimensional vecto
in the plane of the interface with areaA, we can rewrite the
expansion for the Green’s function in the following wa
~suppressing the energy argumentE for brevity!:

G~z,z8;kuu ,kuu
8 !5G0~z,z8;kuu!dkuukuu

8

1G0~z,0;kuu!T~kuu ,kuu
8 !G0~0,z8;kuu

8 !.

~A3!

Here the scatteringT matrix ~which should not be confuse
with the transmission probability! is

T~kuu ,kuu
8 !5Vi~kuu2kuu

8 !

1(
kuu
9

Vi~kuu2kuu
9 !G0~0,0;kuu

9 !Vi~kuu
92kuu

8 !

1 (
kuu
9kuu

-
Vi~kuu2kuu

9 !G0~0,0;kuu
9 !Vi~kuu

92kuu
-!

3G0~0,0;kuu
-!Vi~kuu

-2kuu
8 !1••• ~A4!

and
3-11
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Vi~kuu2kuu
8 !5

1

AE dre2 i (kuu2kuu
8 )•rVi~r! ~A5!

is the matrix element of the interface impurity potenti
G0(z,z8;ki) is the interface Green function which is diag
nal in ki space and which describes electron transmiss
through an ideal~defect free! interface. It is defined by Eqs
~8! and ~9!.

We need to determine the electron’s probability of tra
mission through and reflection from a disordered interfa
These can be expressed by means of the square modul
the propagator defined in Eq.~A3! averaged over the inter
facial disorder,̂ uG(z,z8;kuu ,kuu

8 )u2&. Let us consider, e.g., th
transmission probability. In this case, the Green’s funct
G0

1(z,z8;kuu) is defined by the first two expressions of E

~8! ~for z,0,z8.0 or z.0,z8,0) and uG(z,z8;kuu ,kuu
8 )u2

5uG(0,0;kuu ,kuu
8 )u2 does not depend onz and z8. Thus,

^uG(z,z8;kuu ,kuu
8 )u2& defining the transmission probabilit

may be written as

^uG~kuu ,kuu
8 !u2&5u^G~kuu ,kuu

8 !&u2

1 (
kuu
9kuu

-
u^G~kuu ,kuu

9 !&u2W~kuu
9 ,kuu

-!

3u^G~kuu
- ,kuu

8 !&u2, ~A6!

whereG(kuu ,kuu
8 )5G(0,0;kuu ,kuu

8 ) andW(kuu ,kuu
8 ) is the vertex

function.
On the other hand, using Eq.~A3!, we get

^uG~kuu ,kuu
8 !u2&5uG0~kuu!u2dkuukuu

8

1uG0~kuu!u22 Re@^T1~kuu ,kuu!&

3G0
1~kuu!#dkuukuu

8

1uG0~kuu!u2^uT~kuu ,kuu
8 !u2&uG0~kuu

8 !u2,

~A7!

where

G0
1~kuu!5G0

1~kuu ,kuu!5
2

i\@v1~kuu!1v2~kuu!#
~A8!

and

v1~kuu!5
\

m
A2m

\2
~E2U1!2kuu

2

and

v2~kuu!5
\

m
A2m

\2
~E2U2!2kuu

2

are the normal components of the electron velocity on eit
side of the interface. Note that the averaged Green’s func
01443
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.
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r
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^G(kuu ,kuu
8 )& is diagonal and, therefore, according to E

~A3!, the averagedT matrix is also diagonal.
To separate the specular and diffuse scatterings, it is

ful to represent̂ uT(kuu ,kuu
8 )u2& entering Eq.~A7! as

^uT~kuu ,kuu
8 !u2&5u^T~kuu ,kuu!&u2dkuukuu

81@^uT~kuu ,kuu
8 !u2&

2u^T~kuu ,kuu!&u2dkuukuu
8 #. ~A9!

