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Probability Judgment in Three-Category Classification Learning
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People give subadditive probability judgments—in viclation of probability theory—when
asked to assess each in a set of 3 or more mutually exclusive hypotheses, as indicated by their
sum exceeding 1. Three potential evidential infiuences on subadditivity—cue conflict, cue
frequency, and cue redundancy-——are distinguished and tested in 5 experiments using a
classification-learning task. Results indicate that (a) judgments of probability and of frequency
are systematically subadditive even when the judgments are based on cues learned within the
experimental context, (b) cue conflict has a reliable influence on the degree of subadditivity,
and (c) judgments in this context are well described by a linear-discounting model within the

framework of support theory.

New York Yankees catcher Yogi Berra was once asked
whether he would like his pizza cut into four or eight slices,
to which he is supposed to have replied that he would prefer
it be cut into four slices, as he was not hungry enough to eat
eight. Piaget and Inhelder (1941, cited in Flavell, 1963)
observed that young children do in fact fail to understand
that mass or quantity is conserved when an object (e.g., a
piece of clay or a glass of water) is partitioned into
components (e.g., several pieces of clay or multiple glasses
of water). Although adults are not prone t¢ make such
fundamental errors in reasoning about physical quantities,
on more complicated tasks they appear to retain an inclina-
tion to base judgments on the number of components into
which the object or event is partitioned, even when the
number of components is irrelevant with respect to the value
being assessed (e.g., Fiedler & Armbruster, 1994; Pelham,
Sumarta, & Myaskovsky, 1994; van der Pligt, Eiser, &
Spears, 1987). This article concerns effects of event decom-
position in judgments of likelihood. Subjective assessments
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of probability, contrary to the dictates of probability theory,
are often highly dependent on the manner in which the event
under assessment is partitioned into components.

Specifically, a number of studies have demonstrated that
an event is assigned a greater probability when its compo-
nents are explicitly listed and individually assessed than
when evaluated as a whole (Dube-Rioux & Russo, 1988;
Fischhoff, Slovic, & Lichtenstein, 1978; Fox, Rogers, &
Tversky, 1996; Fox & Tversky, 1998, Mehle, Gettys,
Manning, Baca, & Fisher, 1981; Peterson & Pitz, 1988;
Teigen, 1974a, 1974b). For example, the judged probability
of death due to homicide increases when this possibility is
“unpacked” into homicide by an acquaintance or homicide
by a stranger (Rottenstreich & Tversky, 1997). Likewise,
physicians’ estimates of the probability of alternatives to a
focal diagnosis increase when a number of specific alterna-
tive diagnoses are explicitly mentioned (Redelmeier, Koehler,
Liberman, & Tversky, 1995).

Recently, a descriptive theory of probability judgment
called support theory (Rottenstreich & Tversky, 1997,
Tversky & Koehler, 1994) has been developed that can
account for such findings. Support theory consists of two
basic assumptions. - The first is that judged probability
reflects the relative support for the focal and alternative
hypotheses:

_s(4)
P4, B) = s(A)+ s(B)"

(1
That is, the judged probability of A rather than B is simply
the evidential support available for A, s(A), normalized
relative to that available for its complement B. I, for
example, A represents the possibility that a Democrat will
win the next presidential election, and B represents the
possibility that a Republican will win, the judged probability
of a Democrat rather than a Republican winning P(A, B) is
assumed to be represented as the proportion of evidential
support s(A) for the Democrat relative to the evidential
support s(B) for the Republican. Support theory is nonexten-
sional, allowing judged probability to depend not only on the
event in question but also on how it is described. Hence, A
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and B refer to descriptions of events, called hypotheses,
rather than to the events (in the set-theoretic sense) them-
selves, as in standard probability theory.

Support theory distinguishes between two kinds of hypoth-
eses: explicit disjunctions, which list their components, and
implicit disjunctions, which do not. Support theory’s second
assumption is that if A is an implicit disjunction (e.g.,
Hurricane Bonnie will come ashore along the eastern U.S.
coastline) that refers to the same event as an explicit
disjunction of exclusive hypotheses A; and A, (e.g., Hurri-
cane Bormie will come ashore along the northeastern U.S.
coastline or Hurricane Bonnie will come ashore along the
southeastern U.S. coastline, denoted A; v Aj), then

5(A) = 5(A; v Ap) = s(Ay) + $(Ap) 2

That is, the support of the implicit disjunction A is less than
or equal to that of the explicit disjunction A, v A,, which in
turn is less than or equal to the total support of its
components when assessed individually (Rottenstreich &
Tversky, 1997). In short, unpacking the implicit disjunction
A into its components A; and A, can only increase its
support, and hence its judged probability {cf. Fischhoff et al.,
1978). The relationship between the support of A and its
components A, and A, is said to be subadditive, in the sense
that the whole receives less than the sum of its parts. As with
Berra’s pizza, decomposition increases perceived extent or
likelihood. The observed effects of unpacking reported in
numercus studies (for a review, sez Tversky & Koehier,
1994) are inconsistent both with the standard Bayesian
model of subjective probability and with nonstandard mod-
¢ls such as Shafer’s (1976) theory of belief functions.

Support theory implies that, whenever an elementary
hypothesis is evaluated relative to all of its alternatives taken
as a group (referred to as a “catchall” or residual category),
the weight given to an alternative included implicitly in the
residual is generally less than what it would have received
had it been evaluated in isolation. Consider a case in which
there are three elementary hypotheses: A, B, and C. For
instance, suppose a student is known to major in cne (and
only one) of three possible social sciences: economics (A4),
psychology (B), or sociology (C). According to support
theory, when & person is asked to judge the probability of
Hypothesis A (i.e., that the student majors in economics
rather than psychology or sociology), the resulting “elemen-
tary” probability judgment is determined by the evidential
support for Hypothesis A normalized relative to that for its
complement (not-A, represented A). In this case, its comple-
ment is an implicit disjunction of Hypotheses B and C.
Support theory assumes that packing these alternatives
together in the implicit disjunction (i.e., the residual)
generally produces a loss in their support, thereby increasing
A’s judged probability.

If separate elementary judgments are obtained of the
probability of hypotheses A, B, and C, the total probability T
assigned to the three elementary hypotheses is predicted to
exceed one, in violation of probability theory. This result is
predicted only when there are three or more elementary
hypotheses under evaluation, as it is only under these cir-

cumstances that the alternatives to the focal hypothesis can
be packed together to create an implicit residual hy-
pothesis. (In the case of a complementary pair of hypoth-
eses, judgments are predicted to sum to one; see Equation 1.
For some exceptions, see Brenner & Rottenstreich, 1999;
Macchi, Osherson, & Krantz, 1999; McKenzie, 1998, 1999.)
The degree of subadditivity can be measured by the extent to
which the total probability T assigned to them exceeds one;
the greater the value of 7, the greater the degree of
subadditivity. (Unfortunately, the term subadditivity can be
somewhat confusing in this context, given that it is indicated
by T > 1. This terminology is supposed to reflect the fact
that an event as a whole receives less probability than the
sum of that assigned to its components.)

The observed degree of subadditivity depends on a
number of factors (see Tversky & Koehler, 1994), including
the compatibility of the evidence with the set of hypotheses
under consideration. For example, in one experiment
(Koehler, Brenner, & Tversky, 1997, Experiment 1) partici-
pants judged the probability that a college student had a
specified social science major on the basis of a course that
student had taken. The courses provided as evidence varied
in how compatible they were with social science majors in
general, with two of them being quite typical (e.g., Western
Civilization) and two being fairly atypical (e.g., French
Literature). The degree of subadditivity of the judgments, as
measured by the total probability T assigned to four exclu-
sive and exhaustive social science majors, was significantly
greater for the typical courses than for the atypical courses, a
result referred to as the enhancement effect (Brenner &
Koehler, 1999; Koehler et al., 1997; Tversky & Koehler,
1994). Apparently, when evidence is introduced that is
generally supportive of each of the hypotheses under
evaluation, the focal hypothesis of the elementary judgment
receives a disproportionate share of the perceived support
conveyed by the evidence.

While the notion of compatibility between evidence and
hypotheses serves to summarize a number of evidential
manipulations observed to influence subadditivity, the spe-
cific characteristics of the evidence that contribute to
subadditive judgments have yet to be explicated. To identify
more precisely the evidential characteristics influencing
subadditivity, it is necessary to have direct experimental
control over the relationship between the evidence and the
hypotheses. In the experiments reported in this article, this
was accomplished through the use of a simulated medical
diagnosis task, a well-established experimental paradigm
that has been used in much of the recent work on classifica-
tion learning (or, more precisely, multiple-cue probability
learning; for a review of much of the early work in this area,
see Castellan, 1977).

In these studies (e.g., Estes, Campbell, Hatsopoulos, &
Hurwitz, 1989; Gluck & Bower, 1988; Nosofsky, Kruschke,
& McKinley, 1992; Shanks, 1991), participants are pre-
sented with a set of symptoms (“cues” which serve as
evidence) reported by a “patient” and are asked to diagnose
which of a set of possible diseases (typically two) the patient
might have. Participants are presented with a large number
of patients; after making each diagnosis, participants receive
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feedback telling them which disease the patient actually had.
During or after the learning phase, test trials may be given
(typically without feedback), in which participants are
presented with symptom patterns and asked to estimate the
probability that the patient has a designated disease.

The present experiments use this kind of simulated
medical diagnosis task to investigate three evidential factors
that could potentially influence the degree to which probabil-
ity judgments are subadditive. While support theory offers a
framework for interpreting the impact of these factors, it
does not directly predict that any of these factors will
necessarily influence the degree of subadditivity observed in
probability judgments. These manipulations, then, are in-
tended to further our understanding of how evidential
support is assessed, not to provide a direct test of support
theory itself.

The first factor, referred to as cue conflict, reflects the
extent to which the evidence is “mixed” in its implications
(cf. Peterson & Pitz, 1988). Certain symptom patterns may
include some symptoms that are supportive of one diagnosis
and other symptoms that are supportive of a different
diagnosis, inducing a high state of conflict; other symptom
patterns, by contrast, may provide support for only a single
diagnosis, thereby inducing less conflict. One interpretation
of previous studies of the enhancement effect (e.g., Koehler
et al., 1997) is that the experimental manipulations used in
these studies operated by varying cue conflict. Under this
interpretation, a greater degree of subadditivity should be
associated with increased cue conflict.

The second factor, referred to as cue frequency, concemns
the general prevalence of a cue's presence in the leamning
environment. Certain cues may just be more commonly
encountered than other cues, independent of their diagnostic
value. The present experiments investigate the possibility
that high-frequency cues induce greater subadditivity than
low-frequency cues. This might occur, for example, if
people attend to the degree of co-occurrence between a cue
and a particular diagnosis, without due regard to its co-
occurrence with alternative diagnoses (cf. Jenkins & Ward,
1965).

The symptoms acting as cues in the reported experiments
are all binary in nature, and are denoted simply as either
present or absent (e.g., cough vs. no cough). As will become
more apparent when the experiments are described, an
underlying assumption in evaluating the impact of cue
conflict and cue frequency is that participants focus on and
draw inferences. primarily on the basis of a symptom’s
presence rather than its absence. Thus, cue conflict is
assessed in terms of the number of diagnoses implicated by
symptoms reported as present, and cue frequency is com-
puted in terms of the prevalence of symptoms present in the
evidence upon which the judgment is based. This approach
implicitly assumes that participants conceptualize the cues
in terms of what a symptom’s presence—rather than its
absence—signifies regarding the patient’s condition. Obvi-
ously, this does not imply that participants fail to distinguish
between present and absent symptoms (in which case they
would exhibit no learning). Instead, the assumption is that
participants represent information they acquire about the

category structure (ie., symptom—diagnosis interrelation-
ships) primarily in terms of what a symptom'’s presence
indicates about the patient's likely diagnosis.

There is some empirical evidence to support this assump-
tion. For example, Estes et al. (1989) and Shanks (1990)
report that participants in their classification-learning studies
give judgments that generally fail to distinguish between
absence of information about a symptom and information
that a symptom is definitely absent. Such a pattern of results
would be expected if participants base their judgments
primarily on present symptoms. Research on judgments of
covariation and causation (e.g., Kac & Wasserman, 1993;
Schustack & Sternberg, 1981; Shaklee & Mims, 1982;
Smedslund, 1963) also indicates that the presence of cues or
the occwrrence of events typically receives more weight in
intuitive judgments than-does the absence of cues or the
non-occurrence of events. Generally speaking, people ap-
pear to be more sensitive to the diagnostic value of a cue’s
presence than to the diagnostic value of its absence (New-
man, Wolff, & Hearst, 1980; Norton, Muldrew, & Strub,
1971). One reason, of course, why greater weight may be
placed on a cue’s presence than on its absence is that the
physical presence of a cue draws attention while its absence
does not. Even when a cue’s absence is explicitly denoted
(e.g., by providing a 2 X 2 frequency table in contingency
judgment studies, or by explicitly denoting a symptom’s
absence in a patient description in a classification learning
task), however, greater weighting of cue presence than cue
absence can still be observed (Estes et al.;, 1989; Kao &
Wasserman, 1993).

This issue will be considered further in the general
discussion. For now, the main point is methodological:
Effects of evidential factors such as cue conflict and cue
frequency are assessed in this article with respect to
symptoms that are said to be present rather than absent. Such
a focus draws attention to a third potential factor, referred to
as cue redundancy. Holding constant the diagnostic implica-
tions of a pattern of symptoms (and thus the degree of cue
conflict), it is possible that the mere presence of additional
(nondiagnostic) cues will produce increased subaddmwty
This factor is investigated in Experiments 3-5.

In ali five experiments, participants were presented with
computer-simulated “patients,” each of whom was said to
suffer from one (and only one) of three possible flu strains.
Each experiment consisted of a learning phase followed by a
judgment phase. In the learning phase, participants diag-
nosed the flu strain a patient was suffering from on the basis
of a set of symptoms said to characterize that patient.
Feedback regarding the correct diagnosis was presented, so
that over the course of the learning. phase, participants
acquired a sense of which symptoms were associated with
which flu strains, In the judgment phase, which is the main
focus of this investigation, participants assessed the probabil-
ity that a patient, characterized by a particular symptom
pattern, was suffering from a designated fin strain. Because
the three flu strains were known to be mutually exclusive
and collectively exhaustive, probability theory requires that
the total probability T assigned to the three flu strains given a
particular symptom pattern add to 1 {or 100%). Support
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theory, in contrast, implies subadditive judgments such that
T will generally exceed 1.

Experiment 1 confirms this general prediction and allows
assessment of the impact of cue conflict and cue frequency
on subadditivity as measured by the value of T. Experiment
2 investigates whether providing feedback after every prob-
ability judgment reduces or eliminates the tendency toward
subadditive judgments, Experiment 3, which vses a different
category structure relating symptoms to flu strains, estab-
lishes the generalizability of the resuits and allows examina-
tion of the effect of cue redundancy in addition to that of cue
conflict and cue frequency. Experiment 4 demonstrates that
the same general pattemn of results holds for judgments of
frequency as well as of probability. Finally, Experiment 5
was conducted to collect some supplementary data that
would allow the fitting of a linear-discounting model of
support (Koehler et al., 1997) to the results of Experiments 3
and 4. Taken together, these experiments provide some
insight into the factors influencing the perceived evidential
support for a hypothesis, using support theory as a guiding
theoretical framework.

Experiment 1

The first experiment examines the influences of cue
conflict and cue frequency. For each patient in the simulated
medical diagnosis task, participants were provided with
information regarding four symptoms which varied in their
overall frequency. During the learning phase, participants
chose one of the three fiu strains as their diagnosis on each
trial, and then received feedback regarding the correct
diagnosis, During the judgment phase, participants were
presented with symptom patterns and asked to judge the
probability of a designated flu strain given that pattern.
Some of the symptom patterns included multiple symptoms
associated with different flu strains, inducing a state of high
cue conflict, while other symptom patterns included symp-
toms implicating only a single flu strain, inducing a state of
low cue conflict. The total probability T assigned to the three
flu strains given a particular symptom pattern is predicted to
systematically exceed 1, and to increase with cue conflict
and cue frequency.

Method

Participants. Participants were 16 members of the participant
panel at the Medical Research Council Applied Psychology Unit,
who were paid for their participation. Data from three additional
participants were replaced; one participant failed to complete the
judgment task appropriately, and the other two failed to achieve
above-chance accuracy in the learning phase of the experiment.

Stimuli and appararus. The stimuli were ‘“‘medical charts”
consisting of four symptoms: -chills, cough, headache, and sore
throat. Each symptom was denoted either as being present (in
which case the symptom was written in uppercase letters, e.g.,
COUGH) or absent (in which case the symptom was written in
lowercase letters, e.g., no cough) on the medical chart. The
symptoms appeared in a vertically arranged list presented on a
Macintosh computer, which was also used to record participants’
judgments and provide feedback about the correct diagnosis for
each patient.

Design.  Asin Estes et al. (1989) and Nosofsky et al. (1992), all
participants were presented with an identical training sequence,
consisting of 240 “patients” or trials. Each patient was to be
classified as having one of three types of influenza (flu) strains,
simply labeled Flu Strain 1, 2, or 3. The training sequence was
constructed by first randomly choosing one of the three flu strains
(with equal probabilities) and then choosing the four symptoms—
independently—with the appropriate conditional probabilities for
that flu strain. For Flu Strain 1, the probabilities of the symptoms
being present were 1.00, 0.275, 0.225, and 0.1625 for Symptoms
A-D respectively. For Flu Strain 2, the corresponding probabilities
were 0.3375, 0.8375, 0.225, and 0.1625. For Flu Strain 3, the
comresponding probabilities were 0.3375, 0.275, 0.6625, and 0.50.
These probabilities yield the following properties. First, the four
symptoms vary systematically in their overall frequency of occur-
rence, with p(A) = 55.8%, p(B) = 46.3%, p(C) = 37.1%, and
p(D) = 27.5%. Second, the presence of each symptom, taken on its
own, has the same diagnostic value. That is, given the symptom’s
presence, the flu strain it is associated with increases in probability
to 60% (with some small variation due to rounding error for the
finite series of training trials), and the other two flu strains decrease
in probability to 20% each. Conditional probabilities given the
absence of a symptom differ from one symptom to the next, with
the associated flu strain’s probability decreasing to 0%, 10%, 18%,
and 23% and the remaining flu strains each increasing in probabil-
ity to 50%, 45%, 41%, and 39%, given the absence of Symptoms A,
B, C, and D, respectively.

The training sequence was constructed using these probabilities,
with the additional constraints that (a) each of the three flu strains
appeared on exactly one third of the training trials, (b) the targeted
relative frequency of each symptom given each of the flu strains
was achieved exactly over the training seguence, and (¢) no
symptom pattern appeared twice in succession anywhere in the
sequence. The actual symptom (e.g., cough) assigned to the four
abstract Symptoms A-D was counterbalanced over participants, as
was the position of the four symptoms in the computer display. The
training sequence was presented in a fixed order to all participants.

Following the training sequence, probability judgments were
elicited in which the probability of a designated flu strain was
estimated given a particular symptom pattern. Given four binary
symptoms, there are 16 possible symptom patterns. When crossed
with the three possible target flu strains, this produces a total of 48
possible “pattern judgments,” the full set of which was obtained in
a randomized order from each participant. The 48 symptom
patterns vary both in their level of cue conflict and in the frequency
of occurrence (during the training sequence) of the present symp-
toms they include, The level of cue conflict associated with a
symptom pattern is represented by the number of flu strains
implicated by the present symptoms it includes; cue frequency is
represented by the average relative frequency (during the training
sequence) of the present symptoms in the symptom pattern.

Procedure. Participants were told that they would be taking
part in a simulated medical judgment task. In the first part of the
experiment, they were told, they would be presented with a series
of 240 patients, each of whom had come to the medical clinic with a
body temperature greater than 100.5 degrees Fahrenheit and
subsequently was found (via a blood test) to have one of three
infiuenza strains (1, 2, or 3). They were instructed that their task
was to consider four symptoms (chills, cough, headache, and sore
throat) that could help them determine which of the three flu strains
a patient was suffering from. For each patient, they would be told
whether or not the patient had reported each of the four symptoms
and then would be asked to guess which of the three flu strains that
participant had. After entering their choice, they would be told
whether they were correct or not and which flu strain the patient in
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question actually had. In the beginning, they were told, they would
only be guessing, but as they saw more patients they should begin
to have some sense of which symptoms go with which flu strains.
Participants were. warned, however, that just as in real medical
practice, these observable symptoms were not petfect predictors
and that two patients with the exact same set of symptoms might
not always have the same flu strain. Thus they were told not to
expect to achieve perfect diagnostic accuracy even by the end of
training sequence. They were informed that, after diagnosing the
240 patients, they would be asked to make some judgments
regarding the relationship between the symptoms and the flu
strains.

After the training sequence, participants were presented with
symptom patterns (like those seen during training) and were asked
to judge the percentage of patients with that pattern they would
expect to have a designated fiu strain. They were instructed to give
numbers between 0% and 100%, where 100% indicated that they
expected every patient with that symptom pattern to have the
designated flu strain, and 0% indicated that they expected none of
the patients with that pattern to have the designated flu strain. They
were further told that they could think of their judgments as an
indication of how certain they would be that a patient with the listed
symptoms would have the designated flu strain. The instructions
noted that the designation of a target flu strain would be made
arbitrarily and hence should not be interpreted as a suggestion that
it was particularly likely to characterize the patient in question.

Results and Discussion

Learning data. 'While the focus of the present research
is on probability judgments made following learning, it is
important to establish that participants did in fact learn
something about the category structure during the training
phase. Assessment of the leaming data in terms of the
percentage of comrect choices over the 240 training trials
provides a convenient measure of accuracy and allows
identification of any participants who appeared to perform
substantially worse than the typical participant. There are, of
course, alternative measures of accuracy, but——given that the
focus here is on probability judgments fallowing leaming—
percent correct seems to offer a relatively straightforward,
simple measure that is sufficient for current purposes.

Average accuracy across the 240 training trials was 55%,
a propertion substantially greater than the 33% correct
expected if participants were simply guessing on each trial.
Individual participants varied considerably in their learning
performance; the best performance was 64% correct, and the
worst was 43% correct. All participants included in the
analysis achieved above-chance accuracy during the training
phase of the experiment.

To determine whether learning was at asymptote by the
end of the 240 training trials, average percent correct (over
participants) was computed for four consecutive 60-trial
blocks. On the first block, 39% of participants’ guesses were
correct. For the next three blocks, the corresponding figures
were 59%, 62%, and 58%, respectively. Apparently, partici-
pants’ performance was no longer improving after the first
60 or so training trials, at least as measured by percentage of
correct choices.

It is of interest to determine the theoretical maximum
percent correct that could be achieved in this task, to get a

sense of how well participants performed during learning.
This was assessed by computing for each symptom pattern
the most commonly asseciated flu strain in the training
sequence and then evaluating the level of accuracy that
could be achieved if that flu strain was offered as the guess
on each presentation of the symptom pattern in guestion.
Such a “maximizing strategy™ yields an accuracy level of
72% across the 240 trials, suggesting that participants’
performance on the last 180 trials was quite good but not at
ceiling.

Parern judgment data. Table 1 presents the mean
probability judgments assigned to each flu strain for the 16
possible symptom patterns, with present symptems denoted
in uppercase and absent symptoms in lowercase. As ex-
pected, these probability judgments were clearly subadi-
tive: The total probability T assigned to the three possible flu
strains exceeded 100%, with an average total of 120%.
Individually, only 2 of the 16 participants had average T
values less than 100%; their averages were very nearly
additive.

Participants’ probability judgments were clearly infln-
enced in the correct direction by the symptoms vsed as cues.
The casiest way to see this is to examine the patterns that
have only a single symptom present. For these patterns,
participants gave high probabilities to the implicated flu
strain {e.g., Flu Strain 1 was assigned a mean probability of
84% given pattern Abcd), To obtain a more complete
measure of the accuracy of the mean judgments, one of two
methods can be used to derive the “correct” probability
values. First, the conditional probabilities used to construct
the training sequence (i.e., the conditional probability of a
symptom given a flu strain) can be combined using Bayes’
rule to determine the expected value of a flu strain's
probability given a particular symptom pattern, Because the
training sequence was generated randomly and is of finite
length, however, the actuarial value of a flu strain’s relative

Table 1

Average Judged (Percent) Probability of Each Flu Strain
Jor the 16 Possible Symptom Patterns, Along With Their
Total T, in Experiment 1

Pattern Flu 1 Flu2 Flu3 Total T
ABCD 19 22 64 105
ABCd 32 47 52 131
ABcD 43 42 47 132
ABcd 48 70 12 130
ABCD 34 25 83 142
AbCd 60 18 52 130
AbcD 52 20 47 119
Abed 84 25 07 116
aBCD 13 45 73 131
aBCd 16 57 62 135
aBcD 14 60 46 120
aBed 12 90 07 109
abCD 18 12 85 115
abCd 12 08 85 105
abcD 12 08 73 93
abed 14 29 60 103
Note. Uppercase letters denote a symptom’s presence; lowercase

letters denote the symptom’s absence.
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frequency of occurrence in the training sequence, given 2
particular symptom pattern, may differ somewhat from the
expected value. In this and the subsequent experiments, the
correlation between judged probability and both of these
normative benchmarks will be reported, computed sepa-
rately for each participant. In Experiment 1, the mean
correlation between judged probability and the Bayesian
expected values is 0,71 (§D = 0.14, Mdn = 0.73), while the
mean correlation between judged probability and the actu-
arial values is 0.68 (SD = 0.13, Mdn = 0.70). This suggests
that participants’ judgments were fairly sensitive to the
probabilistic category structure.

Table 1 also indicates that the degree of subadditivity,
reflected by the total probability 7" assigned to the three flu
strains, varies considerably over the 16 patterns. Two factors
considered in the introduction, cue conflict and cue fre-
quency, were assessed for their ability to account for the
variance in 7 using multiple regression analysis. The number

Table 2

Results From Regression Analysis of Total Probability T
(in Percent) in Experiments 1-5, With Cue Conflict, Cue
Frequency, and Cue Redundancy (Experiments 3-5
Only) as Predictors

Experiment
and SE % individual

predictor B of B B B>0
Experiment 1

Conflict 751 274 0.18 81

Frequency 0.24 0.19 0.09 63
Experiment 2*

Conflict 11.88** 262 022 77

Frequency -021 016 —0.06 42
Experiment 3

Conflict B.46%* 1.80 0.17 83

Frequency 3.48 2.21 0.06 69

Redundancy 7.07%* 221 0.12 63
Experiment 4

Conflict 6.09%*  1.60 0.13 75

Frequency 1.86 1.94 0.03 58

Redundancg 139 1.95 0.02 54
Experiment 5

Conflict 1537+ 2.4 0.26 89

Frequency 1.48 2.74 0.02 63

Redundancy 6.94* 2.74 0.10 63

Note. Final column indicates proportion of participants for whom

B > 0 in individual-level regression analyses. Cue conflict is
represented by the number of flu strains implicated by symptoms
present in the symptom pattern. Cue frequency is represented
by the average symptom frequency in percent computed over
symptoms present in the pattem in Experiments 1-2 and by
the dummy-coded presence of Symptom D versus Symptom E
in Experiments 3-5. Cue redundancy is represented by the num-
ber of symptoms present in the pattern minus the number of
flu strains implicated by pattern. Effects of experimental varia-
bles were estmated simultaneously with a subject variable to
control for individual differences in general overestimation or
underestimation.