Using this representation and noting thatG0(kuu), Eq. ~A8!,
is purely imaginary, Eq.~A7! may be rewritten as follows:

^uG~ki ,ki8!u2&5uG0~ki!u2$@12Im G0
1~ki!Im^T1~ki ,ki!&#2

1uG0~ki!u2@Rê T1~ki ,ki!&#2%dki ,ki8

1uG0~kuu!u2@^uT~kuu ,kuu
8 !u2&

2u^T1~kuu ,kuu!&u2dkuukuu
8 #uG0~kuu

8 !u2, ~A10!

where ImG0
1(kuu)522/\@v1(kuu)1v2(kuu)#. Comparing the

second right-hand terms of Eqs.~A6! and ~A10!, we obtain
~in this non-self-consistent approach! for, the vertex function,

W~kuu ,kuu
8 !5^uT~kuu ,kuu

8 !u2&2u^T1~kuu ,kuu!&u2dkuukuu
8 .

~A11!

It is easy to see that the flux-conserving transmission a
plitude is related to the Green’s function through

t~kuu ,kuu
8 !5 i\Av2~kuu!v1~kuu

8 !G1~kuu ,kuu
8 !. ~A12!

For an ideal interface, the transmission amplitude~A12! is
diagonal with respect tokuu and defined by Eq.~A8!,
t0(kuu ,kuu)5AtLtR, wheretL and tR are defined by Eq.~9!.

Thus, according to Eqs.~A10! and~A12! we can define in
general the transmission probability as

^ut~kuu ,kuu
8 !u2&5T0~kuu!St~kuu!dkuukuu

81Dt~kuu ,kuu
8 !.

~A13!

Here, T0(kuu)5tLtR is the transmission probability for th
ideal interface,

St~kuu!5S 11
2

\@v1~kuu!1v2~kuu!#
Im^T1~kuu ,kuu!& D 2

1
4

\2@v1~kuu!1v2~kuu!#
2

@Rê T1~kuu ,kuu!&#2

~A14!

is the specularity factor for transmission at the rough int
face, and

Dt~kuu ,kuu
8 !

5
16v2~kuu!v1~kuu

8 !

\2@v1~kuu!1v2~kuu!#
2@v1~kuu

8 !1v2~kuu
8 !#2

W~kuu ,kuu
8 !

~A15!
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is the diffuse contribution to transmission, where the ver
function W(kuu ,kuu

8 ) is defined by Eq.~A11!.
The probability of reflection from the interface may b

obtained in a similar manner to the transmission. It is c
venient to use the continuity relation at the interface wh
results in the following relation between the transmissi
t(kuu ,kuu

8 ), and reflection,r (kuu ,kuu
8 ), amplitudes:

r ~kuu ,kuu
8 !5Av1~kuu!

v2~kuu!
t~kuu ,kuu

8 !2dkuukuu
8 ~A16!

or, in terms of the Green’s function,

r ~kuu ,kuu
8 !5 i\Av1~kuu!v1~kuu

8 !G1~kuu ,kuu
8 !2dkuukuu

8 ,

~A17!

which follows from Eq.~A12!. Making use of Eqs.~A12!
and ~A3!, we arrive at the following result for the reflectio
probability:

^ur ~kuu ,kuu
8 !u2&5R0~kuu!Sr~kuu!dkuukuu

81Dr~kuu ,kuu
8 !,

~A18!

whereR0(kuu)5ur Lu25ur Ru2 is the reflection probability for a
perfect interface,

Sr~kuu!5F11
4

\

v1~kuu!

v1
2~kuu!2v2

2~kuu!
Im^T1~kuu ,kuu!&G 2

1
16v1

2~kuu!

\2@v1
2~kuu!2v2

2~kuu!#
2

@Rê T1~kuu ,kuu!&#2

~A19!

*Present address: Sandia National Laboratories, Livermore,
94551-0969, USA.
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36B. Velický, Phys. Rev.184, 614 ~1969!.
3-14