“Experiment 2 analysis is based on mean probability judgments for
each participant calculated over the last 180 training trials. *The
similarity-rating measure acting as the dependent variable in
Experiment 5 is multiplied by a factor of 10 for purposes of scale
comparability across experiments.

*p < .05, **p< 01

Table 3
Mean Value of T (in Percent) in Experiments 1-3 by Level
of Cue Conflict

Level of cue conflict*
Experiment 0 1 2 3
1 102 107 129 123
2b 114 117 130 139
3 132 135 148 153
4 116 127 135 132
5 127 135 156 167

] evel of cue conflict represents the number of flu strains impli-
cated by symptoms present in the symptom pattern. *Experiment
2 values are based on mean probability judgments for each
participant calculated over the last 180 training trials. °The
similarity-rating measure acting as the dependent variable in
Experiment 5 is multiplied by a factor of 10 for purposes of scale
comparability across experiments.

of flu strains implicated by present symptoms in the
symptom pattern is taken as an index of cue conflict, By this
measure, for example, the degree of cue conflict associated
with the symptom pattern ABcd is 2, because the presence of
Symptom A implicates Flu Strain 1 and the presence of
Symptom B implicates Flu Strain 2. The value of the cue
conflict variable ranges from 0 (for pattern abed) to 3 (e.g.,
pattern ABCd). The cue frequency factor was represented in
the analysis by the average relative frequency (over the
course of the training phase of the experiment) of the present
cues in the symptom pattern. So, for example, the cue
frequency value associated with symptom pattern ABcd,
given that the relative frequency of Symptoms A and B is
56% and 46% respectively, is 51%. The value of the cue
frequency variable ranges from 0% (for pattern abed, which
had no present symptoms) to 56% (e.g., pattern ABCd). The
dependent variable is the total probability T assigned by a
participant for a particular symptom pattern.

Table 2 presents the results of the regression analysis in
this and subsequent experiments reported in the article. In all
analyses, the main experimental independent variables were
entered simultaneously with a subject variable to control for
individual differences in general overestimation or underes-
timation. The regression model used for each experiment
includes only main effect terms for each independent
variable, as results across the five experiments generally
failed to show any significant advantage for more complex
models including cross-product (i.e., interaction) terms. (See
Experiment 5 for the one exception.)

Results of the regression analysis for Experiment 1
demonstrate a significant effect of cue conflict. Table 3 lists
the mean value of T by level of conflict in this and
subsequent experiments reported in this article. The table
indeed shows that T generally increased with level of cue
conflict, though the relationship is not completely mono-
tonic. The source of this nonmonotonicity is not clear, and it
reappears in only one of the four subsequent experiments,

Cue frequency did not have a comparable effect on the
value of 7. Recall that Symptom A was more frequent
overall than B in the training sequence, B was more frequent
than C, and so on. Symptom patterns with a higher
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frequency in the training sequence were anticipated to be
associated with greater subadditivity. Indeed, inspection of
only those patterns with a single present symptom (i.e.,
Abcd, aBed, abCd, abeD) reveals a trend in this direction:
The mean total probabilities for these four patterns are
116%, 109%, 105%, and 93%, respectively, showing that
subadditivity did tend to increase with cue frequency. A
more general effect of cue frequency across all the symptom
patterns, however, does not seem to emerge. In fact, the
overall effects of cue frequency appear to be fairly negligible
in this and subsequent experiments.

Summary. The total probability T assigned to the three
flu strains for a given symptom pattern, taken as a measure
of subadditivity, systematically exceeded 1, contrary to the
rules of probability theory but consistent with the predic-
tions of support theory. The value of T varied substantially
and systematically from one symptom pattern to the next.
Increased cue conflict (but not cue frequency) was associ-
ated with enhanced subadditivity: The greater the number of
flu strains implicated by symptoms present in the symptom
pattern, the greater the value of T. This result supports the
findings of prevmus research (Koehler et al., 1997; Peterson
& Pitz, 1988) using a much different task in which judg-
ments are based riot on general knowledge but rather on
knowledge acquired during the course of the experiment.

Experiment 2

The first experiment revealed substantial subadditivity in
probability judgments elicited following learning. It could
be argued, however, that had probability judgments been
elicited within the learning context, instead of after learning
had taken place, the general observation of subadditivity
might have been eliminated. Providing feedback immedi-
ately after each probability judgment, for example, might
draw participants’ attention to the fact that their judgments
are generally too high, consequently reducing or even
eliminating the subadditivity found in the post-learning
judgments. This possibility was tested in Experiment 2 by
asking participants to make a probability judgment on each
training trial, using a training sequence identical to that of
Experiment 1. As in the first experiment, the symptom
patterns upon which participants based their judgments
varied in terms of cue conflict and cue frequency, allowing
assessmrent of the influence of these factors on the total
probability T assigned to the three flu strains,

Method

Participants.  Participants were 34 prospective psychology
undergraduate majors at University College London, who partici-
pated as part of a laboratory demonstration. As elaborated below,
data from three of these participants were dropped as their leatning
performance was cnly marginally better than that expected by
chance, leaving a total of 31 participants.

Stimuii and appararus. The stimuli and the training sequence
used were identical to that of Experiment 1. The experiment was
conducted using IBM PC-compatible computers, which presented
the symptoms and judgments using essentially the same screen

layout as in the first experiment. One minor difference was that, in
addition to listing present symptoms in uppercase and absent
symptoms in lowercase, the present and absent symptoms were
also listed in different colors,

Design. Participants received the same training sequence as in
Experiment 1, but assigned a probability to a designated flu strain
on each trial rather than choosing which of the three ftu strains they
thought was most likely. The flu strain designated for evaluation on

each trial was varied between participants by assigning each
patticipant to one of three target groups. On any given trigl, the
three target groups each evaluated one of the three possible fiu
strains so that, across groups, judgments were obiained of the
probability of each flu strain on every trial. Which flu strain was
designated for a g:ven target group was determined randomly such
that participants in each group were assigned each flu strain with
approximately equal frequencies across the training sequence., As
in the first experiment, the assignment of symptom names to the
abstract category structure and the on-screen presentation order of
the symptoms were counterbalanced across participants.

Because participants made probability judgments on every trial
of Experiment 2, they were not asked te give a final set pattern
judgments at the end of the training sequence as was done in the
first experiment. Instead, a comparable set of ‘‘pattern judgments”’
was compuied by aggregating the probability judgments made over
the last 180 training trials for each combination of symptom pattern
and designated flu strain.- As in the previous experiment, the
resulting set of pattern judgments can be used to investigate the
influernce of cue conflict and cue frequency. Indeed, the cue conflict
and cue frequency values associated with each symptom pattern are
identical to that of Experiment 1, because both experiments shared
a common training sequence.

Procedure. Instructions regarding the general nature of the
medical judgment task were similar to those given for Experiment
1. The major difference is that, in this experiment, participants were
instructed to give a probability judgment on every training trial. It
was explained that one of the three flu strains would be selected
arbitrarily on each trial as the designated outcome for judgment.
Because the probabitity judgments were obtained during learning
as individual patients were presented for assessment, the judgments
were given a probabilistic interpretation (i.e., the probability that
the patient in question has the designated flu strain) rather than a
frequentistic interpretation as was given for the judgments obtained
following learning in Experiment 1.

Becanse each participant would have to give 240 probability
judgments during the training sequence, a probability jadgment
scale was provided to allow participants to make their judgments
more quickly and eastiy So, instead of typing in a number from 0 to
100 on the keyboard as in Experiment 1, participants in Experiment
2 were provided with a scale romning from 0% to 100% in
increments of 10%. This scale appeared on the screen with a square
drawn around the 0% value. Participants moved the square up and
down the scale using the left- and right-arrow keys on the
keyboard, and pressed enter when the box was on the probability
value they wanted. Note that any anchoring effect resulting from
this elicitation process would be expected to introduce a bias
toward T < 1, contrary to the predictions of support theory.

Resulits and Discussion

Learning performance. Individual learning perfor-
mance is examined first. In contrast to Experiment 1, in
which there was a simple measure of learning (i.e., percent
correct), in this second experiment a more complicated
analysis is necessary because participants judged the prob-
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ability of a designated flu strain rather than chose the flu
strain they thought was most likely. Perhaps the simplest
measure is what might be called a probabilistic hit rate. If
the designated event (flu strain) being judged by the
participant actually occurs, then the participant receives a
score of p for that trial, where p is the judged probability of
the event. If the designated event does not occur, then the
participant receives a score of 1 — p for that trial. The total
score over the full set of learning trials has & maximum of
240, which is achieved only if the participant performs
perfectly, that is, assigns a probability of 1 to each event that
subsequently occurs and a probability of 0 to each event that
subsequently does not occur, Dividing this measure by 240
yields a measure akin to the percent correct measure of
Experiment 1.

This measure has the drawback that its value given chance
performance (i.e., in the absence of any learning) depends on
the participant’s response distribution, that is, the frequency
with which the participant uses each of the 11 probability
categories. To adjust for this, a corrected performance score
was computed for each participant by first calculating the
expected probabilistic hit-rate associated with chance perfor-
mance given that participant’s response distribution and then
subtracting the resulting value from the participant’s actual
score to obtain a measure of performance above chance. It
can be shown that this corrected performance measure is
equivalent to an analogously corrected squared error or Brier
score measure (Brier, 1950).

All participants performed better than would be expected
by chance guessing—that is, all had positive corrected
performance measures. For 3 of the 34 participants, how-
ever, performance was only marginally better than chance.
These participants (one from each of the 3 target groups)
were clear outliers, with corrected performance measures
that were more than 1.8 standard deviations below the mean
of the rest of the group, and thus were dropped from
subsequent analysis. For the remaining 31 participants, the
mean corrected performance value was 26.3, corresponding
to an average probabilistic hit rate of 63.6%. The best-
performing participant had a corrected performance value of
54.0, the worst a value of 12.5.

As in the previous experiment, mean learning perfor-
mance was examined for the four sequential sets of 60-trial
blocks. The mean corrected performance value (computed
separately for each participant and then averaged) was 0.8,
8.3, 8.7, and 8.6 for Blocks 1, 2, 3, and 4, respectively. This
analysis suggests that, as in the first experiment, learning
was at or near asymptote after the first 60 trials or so. A
simple percent correct measure comparable to that of
Experiment 1 was computed at the group level by selecting
as the ‘“‘chosen” flu strain on each trial that flu strain
receiving the highest mean probability judgment and then
computing the percentage of trials on which the flu strain so
chosen was correct. For Trial Blocks 1 to 4, the percent
correct classifications using this measure was 37%, 71%,
67%, and 65%, respectively. These values are comparable to
the corresponding figures for Experiment 1 and reinforce the
conclusion that learning was at asymptote after approxi-
mately 60 trials. ‘

Pattern judgments. In contrast to Experiment 1, in
which a final set of pattern judgments was elicited after
learning, in Experiment 2 the pattern judgments were
obtained during the training sequence itself. As the above
analysis suggests that learning was at or near asymptote by
Trial 60, the pattern judgments were obtained by averaging
over trials 61-240. Table 4 lists the mean judgment assigned
to each flu strain, and their total, for each of the 16 possible
symptom patterns. Note that seme patterns occurred more
frequently than others during the training sequence, as
determined by the probabilistic category structure, As a
result, the mean judgments are based on different numbers of
observations for the different patterns.

As in the previous experiment, participants’ judgments
corresponded quite closely to the normative values. The
single-symptom patterns, for example, yielded high probabili-
ties for the associated flu strains and low probabilities for the
others. The mean correlation between judged probability
and the Bayesian expected values is 0.61 (SD = (.15,
Mdn = 0.67), while the mean correlation between judged

"probability and the actuarial values is 0.58 (SD ='0.15,

Mdn = 0.63). These values are somewhat lower than those
obtained in the first experiment. The correlation between the
set of mean pattern judgments obtained in Experiments 1
and 2 is 0.95.

More importantly for present purposes, the probability
judgments were subadditive for all 16 symptom patterns, as
can be seen in Table 4. The (unweighted) mean total
probability T assigned to the three possible flu strains is
124%, which is slightly greater than the comparable value of
120% for the pattern judgments of Experiment }. Partici-
pants’ judgments were consistently subadditive, then, even
when feedback immediately followed every probability
judgment, and even though the probability scale started with

Table 4 :
Average Judged (Percent) Probability of Each Flu Strain
for the 16 Possible Symptom Patterns, Along With Their
Total T, Computed Over the Last 180 Learning Trials

of Experiment 2

Pattern Flu 1 Flu2 Flu3 Total T n
ABCD 34 29 41 104 1
ABCd 38 52 52 143 8
ABcD 38 44 50 132 4
ABcd 57 56 17 130 27
AbCD 39 24 75 138 6
AbCd 62 24 47 133 16
AbcD 35 31 44 130 10
Abcd 82 18 11 111 32
aBCD 19 31 70 120 4
aBCd 16 60 56 132 9
aBeD 12 63 52 127 2
aBed 17 79 18 114 24
abCD 21 29 77 128 7
abCd 18 24 73 116 14
abcD 20 29 72 120 8
abed 18 23 66 112 8
Note. Uppercase letters denote a symptom’s presence; lowercase

letters denote the symptom’s absence. The number of times the
pattern appeared in the 180 learning trials is designated by 7.
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an anchor of 0%. Indeed, comparison with the pattemn
judgments of Experiment 1 suggests that the change in
experimental procedure did nothing at all to reduce the
degree of subadditivity in the pattern judgments,

Given the observation of general subadditivity, the roles
of cue conflict and cue frequency can be examined (see
Table 2). As in the previous experiment, cue conflict had a
significant effect, such that T increased with level of conflict
(see Table 3 for means). Once again, cue frequency had no
significant effect on 7.

Summary. Probability judgments elicited during the
training phase in Experiment 2 exhibited the same general
pattern as probability judgments elicited following the
training phase in Experiment 1. These judgments were
systematically subadditive, as indicated by T > 1, with the
degree of observed subadditivity increasing with cue con-
flict. Once again, cue frequency had no significant effect on
the value of 7.

Experiment 3

A third experiment was conducted to assess the generaliz-
ability of the effects of cue conflict and cue frequency, by
using a different category structure than that used in the first
two experiments. The new category structure introduced a
fifth symptom, effectively doubling the number of distinct
symptom patterns and thus providing a larger sample of
judgments for testing effects of the experimental variables.

The new category structure was also intended to com-
pletely separate testing of the effects of cue conflict and cue
frequency. In the resulting design, cue conflict can be tested
using cues that are equated in terms of frequency, and cue
frequency can be tested using cues that are completely
nondiagnostic with respect to the outcome variable. Cue
frequency was varied over a wider range than in the previous
experiments, providing a stronger test of the hypothesis that
subadditivity increases with cue frequency. In addition, the
new design allows investigation of a third factor, cue
redundancy, that might also influence the degree of subaddi-
tivity associated with a particular symptom pattern.

Finally, the third experiment also eliminated a potential
problem with the first two experiments, namely that all
participants received an identical training sequence. To
ensure that the results of Experiments 1 and 2 are not in
some way an idiosyncratic result of the particular training
sequence provided to all participants (see Lewandowsky,
1995), in this experiment a different randomly ordered
training sequence was created for each participant in the
experiment,

Method

Participants. Participants were 16 undergraduates at the Uni-
versity of Waterloo, who participated in exchange for credit in their
introductory psychology course. Data from two additional partici-
pants were dropped: one whose leaming performance was not
greater than that expected by chince, and one who reported to the
experimenter that she had failed:to complete the judgment task as
instructed.

Stimuli and apparatus. The experiment was conducted using
IBM PC-compatible computers, which presented the symptoms
using the same screen layout as in Experiment 2. The only change
was that participants made a choice decision (as in Experiment 1)
by moving a box to select the flu strain they diagnosed and pressing
the return key, rather than a probability judgment (as in Experiment
2) on each of the training trials.

Design. The major difference from the first two experiments is
that a new category structure was introduced. Participants were
presented with information regarding five symptoms, rather than
four as in the previous experiments. The training sequence again
consisted of 240 trials. This sequence was constructed by first
randomly choosing one. of the three flu strains (with equal
probabilities) and then choosing the five symptoms (independently)
with the appropriate probabilities for that fiu strain.

Symptoms A, B, and C were equally diagnostic and were
associated with Flu Strains 1, 2, and 3, respectively. The likelihood
of the presence of the symptom associated with a flu strain (e.g., of
Symptom A given Flu Strain 1) increased to 75% in the presence of
that fiu'strain and decreased to 25% in its absence. Consequently,
the conditional probability of a fiu strain given the preseiice of its
associated symptom (e.g., of Flu Strain 1 given Symptom A) was
60%, with the remaining two flu strains having a probability of
20% each. Given the absence of a symptom, by contrast, the
conditional probability of its associated flu strain dropped to 14%,
while the probability of the two alternative flu strains increased to
43% each. Because each symptom implicates a different fiu strain,
Symptoms A-C provide the basis for testing the influence of level
of cue conflict, defined as the number of these symptoms present in
the symptom pattern. ‘

Symptoms D and E were nondiagnostic and differed only in
terms of their overall frequency of occurrence in the training
sequence. Regardless of the patient’s flu strain, Symptom D was
present with a probability of 75%, while Symptom E was present
with a probability of 25%. Note that this represents a greater
difference in cue frequency than that investigated in the first two
experiments, aliowing a stronger test of cue frequency’s influence
on judged probability. An effect of cue frequency would be
demonstrated in this design if those symptom patterns including D
but not E were associated with greater subadditivity than those
symptom patterns including E but not D.

Because they are nondiagnostic, Symptoms D and E also provide
a basis for testing the effect of cue redundancy, that is, the influence
of the mere presence of symptoms independent of any diagnostic
value they might possess. If cue redundancy is associated with
enhanced subadditivity, then symptom patterns in which both D
and E are present would be expected to yield greater subadditivity
than symptom patterns in which both D and E are absent, with
symiptom patterns in which only one of the two symptoms are
present expected to fall in between.

A set of 240 patient cases was constructed using these probabili-
ties such that the relative frequencies of the symptoms given each
of the flu strains was achieved exactly over the training sequence.
The order in which the 240 patients were presented in the tmining
sequence was determined randomlty for each participant. The actual
symptom (e.g., cough) assigned to the five abstract Sympioms A-E
was once again counterbalanced over participants, as was the
position of the five symptoms in the computer display.

The introduction of a fifth symptom (dizziness) increased the
number of pattern judgments to 96, the order of which was
determined randomly for each participant. Participants made their
Judgmenrs-——whlch were given a probabilistic inwrpwmuoﬂ—
using a probability judgment scale running from 0% to t00% in
increments of 10% as in the previous experiment.
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Procedure. The general procedure and the instructions given to
participants were essentially identical to those of Experiment 1.
The only procedural difference is that participants entered their
chaices and probability judgments into the computes, as in Experiment
2, by moving a box via the arrow keys on the keyboard until their
desired response was selected and pressing the return key.

Results and Discussion

Leaming performance. Over participants, average accu-
racy across the 240 training trials was 47%. The most
accurate participant achieved 56% correct, and the least
accurate achieved 42% correct. Generally speaking, partici-
pants ‘were less accurate in the training phase of this
experiment than they were in the previous two. Such a result
would be expected given the changes in the category
structure introduced in this experiment: Participants had to
consider five symptoms (rather than four as in the previous
experiments), only three of which were diagnostic. All
participants included in the sample achieved significantly
above-chance accuracy.

The theoretical maximum percent cerrect that could be
achieved in this task was assessed in terms of the accuracy
achieved by a maximizing strategy, as was done in Experi-
ment 1. This strategy yielded an accuracy level of 67.5%
across the 240 trials. This analysis suggests—consistent
with the learning performance results above—that the
participants’ task was somewhat more difficult than in the
previous experiments (for which the maximizing strategy
yielded an accuracy levet of 72%).

Improvement over trials was relatively modest compared
to the previous experiments. Once again, average percent
correct (over participants) was computed for four consecu-
tive 69-trial blocks. On the first block, 45% of participants’
guesses were correct. For the next three blocks the corre-
sponding figures were 44%, 49%, and 50%, respectively,
Participants’ performance showed little sign of improvement
in the second half of the training sequence, suggesting that
by the end of the training phase participants had learned all
they could about the probabilistic category structure.

Pattern judgment data. Table 5 presents the mean
probability judgments assigned to each flu strain for the 32
possible symptom patterns. Consistent with the predictions
of support theory, these probability judgments were clearly
subadditive: The total probability T assigned to the three
possible flu strains consistently exceeded 100%, with an
average total of 142%. Individually, only one of the sixteen
participants had an average total (M = 97%) of less than
100%. The degree of subadditivity observed for these
judgments appears to be considerably greater than that of the
previous experiments, as might be expected if the inclusion
of an additional symptom induced a greater sense of conflict
or uncertainty.

Once again, participants’ probability judgments were
generally in accord with information encountered in the
training sequence. Thus, for patterns that have only a singie
symptom present, participants gave high probabilities to the
appropriate flu strain (e.g., Flu Strain 1 was assigned a mean
probability of 74% given the pattern Abcde). The mean
correlation between judged probability and the Bayesian

expected values is 0.44 (SD = 0.17, Mdn = 0.42), while the
mean correlation between judged probability and the actu-
arial values is 0,38 (SD = (.12, Mdn = 0.35).

As in the previous two experiments, cue frequency and
cue conflict were tested as predictors of the total probability
T assigned for a particular symptom pattern. The new
category structure allows a stronger test of cue frequency by
a direct contrast between symptom patterns that include the
more frequent Symptom D but not the less frequent Symp-
tom E (coded +1) and symptom patterns that include the
less frequent Symptom E but not the more frequent Symp-
tom D (coded —1), with the remaining symptom patterns
coded 0.

The new category structure also allows testing of an
additional factor, referred to as cue redundancy. This factor
reflects the effect of the presence of additional present
symptoms, holding constant the number of fiu strains
implicated by the symptom pattern. As an illustration,
consider the symptom patterns AbCde, AbCDe, and Ab-
CDE. All three have the same cue conflict value (2), because
in all three the present symptoms A and C taken together
implicate two flu strains (1 and 3, respectively). The three
patterns vary, however, in the total number of present

Table 5

Average Judged (Percent) Probability of Each Flu Strain
for the 32 Possible Symptom Patterns, Along With Their
Total T, for Experiment 3

Pattern Flu 1 Flu2 Flu3 Total T
ABCDE 38 54 53 145
ABCDe 50 56 64 170
ABCdE 39 57 49 145
ABCde 44 49 59 152
ABcDE 52 61 42 155
ABcDe S8 61 29 148
ABcdE 55 55 £ 144
ABcde 61 44 28 133
AbCDE 54 42 60 156
AbCDe 50 41 62 153
AbCdE 53 41 49 143
AbCde 42 39 56 137
AbcDE 63 44 a5 142
AbcDe 78 29 21 128
AbedE 56 39 28 123
Abcde 74 15 11 120
aBCDE 36 60 75 171
aBCDe 23 54 74 151
aBCdE 29 49 68 146
aBCde 18 44 71 133
aBcDE 39 68 39 146
aBcDe 46 71 35 152
aBedE 39 61 36 136
aBcde 3 66 31 128
abCDE 26 38 70 134
abCDe 27 38 81 146
abCdE 28 45 74 147
abCde 9 2 77 118
abcDE 4 49 40 133
abcDe 45 51 26 122
abcdE 39 41 47 127
abede 59 21 66 146
Note. Uppercase letters denote a symptom’s presence; lowercase

letters denote the symptom’s absence.
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symptoms they include (by virtue of the presence or absence
of the nondiagnostic Symptoms D and E). To test whether
this factor also contributes to the total probability T, a cue
redundancy variable was added to the regression analyses,
defined as the total number of present symptoms in the
symptom pattern minus the number of implicated flu strains
(i.e., total present symptoms — cue conflict index). In the
present experimental design, cue conflict, cue frequency,
and cue redundancy are completely uncorrelated variables.
Table 2 shows the results of this analysis.

Once again, the total probability T increased significantly
with the degree of cue conflict (see Table 3 for means). Cue
redundancy was also positively associated with the total
probability. That is, the additional presence of Symptoms D
or E in the symptom pattern generally increased T. Table 6
lists the mean value of T by level of cue redundancy in this
and subsequent experiments reported in this article. As in the
previous experiments, cue frequency had no significant
effect.

Summary. Using a new category structure invalving five
symptoms, probability judgments based on symptom pat-
terns exhibited an even greater degree of subadditivity than
that observed in the first two experiments. Both cue conflict
and cue redundancy were found to influence the degree of
subadditivity associated with a particular symptom pattern:
The greater the number of flu strains implicated by symp-
toms present in the symptom pattern, and the greater the
total number of present symptoms, the greater was the value
of T. Despite being varied over a greater range of values, cue
frequency failed to have any substantial influence.

Experiment 4

Psychologically, judgments of probability and of fre-
gquency can evoke different responses, even under conditions
in which standard normative analyses would regard them as
equivalent (Gigerenzer & Hoffrage, 1995; Gigerenzer, Hof-
frage, & Kleinbolting, 1991; Griffin & Buehler, 1999;
Griffin & Tversky, 1992; Kahneman & Tversky, 1979, 1932;
Reeves & Lockhart, 1993; Teigen, 1974b). In particular, it
has been noted that a frequentistic formulation often pro-
duces more extensional judgments, that is, judgments that
are more consistent with rules of set inclusion. Tversky and
Kahneman (1983), for example, found that participants were

Table 6
Mean Value of T (in Percent) in Experiments 3-5 by Level
of Cue Redundancy

Level of cue redundancy*
Experiment ] 1 2
3 134 143 148
4 128 129 131
5k 139 146 153

sLevel of cue redundancy represents the total number of present
symptoms in the symptom pattern minus the number of implicated
flu strains. PThe similarity-rating measure acting as the dependent
variable in Experiment 5 is multiplied by a factor of 10 for purposes
of scale comparability across experiments.

less likely to make conjunction errors (i.e., estimating the
likelihood of a conjunction of events to be greater than one
of the constituent events of the conjunction) when the
judgment was requested in the form of a relative frequency
rather than a probability.

A natural question, then, is whether judgments of fre-
quency (or relative frequency) will exhibit subadditivity as
described by support theory. Tversky and Koehler (1994,
also Koehler et al., 1997; <f. Teigen, 1974b) observed that,
like probability judgments, relative frequency judgments do
exhibit subadditivity. Rottenstreich and Tversky (1997)
further demonstrated that judgments of absolute frequency
as well as relative frequency are also systematically subaddi-
tive, Consistent with the results reported by Tversky and
Kahneman (1983), however, the degree of subadditivity
observed in judgments of frequency and relative frequency
does appear to be less pronounced than that found in
probability judgments (Teigen, 1974b; Tversky & Koehler,
1694). Tversky and Koehler suggest that a frequentistic
formulation prompts the judge consider a broader range of
specific alternatives to the focal hypothesis, thus “unpack-
ing" the implicit disjunction to a greater extent than is the
case in judgments of probability. Under this interpretation,
support theory predicts that the subadditivity associated with
probability judgments should be more pronounced than that
associated with comparable frequency judgments.

Recently, a number of researchers (Brase, Cosmides, &
Tooby, 1998; Cosmides & Tooby, 1996; Gigerenzer et al.,
1991; Gigerenzer & Hoffrage, 1995) have interpreted the
observation that a frequentistic formulation induces more
extensional or otherwise normatively. appropriate judgments
as evidence that the mind has been designed by natural
selection to process frequencies rather than probabilities.
Gigerenzer and Hoffrage (1995), for example, refer to a
modular “cognitive algorithm” in the mind designed for the
processing of  frequencies: “We assume that as humans
evolved, the ‘natural’ format was frequencies as actually
experienced in a series of events, rather than probabilities or
percentages” (p. 686). They conclude from their studies that
“frequency formats made many participants’ inferences
strictly conform (in terms of outcome and process) to Bayes’
theorem without any teaching or instruction™ (p. 698). Very
similar conclusions were reached by Cosmides and Tooby
(1996), who offer an even more explicit ecvolutionary
interpretation, arguing that humans “‘evolved mechanisims
that took frequencies as input, maintained such information
as frequentistic representations, and used these frequen-
tistic representations as a database for effective inductive
reasoning” (p. 17).

Gigerenzer and Hoffrage (1995, p. 698) noted that their
findings may not generalize to more complex problems
involving multiple evidential cues and hypotheses, where
the Bayesian solution can require highly complicated calcu-
lations. Thus, it is an open question whether the systematic
subadditive bias observed in the present studies will be
reduced or eliminated when the requested judgment is given
a frequentistic formulation. While Experiment 1 did provide
a frequentistic interpretation for the requested judgments,
participants were also provided with an alternative probabi-
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listic interpretation and the judgment was made in the form
of a relative frequency (in percent). A stronger test requires
elicitation of absolute frequency judgments. This is particu-
larly important given that the cognitive algorithm for
processing frequency information described by Gigerenzer
and Hoffrage (1995, pp. 688-689) is claimed to apply only
to absolute frequency, and not relative frequency. To this
end, Experiment 4 was conducted in a manner identical to
Experiment 3 in all respects except that judgments of
absolute frequency rather than probability were elicited.
This design provides a test of the general observation of
subadditivity, as indicated by T > 1, and also tests of the
same experimental variables examined in the previous
experiment, namely cue conflict, cue frequency, and cue
redundancy.

There are actually two aspects to the argument that the
mind has a cognitive algorithm designed for processing
frequencies. The first, as emphasized above, focuses on the
module’s output: Elicitation of frequency judgments is
predicted to produce better judgments than elicitation of
probability judgments. The second aspect concems input:
Such an algorithm should be particularly useful in the
analysis of evidence acquired in the form of a series of
discrete cases or events. As Cosmides and Tooby (1996) put
it, “our hominid ancestors were immersed in a rich flow of
observable frequencies that could be used to improve
deciston-making, given procedures that could take advan-
tage of them. So if we have adaptations for inductive
reasoning, they should take frequency information as input”
(p. 16; see also Brase et al., 1998, pp. 5-6). Kleiter (1994)
has pointed out the potential computational advantages of
acquiring and representing such information in the form of
frequency counts, under a scheme he refers to as narural
sampling.

For optimal judgment, then, according o this account,
any information provided to participants as a basis for
judgment should be presented in the form of a set of single
cases, for which running frequency counts can be estab-
lished. The present experiments employ precisely this kind
of design. By modifying the experimental design so that
absolute frequency judgments are elicited, on this account,
conditions should be optimal for obtaining judgments that
are free from any systematic bias. Experiment 4, then,
provides a strong test of the hypothesis that there exists a
mental module which, given frequentistic information as
input, will produce unbiased frequentistic assessments as
output in multicue judgment. Support theory, by contrast,
implies that such judgments will still exhibit systematic
subadditivity, though—as elaborated above—such subaddi-
tivity would be expected to be less pronounced than that
found in the probability judgments of Experiment 3.

Method

Participants. Participants were 24 undergraduates at the Uni-
versity of Waterloo, who participated in exchange for credit in their
introductory psychology course. Data from 8 additional partici-
pants were dropped whose learning performance was not signifi-
cantly greater than that expected by chance guessing.

Stimult and apparatus. 'The experiment was conducted using
IBM PC-compatible computers, which presented the symptoms
using the same screen layout as in Experiments 2 and 3. Training
trials proceeded as in Experiment 3, and the screen layont for
subsequent judgments was virtually identical as well except for
minor changes, as described below, required for the change in
judgment format.

Design. The same set of 240 patient cases was used as in
Experiment 3. The order in which the 240 patients were presented
in the training sequence was determined randomly for each
participant. The actual symptom (e.g., cough) assigned to the five
abstract Symptoms A-E was again counterbalanced over partici-
pants, as was the position of the five symptoms in the display.

As in Experiment 3, there were 32 symptom patterns, which
when crossed with the three flu strains, produced a full set of 96
possible pattern judgments. Once again, the full set was elicited
from each subject in a randomized order. The level of cue conflict,
cue frequency, and cue redundancy varied across the 32 symptom
patterns exactly as in the previons experiment, thus allowing
analogous tests of the effects of these variables on the degree of
subadditivity associated with each symptom pattern.

When given a frequentistic formulation, each pattern judgment
has two components: the estimated frequency of patients with the
designated symptom pattern, f(pattern), and the estimated fre-
quency of such patients who have the designated flu strain,
f(pattem & flu strain). On each of the 96 judgment trials, the
Jf(pattern) estimate and the f(pattern & flu strain) estimate were
elicited sequentially. For each symptom pattern, this design yields
three f{pattern & fiu strain) estimates paired with three f(pattern)
estimates; the three f(pattern) estimates associated with a given
symptom pattern would be expected to differ only due to unre-
liability of the estimates. Dividing f(pattern & flu strain) by its
paired f(pattern) value produces a measure comparable to the
pattern judgments, p(flu strain|pattern), elicited in the previous
experiments.

Procedure. Instructions and procedure for the 240 training
trials were identical to that of Experiment 3: Participants made a
diagnosis choice on each trial, followed by outcome feedback.

On each of the 96 judgment trials, participants first estimated
JS(pattern) and then were presented with a designated flu strain and
asked to estimate f(pattern & flu strain). Participants were in-
structed as follows:

In the first part of the experiment, you encountered a total of
240 patients in the process of learning which symptoms tend
to go with which fiu strains. In the next part of the experiment,
you will be asked to estimate the number of patients you
encountered out of the total 240 who had a certain pattern of
symptoms. That is, you will be presented with a set of
symptoms and asked to estimate the number of patients in the
original group of 240 you saw who had that EXACT set of
symptoms.

The symptom pattern appeared at the top of the screen, and
participants were prompted, “Of the 240 patients you encountered
in Part 1 of the study, please estimate the number of patients with
the exact set of symptoms above.” Participants entered their
estimates using the numbers on the keyboard.

After entering their f(pattern) estimate, a flu strain was desig-
nated and participants were asked to estimate f(pattern & flu
strain), Instructions regarding these estimates were as follows:

Following your estimate of the TOTAL number of patients
with the listed set of sympioms, you will then be asked to
estimate the number of such patients you encountered who
had a designated flu strain. That is, you will be asked to
estimate the number of patients you encountered in Part 1 of
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the study who had the exact set of symptoms listed AND who
had the designated flu strain, The top part of the display will
list the symptom pattern (set of symptoms). Your estimate of
the total number of patients you encountered with that exact
set of symptoms will be provided. Your task is to estimate, out
of the estimated total number of patients with that exact set of
symptoms, how many had the designated flu strain.

As in the previous experiments, participanis were informed that the
target flu strain would be selected arbitrarly on each trial and
should not be treated as a suggestion that the flu strain in question is
particularly likely (or unlikely)} given the symptom pattern in
question. For each f(pattern & flu strain) estimate, subjects were
reminded of their f(pattern) estimate (.g., “You estimated that the
number of patients encountered in the first part of the study with
this exact set of symptoms was 10"") and ther were asked for their
S(pattern & fiu strain) estimate (e.g., “How many of the 10 patients
with this set of symptoms bad Flu Strain 27 __ out of the 10 patients
with this set of symptoms™). Participants” estimates were con-
strained to be between 0 and their f(pattern) estimate; if they
entered a value outside this range, they were reminded of this
constraint and asked to enter a revised value,

The dual task of estimating f(pattern) and f(pattern & flu strain)
was summarized as follows in the instructions using an example
estimate:

So you will have two tasks on each trial. First, estimate the
number of patients you encountered in the first part of the
experiment with the set of symptoms listed. Suppose, for
example, that your estimate is that you had encountered 20
patients with the particular set of symptoms listed. Second,
you will be asked how many of those 20 patients had a
designated flu strain (for example, Flu Strain 2). Obviously,
your estimate should be less than or equal to the total number
of patients you estimated to have the listed set of symptoms
(inztlh)is example, your estimate should be less than or equal
to 20).

The order in which the 96 pairs of estimates were made was
randomized for each subject.

Results and Discussion

Learning performance. Over participants, average accu-
racy across the 240 training trials was 50% (SD = 6.2%).
The most accurate participant achieved 63% correct, and the
least accurate achieved 38% correct. All participants in-
cluded in the sample achieved significantly above-chance
accuracy. Note, however, that a somewhat larger proportion
of the original participants (n = 8 out of the original sample
of 32) were dropped from the sample due to failure to
achieve significantly above-chance accuracy. There seemed
to be more variance in learning performance in this study
than was found in Bxperiment 3; the reason for this is not
clear given that the experimental procedure was identical in
both studies through the training phase.

Once again, average percent correct (over participants)
was computed for four consecutive 60-trial blocks. On the
first block, 45% of participants’ guesses were correct. For
the next.three biocks, the corresponding figures were 50%,
52%, and 54%, respectively.

Pattern judgment date. For purposes of comparability
to the results of Experiment 3, the “judged” probability of
the designated flu strain given a particular symptom pattern
was derived by dividing the value f(pattern & flu strain) by

the paired value f(pattern) obtained on each pattern judg-
ment trial. One minor complication in this procedure arises
in the rare case in which the participant gives an f(pattesn)
estimate of zero, in which case the probability calculation is
undefined. There were only 47 such cases out of a total of
2,304 judgments, representing about 2% of the data. For
purposes of analysis below, these judgments were coded as
missing values.

Table 7 presents the mean derived probability judgments
assigned to each flu strain for the 32 possible symptom
patterns. Consistent with the predictions of support theory,
the judgments were clearly subadditive: The total derived
probability T assigned to the three possible flu strains
consistently exceeded 100%, with an average total of 129%
(participant SD = 18.7%). (Recoding undefined values aris-
ing from fipattern] = 0 estimates by setting them to zero,
instead of treating them as missing data, has a negligible
effect on the total average probability, resulting in a mean of
126%.) Individually, every participant in the sample had an
average value of T greater than 100%; the lowest value was
101% and the highest was 167%, with a median value of
127.5%. The observation of total probabilities greater than
100% in this experiment does not appear to be an artifact of

Table 7

Average Derived Probability Assigned Each Flu Strain for
the 32 Possible Symptom Patterns, Along With Their Total
T, for Experiment 4

Pattern Flu1 Flu2 Flu 3 Total T
ABCDE 26 33 52 111
ABCDe 41 52 46 139
ABCdE 46 43 47 136
ABCde 44 42 52 138
ABcDE 48 65 22 135
ABcDe 56 61 22 139
ABcdE 49 65 23 137
ABcde 56 54 19 129
AbCDE 60 42 51 153
AbCDe 48 26 65 139
ALCdE 51 25 57 133
AbCde 47 18 62 127
AbcDE 70 40 20 130
AbcDe 64 33 30 127
AbcdE 73 27 15 115
Abcde 80 26 15 121
aBCDE 26 56 50 132
aBCDe 12 54 69 135
aBCdE 23 50 54 127
aBCde 20 43 70 133
aBcDE 33 71 28 132
aBcDe 26 20 20 126
aBedE 31 69 22 122
aBcde 29 87 28 144
abCDE 25 31 75 131
abCDe 15 27 79 121
abCdE 27 27 75 129
abCde 17 18 86 121
abcDE 43 43 33 119
abcDe 42 47 31 120
abedE 45 33 42 120
abcde 40 23 42 105
Note. Uppercase letters denote a symptom’s presence; lowercase

letters denote the symptom’s absence.
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range restriction on the judgment scale imposed by small
f(pattern) estimates: If only judgments for which f(pat-
tern) > 10 are examined, the average total -probability
(M = 132%) is, if anything, slightly higher.

Elicitation of judgments of absolute frequency, then, is
not sufficient to eliminate the systematic subadditivity
observed in previous experiments. Instead, consistent with
the predictions of support theory on the assumption that a
frequentistic formulation invokes greater spontancous un-
packing than does a probabilistic formulation (see Tversky
& Koehler, 1994, pp. 550-552), frequency judgments ex-
hibit subadditivity that is substantial but less pronounced
than that found in judgments of probability. Indeed, while
the mean total probability of 129% observed in this experi-
ment is significantly greater than 100%, 1(23) = 7.65,p <
001, it is also significantly lower than the mean total

probability of 142% observed in Experiment 3 by a one-.

tailed test, #(38) = 1.84, p < .05. Thus, a frequentistic
formulation reduces but does not eliminate the systematic
subadditivity observed in the previous experiments.

As was the case with the probability judgments in the
previous experiments, participants’ frequency judgments
were quite sensitive to the probabilistic category structure.
The correlation between the estimated probability values
(derived from the frequency judgments) and the Bayesian
expected values is 0.54 (SD = 0.17, Mdn = 0.57). This
correlation is marginally greater than the corresponding
correlation found between the pattern judgments of Experi-
ment 3 and the same expected values, 1(38) = 1.73, p < .10,
suggesting that the frequentistic formulation of the judg-
ments in Experiment 4 led to somewhat improved accuracy
in the correlational sense. The correlation between the
estimated probability judgments and the actuarial values is
0.44 (SD = 0.14, Mdn = 0.47). This value is also greater
than that found in Experiment 3, though the difference is not
statistically significant, 1(38) = 1.45. The correlation be-
tween the set of mean pattern judgments in Experiment 4
and those from Experiment 3 is 0.87.

Subadditivity in this experiment can be measured by the
total probability assigned to the three fiu strains, as above;
alternatively, it can be assessed by direct examination of the
frequency judgments themselves. Support theory implies
that increasingly refined partitions of a sample space will
produce increasing subadditivity. In this case, such subaddi-
tivity can be assessed by the total frequency count assigned
across the partition. Normatively, given the training set of
240 patients, any partition of that set of patients should
produce a total frequency count of 240, regardless of the
particular partition that is employed. The data do not exhibit
such a pattern. Instead, consistent with support theory,
greater total frequencies are associated with finer partitions.
When participants are asked to assess the frequencies of
occurrence of the 32 possible symptom patterns in the
training sequence, the total mean frequency count assigned
across this partition is 465, almost twice the normative value
of 240. When participants are asked to assign frequencies to
an even finer partition consisting of the 96 possible symptom-
pattern/flu-strain conjunctions, the total mean frequency
count assigned to the resulting partition is 606, which is

significantly larger than that assigned to the symptom
pattern partition, paired #(31) = 4.40, p < .001. This
difference between the two partitions is essentially redun-
dant with the observation of 7 > 1.

As in the previous experiment, the influence of cue
conflict, cue frequency, and cue redundancy on the value of
T can be examined (see Table 2). Once again, the value of T
increased significantly with level of cue conflict (see Table 3
for means; as in Experiment 1, the relationship is not
completely monotonic at the highest value of cue conflict).
Cue frequency again failed to have a significant effect,
though a trend in the direction of T increasing with cue
frequency was apparent. Finally, cue redundancy did not
have a statistically significant effect in this experiment,
though a trend in the direction consistent with the previous
experiment was observed (see Table 6 for means).

Summary. Elicitation of judgments of absolute fre-
quency did not eliminate the pattern of subadditive judg-
ments observed in the previous experiments. Instead, as
predicted by support theory, judgments of frequency were
systematically subadditive but less so than comparable
judgments of probability. The degree of subadditivity ob-
served in the frequency judgments, like that found for
probability judgments, varied systematically with cue con-
flict, that is, the number of flu strains implicated by
symptoms present in the symptom pattern. The effects of cue
redundancy observed in Experiment 3, however, were not
replicated in Experiment 4, Cue frequency failed once again
to have a significant effect on the degree of observed
subadditivity.

Experiment 5

The results of Experiments 1-4 demonstrate considerable
subadditivity in probability (and frequency) judgments in a
classification-learning task. The observation of general sub-
additivity, as measured by the total probability T assigned to
a set of elementary hypotheses, is consistent with the
predictions of support thecry. Tversky and Koehler (1994)
introduced a discounting factor w as a more refined measure
of subadditivity that is indexed to a particular implicit
disjunction. In the present context of three elementary
hypotheses F,, F,, and Fj, representing the three possible flu
strains, consider as an example the elementary judgment
P(F), Fy). Letting the discounting factor wr, represent the
extent to which the support for hypotheses F, and F; is
discounted by their implicit inclusion in the residual £, the
value of the elementary judgment is given by

s(Fy)
S(F) + wr [s(Fp) + s(Fp]’

P(F\,F) = 3)

where wg, = 1 according to support theory. The lower the
value of the discounting factor, the greater the degree of
subadditivity.

Koehler et al. (1997) introduced a particular form for the
relationship between the support for the focal hypothesis and
the extent to which the resulting residual hypothesis is
discounted, called the linear-discounting model. According
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to this  model, the support of the hypotheses included
implicitly in the residual F is discounted by a factor w, that
decreases in a linear fashion as the support for the focal
hypothesis increases:

wr, = 1 — Bs(F). @)

The model is intended to capture the intuition that when
support for the focal hypothesis is high, the corresponding
residual hypothesis may be unpacked into its components to
a lesser extent, and evidence supporting the individual
components of the residual hypothesis may be evaluated less
exhaustively, than when support for the focal hypothesis is
low. Simply put, when the focal hypothesis appears consis-
tent with the evidence, the judge may be less inclined to
assess the implications of the evidence for individual
hypotheses included implicitly in the residual than when
the focal hypothesis appears less consistent with the evi-
dence. The linear-discounting model gives rise to the en-
hancement effect, in that increasing the support for a set of
hypotheses will produce more discounting and hence en-
hanced subadditivity.

To fit the model, however, the support for each hypothesis
provided by a given body of evidence must be assessed.
Tversky and Koehler (1994; also Koehler et al., 1997) have
shown that people are able to provide direct assessments of
evidential support that can then be used to predict probabil-
ity judgments obtained from a separate group of partici-
pants. A final experiment was conducted to collect the
required set of direct support assessments, which would
allow fitting of the linear-discounting model to the probabil-
ity and frequency judgment data of Experiments 3 and 4.

Experiment 5 used the same training sequence and
category structure as that used in Experiments 3 and 4, but
instead of asking participants for probability or frequency
judgments, they were asked to make judgments that could be
used to estimate the evidential support for each flu strain
provided by each symptom pattern. This was accomplished
by asking patticipants—after the training sequence—to rate
the degree to which a particular patient (characterized by a
symptom pattern) resembled the prototypical patient suffer-
ing from a designated flu strain. It was assumed that the
similarity judgments would provide a reasomably good
measure of the perceived evidential support for a designated
flu strain provided by a particular symptom patiern. The
similarity judgments can be used to fit the Kochier et al.
(1997) lincar-discounting model to the probability judg-
ments collected in Experiment 3 and to the frequency
judgments collected in Experiment 4. Furthermore, as in the
previous experiments, the influences of cue conflict, cue
frequency, and cue redundancy on the judgments can be
assessed.

Method
Participants. Participants were 19 undergraduates at the Uni-

versity of Waterloo, who participated in exchange for credit in their
-introductory psychology course. Data were dropped from one

additional participant whose learning performance was only margin-
ally greater than that expected by chance guessing.

Design. The 96 pattern judgment trials were blocked by target
flu strain to simplify the judgment task. The order in which patient
cases were encountered within a block was determined randomly
for each participant on each block. In all other respects, the
experimental design was identical to that of Experiments 3 and 4.

Procedure. The training portion of the experiment proceeded
exactly as in Experiments 3 and 4. The major change in this
experiment was the introduction of a new dependent measure on
the pattern judgment trials. On these trials, participants were
presented with a target “patient” case. Their task was to assess how
similar the target patient was to their prototype of the typical patient
suffering from a designated flu strain. Participants were told:

By now, you have probably developed some understanding of
the relationships between various symptoms and the three
possible flu strains. Put differently, you probahly have a
prototype or image of what the typical patient suffering from a
particular flu strain looks like, in terms of the set of symptoms
you have been studying. In the next part of the experiment you
will be presented with a set of patients, just as in the last
section. In this case though, you are asked to judge the
SIMILARITY of the patient in question to your prototype or
image of the typical patient suffering from a designated flu
strain, for example, Flu Strain 1. In other words, you will be
asked to judge how similar the target patient is to your mental
image or prototype of a typical patient suffering from the
designated flu strain,

Judgments were made on a 010 scale where 0 was labeled “not at
all similar™ and 10 was labeled “‘highly similar.” Participants were
instructed:

A similarity rating of O means the target patient is not at atl
similar to your prototype or image of th:nmcnl patient
suffering from the designated flu strain. A similarity rating of
10 indicates that the target patient is highly similar to your
prototype ot image. Intermediate ratings indicate intermediate
degrees of similarity.

Once again, participants entered their judgments by moving a box
via the arrow keys on the keyboard until their desired response
{0-10) was selected and then pressing the return key. In all other
respects, the procedure was identical to that of Experiments 3
and 4. ‘

Results and Discussion

Learning performance. Over participants, average accu-
racy across the 240 training trials was 48%, which is
essentially identical to that achieved by participants in
Experiment 3. The most accurate participant achieved 58%
correct, and the least accurate achieved 39% correct. All
participants included in the sample achieved significantly
above-chance accuracy. -

Participants’ performance showed little sign of improve-
ment in the second half of the training sequence, suggesting
that by the end of the training phase participants had leamed
all they could about the category structure. On the first block
of 60 trials, 41% of participants’ guesses were correct. For
the next three blocks, the corresponding figures were 47%,
51%, and-51%, respectively. ‘

Pattern - judgment data. Table 8 presents the mean
similarity judgments assigned to each of the 32 possible
symptom patterns for each of the three target flu strains. The
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Table 8
Average Similarity Ratings Between Each Flu Strain and
Each of the 32 Possible Symptom Patterns in Experiment 5

Pattern Flu1l Flu2 Flu 3
ABCDE- 4.37 3.79 6.79
ABCDe 4.34 574 6.79
ABCdE 4.84 4.89 7.11
ABCde 5.68 5.00 700
ABcDE 6.00 6.32 4.95
ABcDe 5.74 5.95 ‘ 4.37
ABcdE 6.16 5.53 432
ABcde 6.95 6.47 3.21
AbCDE 4.89 2.89 7.05
AbCDe 6.05 453 6.84
AbCdE 5.00 442 6.53
AbCde 5.37 3.26 5.63
AbcDE 7.00 4.89 3.37
AbcDe 7.47 421 2.89
AbcdE 6.89 447 2.89
Abcde 7.63 421 2.89
aBCDE 3.37 5.00 7.11
aBCDe 2.74 442 7.32
aBCdE 3.16 532 6.74
aBCde 332 426 6.47
aBcDE 5.00 7.11 3.63
aBcDe 421 589 2.63
aBcdE 442 5.68 3.95
aBcde 2.95 6.84 226
abCDE 3.37 4.47 6.53
abCDe 3.05 3.05 5.89
abCdE 2.95 3.05 6.11
abCde 2.32 2.68 5.11
abcDE 5.63 5.47 3.53
abcDe 432 521 3.68
abcdE 442 4.00 2.63
abede 3.32 3.00 5.58
Note. Uppercase letters denote a symptom’s presence; lowercase

letters denote the symptom’s absence.

judgments appeared to correspond in a reasonable manner to
the information presented during the training phase. For
example, for patterns that have only a single symptom
Present, participants gave high ratings to the appropriate flu
strain (e.g., the pattern aBcde was assigned a mean similarity
rating of 6.84 to Flu Strain 2 but only 2.95 and 2.26,
respectively, to Flu Strain 1 and Flu Strain 3). The correlation
between the mean similarity ratings and the Bayesian
expected values was 0,32 (SD = 0.28, Mdn = 0.27), while
the correlation between the mean ratings and the actuarial
values was 0.26 (SD = 0.23, Mdn = 0.30), showing that
participants’ similarity ratings were not as strongly related to
the normative values as were the probability and frequency
judgments elicited in Experiments 3 and 4. Over the set of 96
mean judgments, the judged similarity measure had a correlation
of (.81 with judged probability. (from Experiment 3) and 0.80
with judged frequency (from Experiment 4).

Results from the earlier experiments were interpreted by
postulation of enhanced evidential support available for each
flu strain under high cue conflict. If the similarity judgments
provide a measure of support, then we would expect to find
an influence of cue conflict comparable to that found in
judgments of probability. Indeed, regression analysis of the
total of the similarity judgments assigned to the three flu

strains given a particular symptom pattern (see Table 2) did
indicate a significant effect of cue conflict. As predicted,
then, the presence of high cue conflict induced greater
perceived support for the hypotheses, as measured by the
similarity ratings, than was found under low cue conflict (see
Table 3 for means).

Cue redundancy also had a significant influence on the
similarity ratings (see Table 6 for means), such that the
number of symptoms present in the pattern was associated
with greater judgments (in this case, the similarity proxy for
evidential support), even when controlling for the number of
fiu strains implicated by the symptom pattern. Once again,
cue frequency was found to have little influence,

In the previous four experiments, more complex regres-
sion models including interaction terms failed to account for
significantly more variance in T than the simpler model
including only main effect terms. Results from Experiment 5
represent the one exception: A model including interaction
terms accounted for a small (1.3%) but statistically signifi-
cant increase in R2, due to a significant conflict by redun-
dancy interaction (B = —9.28, SE of B = 3.14, p < 01).
Inspection of cell means (see Table 8) reveals that this
interaction is artributable to the mean total similarity (based
on one observation per participant) given symptom pattern
ABCDE being lower than would be expected given indepen-
dent main effects of cue conflict and redundancy.

Model-fitting results. The linear-discounting model in-
troduced by Koehler et al. (1997) was fit to the judgment
data of Experiments 3 and 4, using the similarity judgments
as a measure of support. Fitting of the meodel involves
estimating the value of two free parameters. First, it was
assumed that the similarity ratings were related to the
perceived evidential support for a hypothesis via a power
transformation with exponent 0 of the form

sx(F,) = sim(F,, X)°, 0]

where sx(F,) is the support for flu strain # provided by the
symptom pattern X, and sim(F,, X) is the rated similarity of
a patient with symptom pattern X to the prototypical patient
suffering from flu strain ». This transformation has been
used with reasonable success in previous work (Koehler,
1996; Koehler et al., 1997; Tversky & Koehler, 1994), It can
be shown that such a relationship must hold between the
support and similarity scales if (a) the two scales are
monotonically related, and {b) ratios of values on the two
scales are also monotonically related (see Tversky &
Kochler, 1994). Second, once the similarity ratings have
been transiormed to support values, it was assumed that
judged probability is related to support as specified by the
linear-discounting model described in Equation (4), with B
as a free parameter.

This model was used to fit the set of 96 mean similarity
ratings from Experiment 5 to the corresponding set of 96
mean probability judgments from Experiment 3 and to the
comparable set of 96 mean “derived’” probability judgments
computed from the frequency judgments in Experiment 4.
The two free parameters, & and B, were estimated separately
for each data set using a least-squares fitting procedure.
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Table 9

Fits of Linear-Discounting Model, Constant-w Model, and Noncompensatory Model to
the Mean Probability Judgment Data of Experiment 3 and the Mean Frequency Judgment

Data of Experiment 4
. Pattern
Data set and \ judgments Total T
(parameter values) RMSE R RMSE R
Experiment 3 (prob.)
Linear-discounting model (6 = 0.86, p = 0.81) .084 715 111 264
Constant-w model (0 = 1.34, w = 0.54) 085 708 124 104
Noncompensatory model (m = 8.67, b = 4.99) 093 .648 150 256
Experiment 4 (freq.)
Linear-discounting model (8 = 1.24, p = 0.79} 095 744 .086 232
Constant-w model (8 = 1.64, w = 0.64) .095 .743 099 001
Noncompensatory model (m = 1028, b = —7.07) 112 642 171 237
Note. Models are tested in their ability to account for the full set of 96 mean pattern judgments per

experiment, as well as for the corresponding set of 32 mean total probability or frequency assigned to
the three flu strains given a particular symptom pattern, using the mean similarity ratings from
Experiment 5 as a measure of evidential support. RMSE = root-mean-square error, m = slope; b =

y-intercept.

Results of fitting the linear-discounting model to the probabil-
ity and frequency judgments are presented in Table 9.
Although closer fits have been achieved using the model in
some previous studies (see Koehler et al., 1997), the model
did account for more than 70% of the variance in the set of
observed judgments in each dataset.

Once the model was fit to the probability and frequency
judgment data, its predictions regarding the total probability

T assigned to the three flu strains for a given sympiom
pattern were compared to the observed mean totals from
Experiments 3 and 4. Fit statistics are presented in Table 9.
The results are displayed graphically in Figures 1 and 2, in
which the symptom patterns have been ordered by the
number of present (positive) symptoms included in the
pattem. The linear-discounting model appears to have at
least a moderate ability to predict variability in T as a
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Figure ]. Total probability T assigned to the three flu strains in Experiment 3, by symptom pattern.
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function of the symptom pattern displayed by the patient,
though there is clearly still much room for improvement. It
is worth noting in this regard that the model’s predictions are
based on an indirect fitting to the pattemn judgment data
rather than on a direct fitting to the set of 7T values;
obviously, a better fit could be achieved if the set of T values
were to be fitted directly. The focus here, however, is on the
ability of a model of the individual pattern judgments to also
predict the value of T.

The fit of the linear-discounting model can be compared
to a constant-w model in which the degree of discounting of
hypotheses included in the implicit residual hypothesis is
unreiated to the support for the focal hypothesis (Koehler et
al., 1997). This model provides a baseline against which to
assess the usefulness of the linear-discounting model, by
assessing how well a model can perform that assumes no
systematic variation in the degree of discounting. The
constant-w model also has twe free parameters, 8 and w,
where w is the value of the constant discounting factor. As
indicated in Table 9, the constant-w model achieved a fit to
the judgment data that was only slightly worse than that
achieved by the linear-discounting model. Large differences
in performance between the two models are not to be
expected given the number of features they share: Both
models take into account the relative support for the focal
and alternative hypotheses, and both assume that the alterna-
tives lose support by being packed together in an implicit
residual hypothesis.

The constant-w model, however, exhibited a much poorer

ability to predict the total probability T for a given symptom
pattern than did the linear-discounting model, as can be seen
in Table 9. Despite the relatively small number of observa-
tions being fit, the difference in fit to the T values between
the two models is marginally statistically significant for the
probability judgment data of Experiment 3, #(29) = 1.26,
p < .11, and is statistically significant for the frequency
judgment data of Experiment 4, #(29) = 3.04, p < .01.

Finally, a noncompensatory model was also fit to the
Jjudgment data from Experiments 3 and 4. In this model, it is
assumed that the judged probability (or frequency) of a
particular hypothesis depends only on the support for that
hypothesis, regardless of the extent to which the evidence
also supports the alternative hypotheses. Support theory, by
contrast, assumes that judged probability generally increases
with the support for the focal hypothesis and decreases with
the support for the alternative hypothesis, even if elementary
hypotheses implicitly included in the residual acting as the
alternative hypothesis lose support by being packed to-
gether. This assumption of compensatory judgments is
incorporated in both the linear-discounting model and the
constant-w model; the noncompensatory model offers a test
of its validity.

The noncompensatory model was instantiated as a simple
linear regression of the pattern judgments (from Experi-
ments 3 and 4) on the associated support value for the focal
hypothesis as measured by the corresponding similarity
judgment from Experiment 5. Thus, like the linear-
discounting model and the constant-w model, the noncom-



46 KOEHLER

pensatory model has two free parameters, in this case m and
b, representing the slope and intercept of the regression line,
respectively. Table 9, which presents the fit of this model to
the probability and frequency judgments, clearly indicates
the relative inferiority of the noncompensatory model’s fit to
the data. It does not fit the pattern judgments as well as either
of the other two models, and while in the correlational sense
it appears to provide a comparable fit to the T values as that
provided by the linear-discounting model, in absolute terms
(measured by RMSE) its predictions deviate substantiaily
from the observed values.

Assessment of the noncompensatory model’s perfor-
mance is relevant to a potential criticism of the use of
similarity ratings from Experiment 5 as a measure of
evidential support. Indeed, the choice of an appropriate task
for direct rating of support can be complicated, with any
particular task subject to some potential drawbacks (for
discussion of this issue, see Koehler et al., 1997, p. 296). In
this case, specifically, it could be argued that—despite
experimental instructions—participants asked to make simi-
larity. judgments interpreted the task as one of judging the
probability of the designated flu strain given the symptom
pattern. On this interpretation, it would hardly be surprising
that the resulting “support™ measure consequently allows
accurate fitting of the probability (and frequency) judgment
data from Experiments 3 and 4 because, the argument goes,
participants in the similarity-rating task are also making
probability judgments. The relatively poor fit of the noncom-
pensatory maodel to the judgment data, however, is inconsis-
tent with this interpretation. If participants in Experiment 5
gave probability judgments instead of similarity ratings as
instructed, then the simple scale transformation refiected in
the noncompensatory model ought to provide a superior fit
to the judgment data. The observation that the linear-
discounting model and the constant-w model outperform the
noncompensatory model suggests that the judgment data
from Experiments 3 and 4 reflect a sensitivity to the support
for the alternatives to the focal hypothesis not present in the
similarity ratings. This is precisely the pattern of results that
would be expected if participants in Experiment 5 did in fact
interpret their task as one of judging similarity (a noncompen-
satory judgment task) rather than probability (a compensa-
tory judgment task).

Summary, Collection of similarity judgments serving as
a measure of evidential support allowed model fitting of the
judgment data from Experiments 3 and 4, with informative
results. The finding that the noncompensatory model was
generally outperformed by the linear-discounting model and
the constant-w model indicates that people’s probability
judgments are sensitive not only to the support for the focal
hypothesis, but also to the support for the alternative
hypothesis, as predicted by support theory. The finding that
the linear-discounting model outperformed the constant-w
model in fitting the total probability T assigned to the three
flu strains indicates that variability across the symptom
patterns in the extent to which alternatives are discounted by
their inclusion in an implicit residual hypothesis is system-
atic. The form of the linear-discounting model—which
assumes that the greater the support for the focal hypothesis,

the greater is the extent to which support for alternatives
is discounted in the residual—provides a more complete
picture of the influence of cue conflict (and cue redun-
dancy) observed in the previous experiments: Symptom
patterns associated with high conflict (and redundancy) are
perceived to provide greater evidential support for the
hypotheses under consideration, which in tun invokes
greater discounting. ‘

General Discussion

There are two major findings from the present experi-
ments. First, the total probability T assigned to the three
categories consistefitly exceeded one in the context of a
classification-learning task. Second, the value of T was
influenced by cue conflict and redundancy but not by cue
frequency, and was predictable from support theory using
the linear-discounting model. The former finding has impli-
cations for the issue of when and why biases in probability
judgment are likely to arise. The latter has implications for
the study of how evidence is evaluated in the process of
assessing support. These two issues are addressed in turn.

Interpreting Biases in Probability Judgment

When component hypotheses are implicitly packed to-
gether in the residual, they tend to lose support. As a result,
the focal hypothesis enjoys a systematic advantage. This
bias, observed in many previous studies in which judgments
were based on general knowledge (for a review, see Tversky
& Koehler, 1994), held across four classification-learning
experiments in which the relevant knowledge is acquired in
the laboratory. As is elaborated below, these results are
inconsistent with arguments that systematic bias in human
judgment is (a) attributable to biased selection of nom-
representative items, and (b} eliminated by a frequentistic
formulation.

Recently, debate has emerged over the interpretation of
the overconfidence people display in many tasks (for
reviews, see Harvey, 1997; Keren, 1991; Lichtenstein,
Fischhoff, & Phillips, 1982; McClelland & Bolger, 1994;
Wallsten & Budescu, 1983). A number of researchers
(Bj6rkman, 1994; Gigerenzer et al., 1991; Juslin, 1994) have
offered ecological models of subjective probability calibra-
tion in the tradition of Brunswik (1943, 1955). These models
focus on subjective cue vatidities that are acquired through
experience in a given environment or reference class. They
adopt a null hypothesis in which it is assumed that subjective
cue validities are unbiased estimates of the actual validity of
the cue in the environment. Any observed biases in labora-
tory studies, from this view, must be attributable to the
manner in which test items are selected by the experimenter.
In particular, if the experimenter selects a set of items for
which the relevant cues have lower predictive validity than
in the natural envirenment, the result will be an appearance
of systematic bias (i.e., overconfidence). From this view,
apparent systematic bias will be eliminated by representative
sampling of test items from the natural reference class.
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The classification-learning paradigm would seem to pro-
vide an ideal way in which to test such claims, as it allows
complete experimental control over the learning environ-
ment. The present studies demonstrate that probability
judgments continue to exhibit considerable subadditivity,
even in an experimental design that avoids the problem of
nonrepresentative sampling of test items. While the present
experiments do not directly address the issue of subjective
probability calibration, a recent study designed to investi-
gate calibration did find substantial overconfidence using a
classification-learning task (Yates, Lee, Shinotsuka, Pat-
alano, & Sieck, 1998; see also McKenzie, 1997), Research
using other methodologies (Griffin & Tversky, 1992; Juslin,
Olsson, & Bjdrkman, 1997) also corroborates the conclusion
that representative sampling is not sufficient to eliminate
overconfidence.

A second criticism of studies documenting judgmental
biases comes from researchers arguing that the mind is
designed for processing frequencies rather than probabilities
(Brase et al., 1998; Cosmides & Tooby, 1996; Gigerenzer et
al., 1991; Gigerenzer & Hoffrage, 1995). This view was
elaborated in some detail in the introduction to Experiment
4, which provides a strong test of claims regarding the
existence of a modular cognitive algorithm designed for
optimal processing of frequencies. The design of this
experiment ought to have been ideal for the operation of
such an algorithm, as the evidence serving as input was
presented in the form of a sequence of single cases, and the
judgments required as output were elicited in the form of
absolute frequency estimates. Nonetheless, the resulting
judgments exhibited systematic subadditivity, demonstrat-
ing that elicitation of absolute frequencies is not sufficient to
eliminate this particular form of judgmental bias (see also
Rotienstreich & Tversky, 1997).

The frequentistic formulation used in Experiment 4 did
reduce the degree of subadditivity observed in people’s
judgments relative to that found in Experiment 3 using a
probabilistic formulation. This result is consistent with the
general claim of Tversky and Kahneman (1983) that a
frequentistic formulation can yield more extensional judg-
ments. Tversky and Koehler (1994) suggested, specifically,
that a frequentistic formulation reduces subadditivity by
encouraging the judge to unpack implicit disjunctions to a
greater extent than is typically done in judgments of
probability. Asking the judge in Experiment 4 to assess the
number of patients with a given pattern of symptoms who
have a designated flu strain, out of the total number of
patients with that pattern of symptoms, may have encour-
aged greater consideration of patients with that symptom
pattern suffering from specific flu strains other than the
designated flu strain. The frequentistic formulation does not
generally produce complete unpacking of the residval hypoth-
esis. As a result, frequency judgments are still subadditive,
but less so than probability judgments.

Assessing Evidential Support

On the basis of the results of the experiments reported in
this article and in related work, it is possible to offer a

preliminary characterization of some apparently central
principles governing the assessment of evidential support,
using support theory as a guiding theoretical framework. A
common theme of these principles, elaborated below, is a
tendency toward reducing the complexity of assessing the
implications of a- multicue body of evidence for a set of
hypotheses. To make these proposed principles more con-
crete, they will be illustrated with a ruoning exampie.
Consider the task of judging the probability of Flu Strain 1,
P(F,, F,), given the symptom pattern AbCDe. According to
support theory, this requires an assessment of the support for
Flu Strain 1 and for its complement provided by the
symptom pattern.

The first principle concerns the representation of
hypotheses.

Principle 1: Composite residual formation. When a
focal elementary hypothesis (e.g., F,) is pitted against all of
its alternatives taken together (e.g., F, and F3), the alterna-
tives are packed together to form an implicit disjunction
referred to as the residual hypothesis. Koehler et al. (1997)
suggest that in assessing the support for the alternatives to
the facal hypothesis, people first form a composite repre-
sentation of the alternatives in the form of an implicit
residual hypothesis (e.g., “‘not "), and then evaluate the
support provided by the evidence for the resulting composite
hypothesis.

An alternative process would be to assess the evidential
support for each component hypothesis included in the
residual, and then aggregate the support across all such
component hypotheses to arrive at an overall assessment of
the support for the residual hypothesis. Given a large set of
elementary hypotheses and a complex body of evidence, this
alternative process would quickly become computationally
difficult, and it retains information that may very well be
irrelevant to the judge regarding the distribution of support
among specific alternatives to the focal hypothesis. Forma-
tion of a composite residual hypothesis that is evaluated as a
single entity can simplify the task of support assessment.

The cost of this process appears to be a systematic loss of
support for hypotheses included implicitly in the residual,
relative to what they would have received if assessed
individually. Even if there are compelling pieces of evidence
supporting its components, there may be no single compel-
ling piece of evidence supporting the composite residual
hypothesis as a whole (Brenner & Koechler, 1999). In this
manner, the absence of a single piece of evidence supporting
the residual may put it at a substantial disadvantage in terms
of support assessment, in much the same way that a set of
disjunctive reasons for a choice option tends to have less
impact on the option’s attractiveness than does a single
coherent reason {Tversky & Shafir, 1992),

The second and third principles concern the representa-
tion of evidence.

Principle 2: Evidence decomposition. 'When possible, a
complex body of evidence is decomposed and evaluated in a
piece-by-piece manner. That is, rather than assessing the
implications of the configuration or pattern of symptoms
taken as a' whole (e.g., pattern AbCDe), each cue's (e.g., A's)
contribution to the support for a hypothesis is assessed
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individually. The focus on individual cues may represent a
kind of ihitial default strategy that could be supplemented
with analysis of configural cue information if such informa-
tion proved to be sufficiently valuable (cf. Castellan &
Edgell, 1973; Edgell, 1978, 1980; Edgell & Castellan, 1973;
Edgell & Roe, 1995).

Of course, not ali bodies of evidence will necessarily lend
themselves to the kind of simple decomposition that is likely
to have occurred in the present experiments. Sometimes,
discrete features may be combined and perceived as a single
piece of evidence (e.g., Edgell & Morissey, 1992). For
example, the presence of the symptom cough along with the
absence of the symptom chest congestion may be combined
into the single piece of evidence dry cough. Thus, the
suggestion that a body of evidence may be evaluated on a
piece-by-piece basis needs to take into account “pieces” or
“chunks” of evidence as represented by the judge.

Evidence decomposition, 0o, can reduce the complexity
of the support assessment process (cf. Hogarth & Einhorn,
1992). If, for example, participants kept track of the
relationship between each possible symptom pattern (of
which there are 32 given five binary symptoms) and each of
the three flu strains, they would have to monitor a total of 96
relationships. In contrast, by taking the symptoms one at a
time, many fewer relationships need to be considered {(at
most, 30, though possibly fewer given the next principle).
Another advantage of evidence decomposition in this re-
spect is that updating of belief as new pieces of information
are encountered is relatively straightforward: The implica-
tion of the new piece of evidence can be assessed on its own,
without an entire reassessment of the modified body of
evidence as a whole.

Principle 3: Cue presence/absence asymmetry. Given
binary cues representing the presence or absence of a
feature, assessment of support for a hypothesis appears to be
based primarily on present cues. Given symptom patiern
AbCDe, for example, it is assumed that the support for a
particular hypothesis is assessed primarity on the perceived
implications of present Symptoms A, C, and D. This appears
to be the case even when, as in the present experiments, cue
absence is.explicitly denoted by the presence of a label (e.g.,
no cough). As described in the introduction, this assumption
is consistent with previous findings in studies of classifica-
tion learning (e.g., Estes et al., 1989) and in the broader
study of judgment under uncertainty (e.g., Kao & Wasser-
man, 1993). A focus on present cues is also a key component
of ane of Klayman and Ha’s (1987) positive test strategies,
called the positive rarget test, in which instances or cases
known to have a target property are examined to see whether
they fit a hypothesized classification rule.

The focus on present cues rather than absent cues seems
intuitively reasonable, as any body of evidence can be
characterized in terms of a finite set of present features but a
potentially infinite set of absent features. For example, even
assuming that only a limited (but presumably large) set of
symptoms is considered generally relevant for medical
diagnosis, the number of symptoms not exhibited by a
patient will greatly exceed the number of symptoms the
patient does exhibit.

Taken together, Principles 2 and 3 provide a substantial
reduction in the computational requirements of the support
assessment process. Recall that if symptom patterns were to
be assessed in their entirety, in a configural manner, a total of
96 relationships would have to be monitored in the 5-symp-
tom, 3-flu-strain case. By comparison, if each symptom
pattern is evaluated in a symptom-by-symptom manner, and
if only the implications of cue presence are assessed, the
number of monitored relationships is reduced to 15, If the
judge observes large, systematic correlations among fea-
tures, or significant violations of conditional independence,
of course, he or she might be more inclined to consider at
least some subsets of cues together, which would necessarily
increase the number of relationships that would have to be
monitored.

The next three principles concern general properties of the
support assessment process itself, which is a joint function
of hypothesis and evidence representation.

Principle 4: Noncompensatory support assignment. The
support for a hypothesis reflects only those aspects of the
evidence which directly implicate that hypothesis. Evidence
that indirectly relates to the likelihood of the hypothesis, by
implicating one or more of its alternatives, is not generally
reflected in the support for the indirectly affected hypothesis.
Given symptom pattern AbCDe, for example, suppose that
the judge views the presence of Symptom A as directly
implicating F, but sees the presence of Symptom C as only
indirectly relevant in the sense that it directly implicates a
competing hypothesis, F. It is assumed that the presence of
Symptom A will contribute (positively) to the support for F.
By contrast, the presence of Symptom C is assumed not to
influence the support for F;. The support assessment process
is thus said to be noncompensatory, meaning that it is
insensitive to the degree to which the evidence supports
alternative hypotheses.

Support theory provides a mechanism by which probabil-
ity judgments can be compensatory even if the underlying
support assessment process is not, namely the represemtation
(1) of probability as normalized support for the focal and
alternative hypotheses. Evidence that implicates an alterna-
tive hypothesis may not influence the support for the focal
hypothesis, but will nonetheless reduce its judged probabil-
ity by increasing the support for its alternative. (Hence the
failure of the noncompensatory probability model to account
for the probability and frequency judgments from Experi-
ments 3 and 4.)

When a focal elementary hypothesis is pitted against all of
its alternatives taken together as a residual hypothesis,
however, the subadditive relationship between the support
for the residual and that for its components when assessed
individually results in partially noncompensatory probabil-
ity judgments. When a piece of evidence directly implicates
the focdl hypothesis, the support for the focal hypothesis is
adjusted accordingly, but when the implicated hypothesis is
included implicitly in the residual hypothesis, its influence is
discounted. Thus, the noncompensatory nature of the sup-
port assessment process “leaks” into the resulting probabil-
ity judgments, as illustrated by the enhancement effect
(Brenner & Koehler, 1999; Koehler et al., 1997; Tversky &
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Koehler, 1994). A number of previous researchers (e.g.,
Robinson & Hastie, 1985; Teigen, 1983; Van Wallendael,
1989; Van Wallendael & Hastie, 1990) have also reported
that likelihood judgments made under conditions of uncer-
tainty appear to be systematically noncompensatory. As
some of these researchers have noted, a noncompensatory
process has the advantage of computational simplicity. In
assessing the evidential support for a particular hypothesis,
only those aspects of the evidence that directly implicate the
hypothesis need to be considered. Furthermore, the same
support value s(F,) can be used when judging P(F,, F,),
P(F,, F3), and so on, assuming all the hypotheses in question
correspond to events in a fixed sample space. (See Koehler,
1996, for elaboration and extension of this observation.)

Principle 5: Diagnosticity-based support assignment.
Results of the present experiments suggest that the support
assessment process is based in large part on the perceived
diagnosticity of the individual cues comprising the body of
evidence. In these studies at least, the single most important
determinant of a present cue’s contribution to the perceived
support for a hypothesis is the extent to which the cue’s
presence is perceived as differentially associated with that
hypothesis. Mere association of the cue with the hypothesis,
due to the cue’s overall prevalence in the environment, is not
perceived as providing strong support for the hypothesis, as
indicated by the consistent null effect of cue frequency in the
present experiments. The sensitivity of support assessments
to evidential diagnosticity will help to ensure at least some
degree of judgmental accuracy despite the many simplifica-
tions in evidential reasoning reflected in Principles 1-4.

How can this claim that support assessments are sensitive
to evidential diagnosticity be reconciled with the earlier
suggestion that support assessments are noncompensatory?
The diagnosticity of a piece of evidence, after all, depends
on the extent to which that piece of evidence is associated
with alternative hypotheses. Note, however, that the type of
diagnosticity in question is that of a single piece of evidence,
not that of the entire body of evidence upon which the
probability judgment is based. For example, Body of
Evidence ABC, when taken as a whole, is nondiagnostic (in
Experiments 3-5) in that the (posterior) probabilities of the
hypotheses under evaluation are unchanged from what they
would be in the absence of any evidence at all (i.e., their
prior probabilities). Taken individually, hewever, each piece
A, B, and C has diagnostic value associating it with F|, F,,
and ¥, respectively. Thus, on a piece-by-piece assessment
of support (Principle 2), Body of Evidence ABC increases
the support for all three hypotheses, producing enhanced
subadditivity.

Principle 6: Support accumulation. In the present experi-
mental context at least, the process of support assessment
appears to be best characterized as one in which support is
accumulated, over individual pieces of evidence in the
evidence body, or over time as further evidence is encoun-
tered. Clearly, there are cases ih which a piece of evidence
can decrease the perceived support for a hypothesis; this
happens, for example, when exculpatory evidence such as an
alibi eliminates a suspect from a criminal investigation.

Nonetheless, it is suggested, there may be a systematic
tendency for evidence to increase rather than decrease the
perceived support for a hypothesis.

The influence of cue redundancy in Experiments 3 and 5
(though notably absent in Experiment 4) is consistent with
this claim: The presence of additional nondiagnostic pieces
of evidence (i.e., Symptoms D and E) appeared to enhance
support for the designated hypothesis. This observation
suggests that—holding fixed the diagnostic implications of
the evidence—a hypothesis tends to receive more support
from a body of evidence when it includes more present
features or cues, as would be expected if each piece of
evidence has a tendency to add to the support for a
hypothesis.

Such an influence is also apparent in comparing the
results of Experiments 1 and 3, which used four and five
binary symptoms, respectively. On average, then, symptom
patterns in Experiment 3 have a greater number of present
symptoms than symptom patterns in Experiment 1. (Of
course, they have a greater number of absent symptoms on
average as well.) As expected if the number of present cues
has an influence, the mean value of T in Experiment 3
(M = 142%) is substantially greater than that found in
Experiment 1 (M = 120%).

Additional empirical findings consistent with a support-
accumulation process are reported by Robinson and Hastie
(1985, Experiment 3), who presented participants with
murder mysteries, one clue at a time, and elicited probability
judgments of guilt for each suspect following each clue.
Participants® judgments were generally noncompensatory,
exhibiting a pronounced tendency to adjust the probability
of the implicated suspect only, consistent with Principle 4.
More critically in the context of Principle 6, the judged
probability of guilt increased in a linear fashion with the
number of clues indicating the suspect’s guilt, but did not
exhibit comparable decreases as the number of clues indicat-
ing innocence increased. As would be expected assuming a
support accumulation process, clues appeared to be more
likely to increase than to decrease support for the hypothesis
that a given suspect was guiity.

Postulation of Principles 1-6 goes well beyond the data
reported in this article and that available from previous
research, and will clearly require further investigation.
Furthermore, these principles are intended to capture some
apparent general tendencies in probabilistic reasoning; they
are bound to be subject to some exceptions. Identification of
conditions under which the principles outlined above hold,
or fail to hold, should be highly informative. A related issue
concerns the environmental conditions under which adher-
ence to these principles yields reasonable accuracy or
substantial error (cf. Klayman & Ha, 1987; McKenzie,
1994).

Indeed, there are already a few notable caveats regarding
the principles above that can be found in previous research.
McKenzie (1998, 1999), for example, has shown that the
degree to which probability judgments assigned to comple-
mentary hypotheses are compensatory or noncompensatory
depends systematically on the manner in which the relation-
ship between the hypotheses and cues is learned. As another
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example, Hogarth and Einhom (1992) considered task
charactenistics that might contribute to the extent to which
evidence is assessed holistically versus one piece at a time,
In some cases the judge may assess the implications of one
piece of evidence in light of another piece from the same
body of evidence, focusing on the “configural” relations
among the set of cues (e.g., Edgell & Roe, 1995) and
possibly evaluating evidence by reference to a set of stored
exemplars (e.g., Estes, 1986; Medin & Schaffer, 1978;
Nosofsky, 1986).

Models of classification learning are intended to address
precisely these kinds of issues. As currently formulated,
however, many classification-learning models are unable to
account for the two main findings of the present study:
Probability judgments are systematically subadditive, such
that the total probability 7" assigned to a set of three or more
possibilities consistently exceeds one, and variance in T is
predictable from evidential characteristics such as cue
conflict. While most existing models of classification learn-
ing were originally developed to fit choice probabilities,
which are necessarily additive, recent attempts to generalize
such models to judged probability appear to have implicitly
retained the additivity assumption (e.g., Estes et al., 1989,
Gluck & Bower, 1988; Nosofsky et al., 1992). Such an
assumption is inconsistent with the results presented in this
article.

Systematic violations of additivity may have gone unno-
ticed in the classification learning literature in part because
the typical experiment in this area involves learning to
discriminate between a pair of categories. Under these
conditions, in which there are only two complementary
hypotheses, support theory predicts additive probability
judgments (because no residual hypothesis needs to be
formed), a prediction consistent with observations from a
number of researchers that probability judgments appear
more compensatory in the two-hypothesis case (e.g., Robin-
son & Hastie, 1985; Teigen, 1983; Van Wallendael & Hastie,
1990). It is only when there are three or more mutuaily
exclusive hypotheses that support theory predicts 7 > 1.
Generalization of classification-learning models to learning
involving more than two categories may pose greater
difficulties than has been previously assumed.
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